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Abstract. Andrew Bremner (Experiment. Math. 8 (1999), 409–413) has described a tech-
nique for producing infinite families of elliptic curves containing length 7 and length 8
arithmetic progressions. This note describes another way to produce infinite families of el-
liptic curves containing length 7 and length 8 arithmetic progressions. We illustrate how the
technique articulated here gives an easy way to produce an elliptic curve containing a length
12 progression and an infinite family of elliptic curves containing a length 9 progression, with
the caveat that these curves are not in Weierstrass form.

1. Introduction.

There are two (affine) models of elliptic curve that are very common. They are y2 = f(x)
where f(x) is either a cubic or a quartic. We will say that points on a particular model
of an elliptic curve are in arithmetic progression if their x-coordinates form an arithmetic
progression. For example, Buhler, Gross and Zagier [3] found that the points (−3, 0), (−2, 3),
(−1, 3), (0, 2), (1, 0), (2, 0), (3, 3), and (4, 6) form an arithmetic progression of length 8 on
the curve y2 + y = (x− 1)(x− 2)(x+ 3). Moreover, Bremner [2] proves:

Theorem 1.1. Each point on the elliptic curve

C : y2 = x3 − x2 − 36x+ 36

corresponds to an elliptic curve in Weierstrass form containing at least 8 points in arithmetic
progression.

Before proving this theorem, Bremner considers the following strategy. First he remarks
that any monic degree 8 polynomial, P (x), can be written as Q(x)2−R(x) where the degree
of R(x) is less than or equal to 3. If R(x) has degree precisely 3 and no repeated zeros, then
y2 = R(x) is an elliptic curve and for each zero, α, of P (x), this elliptic curve contains a
pair of points with x-coordinate α. So one possible strategy for producing an elliptic curve
with an arithmetic progression of length 8 might be to let P (x) = x(x+1)(x+2) · · · (x+7)
and compute the corresponding R(x) so that P (x) = Q(x)2 − R(x). Unfortunately, in this
case, R(x) is linear and so this strategy fails for any degree 8 polynomial whose zeros form
an arithmetic progression. The goal of this note is to illustrate how to turn this strategy
into a successful one.
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2. Arithmetic Progressions of Length 8

The statement that a degree 8 polynomial can be written as Q(x)2−P (x) is a special case
of the following:

Proposition 2.1. If P (x) is a monic polynomial of degree 2n defined over a field k, then
there are unique polynomials Q(x) and R(x) defined over k such that

(1) P (x) = Q(x)2 −R(x) and
(2) the degree of R(x) is strictly less than n.

Since R(x) is a square at every zero of P (x), if R(x) is a cubic or a quartic with no repeated
zeros, then we can produce elliptic curves y2 = R(x) with great control over many of the
x-coordinates.

Remark 2.2. We note that Mestre [9] was first to observe that this relatively simple propo-
sition could be used to produce elliptic curves of large rank. Since Mestre’s first paper
exploiting this idea, many others ([4], [6], [7], [8], [11]) have used the proposition in clever
ways to produce elliptic curves and infinite families of elliptic curves with the largest known
rank (often with some condition on the torsion subgroup).

Now consider the polynomial

pt(x) = (x− t)2
5

∏

j=0

(x− j) ∈ Q(t)[x].

In this case, we can write

pt(x) = qt(x)
2 − ft(x),

where ft(x) is a polynomial of degree 3 in Q(t)[x] such that
(1) the discriminant of ft(x) is an irreducible polynomial in Q[t]
(2) the coefficient of x3 is c(2t− 5), where c ∈ Q.

Therefore, we have that

Theorem 2.3. The curve Et defined by y2 = ft(x) is an elliptic curve defined over Q(t),
containing at least six points in arithmetic progression and for each t0 ∈ Q, t0 6= 5/2, the
specialization of Et at t = t0 gives an elliptic curve defined over Q containing at least six
points in arithmetic progression.

We next observe that ft(6) is a conic in Q[t] which is a rational square when t = 6.
Therefore, we can parameterize all rational solutions to y2 = ft(6) by letting

t =
6m2 − 126m− 285360

m2 − 72256
. (2.1)

Since no rational value of m gives t = 5/2, we have:

Corrolary 2.4. Let gm(x) be the polynomial ft(x) with t given by (2.1). The curve Em

defined by y2 = gm(x) is an elliptic curve defined over Q(m) containing at least seven points
in arithmetic progression and for each m0 ∈ Q, the specialization of Em at m = m0 gives an
elliptic curve defined over Q containing at least seven points in arithmetic progression.
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If we continue in this vein and explore the conditions imposed by y2 = gm(7), we find the
following.

Theorem 2.5. Let D be the elliptic curve defined by

D : y2 = −264815m4 − 19343520m3 + 62846856064m2

−2906312951808m− 495507443511296.

Let

g3 = −18816m4 + 677376m3 + 1922543616m2

−48944480256m− 40678301368320,

g2 = 236896m4 − 9821952m3 − 22598349824m2

+508953231360m+ 520252184657920,

g1 = −958800m4 + 40985280m3 + 89932669440m2

−1957723729920m− 2113363439616000, and

g0 = 1292769m4 − 57304800m3 − 118795148928m2

+2647001548800m+ 2758336954896384.

Then

E ′
m : y

2 = g3 x
3 + g2 x

2 + g1 x+ g0,

is an elliptic curve defined over Q(D) containing the 8 points in arithmetic progression with
x-coordinates 0, 1, 2, . . . , 7.

Proof. E ′
m is isomorphic to Em via the change of variables y 7→ y/(m2−72256). Substituting

x = 7 into E ′
m, we get the curve D. ¤

Moreover, if we let D(Q) be the group of rational points on D, then we have that D(Q)
is infinite. More specifically, we have:

Proposition 2.6. D has rank 2 and torsion subgroup Z/2Z.

Proof. A short computer search reveals that O = (−88, 15628032) is a point in D(Q). Taking
O taken to be the identity, D(Q) is generated by

P0 = (10984/79,−80015523840/6241) and

P1 = (−1363640/2531, 31969540657152/6405961),

and contains the point of order two:

P2 = (10984/79, 80015523840/6241).

¤

(The calculations above were performed with the help of mwrank [5] and GP [1].)
An immediate consequence of the proposition above is the following:

Corrolary 2.7. Each point on the elliptic curve D corresponds to an elliptic curve in Weier-
strass form containing at least 8 points in arithmetic progression.
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Remark 2.8. This condition is very similar to the condition found in Bremner’s construction–
namely, that points on the curve C give rise to elliptic curves with 8 points in arithmetic
progression. The differences are that C has rank 1 and torsion subgroup Z/2Z×Z/2Z, while
D has rank 2 and torsion subgroup Z/2Z.

3. Longer Progressions

This construction can also be used to produce progressions of length greater than 8 on
elliptic curves of the form y2 = f(x) where f(x) is a quartic. More specifically, we have:

Theorem 3.1. There exists an elliptic curve in the form y2 = w(x), with w(x) a quartic,
containing 12 points in arithmetic progression.

Proof. Let

g0(x) =
11
∏

j=0

(x− j).

Then g0(x) = u0(x)
2 − (81/4) · v0(x), with

u0(x) = x6 − 33x5 + 418x4 − 2541x3 + (14993/2)x2

−(18513/2)x+ (4851/2), and

v0(x) = 429x4 − 9438x3 + 74295x2 − 246246x+ 290521.

Since the discriminant of v0(x) is nonzero, the curve E : y
2 = v0(x) is an elliptic curve. This

elliptic curve then contains a length 12 arithmetic progression. ¤

(Note that by using mwrank, we computed the rank of this curve to be 4 with torsion
subgroup Z/2Z.)
The construction above produces a single curve and it is unclear how to produce an infinite

family of curves containing a length 12 progression using this idea. The problem is that,
in general, if the P (x) of proposition 2.1 is taken to have degree 12, then the R(x) is only
guaranteed to have degree less than or equal to 5, not 4. Therefore, the curve y2 = R(x)
need not be an elliptic curve. We can, however, prove the following.

Theorem 3.2. There are infinitely many elliptic curves of the form y2 = w(x), with w(x)
a quartic, containing 9 points in arithmetic progression.

Proof. Let

g(x) = (x− a) ·
8

∏

j=0

(x− j),

and write g(x) as u(x)2−v(x). v(x) is a degree four polynomial in Q(a)[x] with discriminant
zero only for a ∈ {0, 4, 8}. ¤

The work here (and that of Bremner) leaves open the following questions:

Open Question 3.3. Is there an elliptic curve of the form y2 = f(x), f(x) a cubic, con-
taining a length 9 arithmetic progression? Are there infinitely many?
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Open Question 3.4. Is there an elliptic curve of the form y2 = f(x), f(x) a quartic,
containing a length 13 arithmetic progression? Are there infinitely many curves in this form
containing a length 10 progression?

And finally,

Open Question 3.5. What is the longest arithmetic progression one can find on an elliptic
curve in the form y2 = f(x), where f(x) is a cubic? a quartic?
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