Journal of Integer Sequences, Vol. 6 (2003),
Article 03.4.7

A Combinatorial Derivation of the Number of Labeled Forests

David Callan
Department of Statistics
University of Wisconsin-Madison
1210 W. Dayton St.
Madison, WI 53706-1693
callan@stat.wisc.edu

Abstract

Lajos Takács gave a somewhat formidable alternating sum expression for the number of forests of unrooted trees on n labeled vertices. Here we use a weight-reversing involution on suitable tree configurations to give a combinatorial derivation of Takács' result.

Takács [1] used Lagrange inversion to obtain the alternating sum expression

$$
\begin{equation*}
\frac{n!}{n+1} \sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j} \frac{(2 j+1)(n+1)^{n-2 j}}{2^{j} j!(n-2 j)!} \tag{1}
\end{equation*}
$$

for the number of forests of unrooted trees on $[n]=\{1,2, \ldots, n\}$ A001858. This contrasts with Cayley's simple expression $(n+1)^{n-1}$ A000272 for the number of forests of rooted trees on $[n]$. Here we use well-known counts for forests of rooted trees to give a combinatorial derivation of Takács's result: we present (II) as the total weight of certain weighted tree configurations in which forests of unrooted trees show up with weight +1 and we exhibit a weight-reversing involution that cancels out the weights of all other configurations. First, rewrite (11) as

$$
\begin{equation*}
\sum_{0 \leq j \leq n / 2}(-1)^{j} \underbrace{\binom{n}{2 j}(2 j-1)!!}_{A} \underbrace{(2 j+1)(n+1)^{(n+1)-(2 j+1)-1}}_{B} \tag{2}
\end{equation*}
$$

where $(2 j-1)!!=1 \cdot 3 \cdot 5 \ldots(2 j-1)$ is the double factorial. The factor B is the number of forests on $[0, n]$ consisting of $2 j+1$ trees rooted at a specified set of $2 j+1$ roots 园, Theorem 3.3, p. 17] (see also [3, §2.1] for a recent elegant proof). The factor A is the number of ways to select $2 j$ elements from $[n]$ and then divide them up into pairs; in other words, to form a perfect matching on some $2 j$ elements of $[n]$. These $2 j$ elements, together with 0 , serve nicely as the specified roots to construct configurations counted by the product $A B$.

Define a partially-paired rooted (PPR, for short) n-forest to be a tree rooted at 0 and zero or more (unordered) pairs of rooted trees, the vertex sets of all the trees forming a partition of $[0, n]$. The pair-count of a PPR forest is its number of pairs of trees. The product $A B$ is then the number of PPR n-forests with pair-count j. If we define the weight of a PPR forest of pair-count j to be $(-1)^{j}$, then the right hand side of (1) is the total weight of all PPR n-forests.

To include the objects we're trying to count among these PPR n-forests, we suppose each tree in an unrooted forest to be rooted at its smallest vertex. Then forests of unrooted trees on $[n]$ correspond precisely to PPR n-forests with pair-count 0 and each child of vertex 0 smaller than all its descendants (delete vertex 0 to get the forest of unrooted trees). A vertex v in a rooted tree is inversion-initiating if at least one descendant of v is $<v$, otherwise it is regular. Thus forests of unrooted trees on $[n]$ appear as PPR n-forests with pair-count 0 and all children of vertex 0 regular. These special PPR forests are counted with weight 1 and here is the promised weight-reversing involution on the rest.

Given a PPR forest, let a denote the smallest vertex among all trees (if any) other than the one rooted at 0 , let u be the root of a 's tree (u is possibly, but not necessarily, $=a$), and let v be the root of the other tree in its pair. At the same time, if 0 has any inversioninitiating children, let a^{\prime} be the smallest among all descendants of these inversion-initiating vertices, let v^{\prime} be the child of 0 of which a^{\prime} is a descendant, and let u^{\prime} (possibly $=a^{\prime}$) be the child of v^{\prime} on the path from v^{\prime} to a^{\prime}. See the illustration below where solid lines represent mandatory edges, vertical dotted lines optional edges, and diagonal dotted lines optional subtrees.

a^{\prime} is smallest descendant of an inversion-initiating child of 0

a is smallest vertex not
a descendant of 0

At least one of a, a^{\prime} will exist unless the pair-count is 0 and all children of vertex 0 are regular; these are the special PPR forests, representing unrooted forests, and they survive. Choose the smaller of a, a^{\prime}. If it's a, add an edge from 0 to v and an edge from v to u so that vertex 0 acquires a new inversion-initiating child v (with a small descendant a) and the number of pairs of trees is reduced by 1 . If it's a^{\prime}, delete the edges $0 v^{\prime}$ and $v^{\prime} u^{\prime}$ to form a new pair of trees rooted at u^{\prime} and v^{\prime} (with a^{\prime} now the smallest vertex among all pairs of trees). In either case, the number of pairs of trees changes by 1 , so the weight changes sign. The mapping is clearly an involution on all non-special PPR forests and so their weights cancel out. Thus (2) $(=(1))$ is the number of forests of unrooted trees on $[n]$.

References

[1] L. Takács, On the number of distinct forests, SIAM J. Discrete Math. 3 (1990), 574-581.
[2] J. W. Moon, Counting Labelled Trees, Lectures Delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969), Canadian Mathematical Monographs, No. 1, 1970.
[3] J. Pitman, Coalescent random forests, J. Combin. Theory Ser. A 85 (1999), 165-193.

2000 Mathematics Subject Classification: 05C05.
Keywords: tree, labeled forest, partially-paired rooted n-forest, inversion-initiating vertex, weight-reversing involution.
(Concerned with sequence A001858.)
Received October 3 2003; revised version received November 3 2003. Published in Journal of Integer Sequences January 152004.

Return to Journal of Integer Sequences home page.

