Journal of Integer Sequences, Vol. 6 (2003),

A multidimensional version of a result of Davenport-Erdős

O-Yeat Chan, Geumlan Choi, and Alexandru Zaharescu
Department of Mathematics
University of Illinois
1409 West Green Street
Urbana, IL 61801
USA
ochan@math.uiuc.edu
g-choil@math.uiuc.edv

zaharesc@math.uluc.edu

Abstract

Davenport and Erdős showed that the distribution of values of sums of the form

$$
S_{h}(x)=\sum_{m=x+1}^{x+h}\left(\frac{m}{p}\right),
$$

where p is a prime and $\left(\frac{m}{p}\right)$ is the Legendre symbol, is normal as $h, p \rightarrow \infty$ such that $\frac{\log h}{\log p} \rightarrow 0$. We prove a similar result for sums of the form

$$
S_{h}\left(x_{1}, \ldots, x_{n}\right)=\sum_{z_{1}=x_{1}+1}^{x_{1}+h} \ldots \sum_{z_{n}=x_{n}+1}^{x_{n}+h}\left(\frac{z_{1}+\cdots+z_{n}}{p}\right) .
$$

1. Introduction

Given a prime number p, an integer x and a positive integer h, we consider the sum

$$
S_{h}(x)=\sum_{\substack{m=x+1 \\ 1}}^{x+h}\left(\frac{m}{p}\right)
$$

where here and in what follows $\left(\frac{m}{p}\right)$ denotes the Legendre symbol. The expected value of such a sum is \sqrt{h}. If p is much larger than h, it is a very difficult problem to show that there is any cancellation in an individual sum $S_{h}(x)$ as above. The classical inequality of PólyaVinogradov (see [区], 10) shows that $S_{h}(x)=O(\sqrt{p} \log p)$, and assuming the Generalized Riemann Hypothesis, Montgomery and Vaughan (7) proved that $S_{h}(x)=O(\sqrt{p} \log \log p)$. The results of Burgess [2] provide cancellation in $S_{h}(x)$ for smaller values of h, as small as $p^{1 / 4}$. One does expect to have cancellation in $S_{h}(x)$ for $h>p^{\epsilon}$, for fixed $\epsilon>0$ and p large. This would imply the well-known hypothesis of Vinogradov that the smallest positive quadratic nonresidue $\bmod p$ is $<p^{\epsilon}$, for any fixed $\epsilon>0$ and p large enough in terms of ϵ. We mention that Ankeny [1] showed that assuming the Generalized Riemann Hypothesis, the smallest positive quadratic nonresidue $\bmod p$ is $O\left(\log ^{2} p\right)$. It is much easier to obtain cancellation, even square root cancellation, if one averages $S_{h}(x)$ over x. In fact, Davenport and Erdős [5] entirely solved the problem of the distribution of values of $S_{h}(x), 0 \leq x<p$, as $h, p \rightarrow \infty$ such that $\frac{\log h}{\log p} \rightarrow 0$. Under these growth conditions they showed that the distribution becomes normal. Precisely, they proved that

$$
\frac{1}{p} M_{p}(\lambda) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{1}{2} t^{2}} d t, \quad \text { as } p \rightarrow \infty
$$

where $M_{p}(\lambda)$ is the number of integers $x, 0 \leq x<p$, satisfying $S_{h}(x) \leq \lambda h^{\frac{1}{2}}$.
For a fixed $n \geq 2$, we consider multidimensional sums of the form

$$
\begin{equation*}
S_{h}\left(x_{1}, \ldots, x_{n}\right)=\sum_{z_{1}=x_{1}+1}^{x_{1}+h} \ldots \sum_{z_{n}=x_{n}+1}^{x_{n}+h}\left(\frac{z_{1}+\cdots+z_{n}}{p}\right) \tag{1.1}
\end{equation*}
$$

where p is a prime number, x_{1}, \ldots, x_{n} are integer numbers, and h is a positive integer. Upper bounds for individual sums of this type have been provided by Chung [3]. In this paper we investigate the distribution of values of these sums, and obtain a result similar to that of Davenport and Erdős. Let

$$
\begin{equation*}
c_{n}:=\int_{0}^{n} f(t)^{2} d t \tag{1.2}
\end{equation*}
$$

where $f(t)$ is the volume of the region in \mathbb{R}^{n-1} defined by

$$
\left\{\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbb{R}^{n-1}: 0<a_{i} \leq 1, i=1, \ldots, n-1 ; t-1 \leq a_{1}+\cdots+a_{n-1}<t\right\} .
$$

We will see that this constant c_{n} naturally appears as a normalizing factor in our distribution result below. Let $M_{n, p}(\lambda)$ be the number of lattice points $\left(x_{1}, \ldots, x_{n}\right)$ with $0 \leq x_{1}, \ldots, x_{n}<$ p, such that

$$
S_{h}\left(x_{1}, \ldots, x_{n}\right) \leq \lambda c_{n}^{\frac{1}{2}} h^{n-\frac{1}{2}}
$$

Then we show that as $h, p \rightarrow \infty$ such that $\frac{\log h}{\log p} \rightarrow 0$, one has

$$
\frac{1}{p^{n}} M_{n, p}(\lambda) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{t^{2}}{2}} d t
$$

2. Estimating the moments

We now proceed to estimate higher moments of our sums $S_{h}\left(x_{1}, \ldots, x_{n}\right)$.
Lemma 1. Let p be a prime number and let h and r be positive integers. Then

$$
\sum_{x_{1}, \ldots, x_{n}(\bmod p)} S_{h}^{2 r}\left(x_{1}, \ldots, x_{n}\right)=1 \cdot 3 \cdots(2 r-3)(2 r-1)
$$

$$
\begin{equation*}
\cdot\left(c_{n} h^{2 n-1}+O_{n, r}\left(h^{2 n-2}\right)\right)^{r}\left(p^{n}+O_{r}\left(p^{n-1}\right)\right)+O_{r}\left(h^{2 n r} p^{n-\frac{1}{2}}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{x_{1}, \ldots, x_{n}(\bmod p)} S_{h}^{2 r-1}\left(x_{1}, \ldots, x_{n}\right)=O_{r}\left(h^{n(2 r-1)} p^{n-\frac{1}{2}}\right) . \tag{2.2}
\end{equation*}
$$

Proof. Consider first the case when the exponent is $2 r$. We have

$$
S_{h}\left(x_{1}, \ldots, x_{n}\right)=\sum_{a_{1}=1}^{h} \cdots \sum_{a_{n}=1}^{h}\left(\frac{x_{1}+\cdots+x_{n}+a_{1}+\cdots+a_{n}}{p}\right) .
$$

Therefore

$$
\begin{aligned}
& S_{h}^{2 r}\left(x_{1}, \ldots, x_{n}\right)= \\
& \quad \sum_{a_{1,1}=1}^{h} \cdots \sum_{a_{n, 1}=1}^{h} \cdots \sum_{a_{1,2 r}=1}^{h} \cdots \sum_{a_{n, 2 r}=1}^{h}\left(\frac{\left(x_{1}+\cdots+x_{n}+a_{1,1}+\cdots+a_{n, 1}\right) \cdots\left(x_{1}+\cdots+x_{n}+a_{1,2 r}+\cdots+a_{n, 2 r}\right)}{p}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& \sum_{x_{1}, \ldots, x_{n}(\bmod p)} S_{h}^{2 r}\left(x_{1}, \ldots, x_{n}\right) \\
&=\sum_{\substack{a_{i, j}=1 \\
1 \leq i \leq n \\
1 \leq j \leq 2 r}}^{h} \sum_{\substack{x_{1}, \ldots, x_{n}(\bmod p)}}\left(\frac{\left(x_{1}+\cdots+x_{n}+a_{1,1}+\cdots+a_{n, 1}\right) \cdots\left(x_{1}+\cdots+x_{n}+a_{1,2 r}+\cdots+a_{n, 2 r}\right)}{p}\right) .
\end{aligned}
$$

Divide the sets of n-tuples $\left\{\left(a_{1, i}, \ldots, a_{n, i}\right): i=1, \ldots, 2 r\right\}$ into two types. If there exists an i such that the number of $j \in\{1, \ldots, 2 r\}$ for which $a_{1, i}+\cdots+a_{n, i}=a_{1, j}+\cdots+a_{n, j}$ is odd, we say that it is of type 1 . The others will be of type 2 . First consider the sum of terms of type 1. Since for each fixed x_{2}, \ldots, x_{n}, the product $\left(x_{1}+\cdots+x_{n}+a_{1,1}+\cdots+\right.$ $\left.a_{n, 1}\right) \cdots\left(x_{1}+\cdots+x_{n}+a_{1,2 r}+\cdots+a_{n, 2 r}\right)$, as a polynomial in x_{1}, is not congruent mod p to the square of another polynomial, by Weil's bounds [11] we have

$$
\begin{aligned}
\sum_{x_{2}, \ldots, x_{n}(\bmod p)} & \sum_{x_{1}(\bmod p)}\left(\frac{\left(x_{1}+\cdots+x_{n}+a_{1,1}+\cdots+a_{n, 1}\right) \cdots\left(x_{1}+\cdots+x_{n}+a_{1,2 r}+\cdots+a_{n, 2 r}\right)}{p}\right) \\
& =\sum_{x_{2}, \cdots, x_{n}(\bmod p)} O_{r}\left(p^{1 / 2}\right)=O_{r}\left(p^{n-\frac{1}{2}}\right) .
\end{aligned}
$$

So the sum of terms of type 1 is $O_{r}\left(h^{2 n r} p^{n-\frac{1}{2}}\right)$. Now consider the sum of terms of type 2 . Since the polynomial $\left(x_{1}+\cdots+x_{n}+a_{1,1}+\cdots+a_{n, 1}\right) \cdots\left(x_{1}+\cdots+x_{n}+a_{1,2 r}+\cdots+a_{n, 2 r}\right)$ is a perfect square in this case, the Legendre symbol is 1 , except for those values of x_{1}, \ldots, x_{n}
for which this product vanishes mod p. Since the product has at most r distinct factors, for any values of x_{2}, \ldots, x_{n} there are at most r values of x_{1} for which the product vanishes $\bmod p$. Thus the sum over x_{1}, \ldots, x_{n} is at most p^{n}, and at least $(p-r) p^{n-1}$. Hence the contribution of terms of type 2 is

$$
F(h, n, r)\left(p^{n}+O_{r}\left(p^{n-1}\right)\right),
$$

where $F(h, n, r)$ is the number of sets $\left\{\left(a_{1, i}, \ldots, a_{n, i}\right): i=1, \ldots, 2 r\right\}$ yielding multinomials of type 2, i.e., sets for which each value of $a_{1, i}+\cdots+a_{n, i}$ occurs an even number of times, as i runs over the set $\{1,2, \ldots, 2 r\}$. For any integer m with $n \leq m \leq n h$, let $N_{m}(h, n)$ be the number of n-tuples $\left(a_{1, i}, \ldots, a_{n, i}\right)$ for which $1 \leq a_{1, i}, \ldots, a_{n, i} \leq h$ and $a_{1, i}+\cdots+a_{n, i}=m$. Then the number of pairs of n-tuples $\left(a_{1, i}, \ldots, a_{n, i}\right),\left(a_{1, j}, \ldots, a_{n, j}\right)$, with $a_{1, i}+\cdots+a_{n, i}=a_{1, j}+\cdots+a_{n, j}$, is $\sum_{m}\left(N_{m}(h, n)\right)^{2}$. In what follows we write simply N_{m} instead of $N_{m}(h, n)$. The number of ways to choose r such pairs of n-tuples (not necessarily distinct) is $\left(\sum_{m} N_{m}^{2}\right)^{r}$, and the number of ways to arrange these pairs in $2 r$ places is $(2 r-1)(2 r-3) \cdots 3 \cdot 1$. Hence,

$$
F(h, n, r) \leq 1 \cdot 3 \cdots(2 r-3)(2 r-1)\left(\sum_{m} N_{m}^{2}\right)^{r}
$$

On the other hand, the number of ways of choosing r pairs of distinct sums is at least

$$
\begin{aligned}
\left(\sum_{m} N_{m}^{2}\right) & \left(\sum_{m} N_{m}^{2}-\max _{m}\left\{N_{m}^{2}\right\}\right) \cdots\left(\sum_{m} N_{m}^{2}-(r-1) \max _{m}\left\{N_{m}^{2}\right\}\right) \\
& \geq\left(\sum_{m} N_{m}^{2}-r \max _{m}\left\{N_{m}^{2}\right\}\right)^{r}
\end{aligned}
$$

and the number of different ways to arrange them in $2 r$ places is $(2 r-1)(2 r-3) \cdots 3 \cdot 1$. Thus

$$
\begin{aligned}
1 \cdot 3 \cdots(2 r-3)(2 r-1)\left(\sum_{m} N_{m}^{2}-r \max _{m} N_{m}^{2}\right)^{r} & \leq F(h, n, r) \\
& \leq 1 \cdot 3 \cdots(2 r-3)(2 r-1)\left(\sum_{m} N_{m}^{2}\right)^{r}
\end{aligned}
$$

Next, we estimate the number $N_{m}(h, n)=N_{m}$. It is clear that for any m with $0<m \leq n h$, N_{m} is the number of lattice points in the region R_{m} in \mathbb{R}^{n-1} given by

$$
R_{m}:=\left\{\begin{array}{l}
0<a_{i} \leq h, \quad \text { for } i=1, \ldots, n-1 \\
m-h \leq a_{1}+\cdots+a_{n-1}<m
\end{array}\right.
$$

We send the region R_{m} to the unit cube in \mathbb{R}^{n-1} via the map $\mathbf{x} \mapsto \frac{\mathbf{x}}{h}$. Then we have

$$
\overline{R_{m}}:=\left\{\begin{array}{l}
0<a_{i} \leq 1, \quad \text { for } i=1, \ldots, n-1 \\
\frac{m}{h}-1 \leq a_{1}+\cdots+a_{n-1}<\frac{m}{h}
\end{array}\right.
$$

By the Lipschitz principle (4) we know that

$$
N_{m}=\operatorname{vol}\left(R_{m}\right)+O_{n}\left(h^{n-2}\right)=h^{n-1} \operatorname{vol}\left(\bar{R}_{m}\right)+O_{n}\left(h^{n-2}\right) .
$$

With f defined as in the Introduction, we may write $\operatorname{vol}\left(\bar{R}_{m}\right)=f\left(\frac{m}{h}\right)$. Then

$$
\begin{aligned}
\sum_{0<m \leq n h} N_{m}^{2} & =\sum_{0<m \leq n h} h^{2 n-2}\left(f\left(\frac{m}{h}\right)\right)^{2}+\sum_{0<m \leq n h} O_{n}\left(h^{2 n-3}\right) \\
& =h^{2 n-1} \sum_{0<m \leq n h}\left(f\left(\frac{m}{h}\right)\right)^{2} \frac{1}{h}+O_{n}\left(h^{2 n-2}\right) \\
& =h^{2 n-1} \int_{0}^{n}(f(t))^{2} d t+O_{n}\left(h^{2 n-2}\right) \\
& =h^{2 n-1} c_{n}+O_{n}\left(h^{2 n-2}\right), \quad \text { as } h \rightarrow \infty .
\end{aligned}
$$

Hence

$$
F(h, n, r)=1 \cdot 3 \cdots(2 r-3)(2 r-1)\left(c_{n} h^{2 n-1}+O_{n, r}\left(h^{2 n-2}\right)\right)^{r}
$$

and (2.1) follows. It is clear that (2.2) holds, since there are no sets of type 2 in this case. This completes the proof of the lemma.

3. Main Results

By using the estimates for the higher moments of $S_{h}\left(x_{1}, \ldots, x_{n}\right)$ given in Lemma [1, we show that under appropriate growth conditions on h, p, the distribution of our sums $S_{h}\left(x_{1}, \ldots, x_{n}\right)$ is normal.

Theorem 1. Let h be any function of p such that

$$
\begin{equation*}
h \rightarrow \infty, \quad \frac{\log h}{\log p} \rightarrow 0 \quad \text { as } p \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Let $M_{n, p}(\lambda)$ denote the number of lattice points $\left(x_{1}, \ldots, x_{n}\right), 0 \leq x_{1}, \ldots, x_{n}<p$, such that

$$
S_{h}\left(x_{1}, \ldots, x_{n}\right) \leq \lambda c_{n}^{\frac{1}{2}} h^{n-\frac{1}{2}}
$$

with $S_{h}\left(x_{1}, \ldots, x_{n}\right)$ defined by (1.1) and c_{n} defined by (1.2). Then

$$
\frac{1}{p^{n}} M_{n, p}(\lambda) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{t^{2}}{2}} d t, \quad \text { as } p \rightarrow \infty
$$

Proof. We consider the sum

$$
\begin{equation*}
\frac{1}{p^{n}} \sum_{x_{1}, \ldots, x_{n}(\bmod p)}\left(\frac{1}{c_{n}^{1 / 2} h^{n-1 / 2}} S_{h}\left(x_{1}, \ldots, x_{n}\right)\right)^{r} \tag{3.2}
\end{equation*}
$$

It follows from the above lemma that for each fixed r and n, if r is even, then the quantity from (3.2) is

$$
1 \cdot 3 \cdots(r-3)(r-1)\left(1+O_{n, r}\left(\frac{1}{h}\right)\right)^{r}\left(1+O_{r}\left(\frac{1}{p}\right)\right)+O_{n, r}\left(h^{\frac{r}{2}} p^{-\frac{1}{2}}\right)
$$

while if r is odd, the quantity from (3.2) is $O_{n, r}\left(h^{\frac{r}{2}} p^{-\frac{1}{2}}\right)$. Using (3.1), we have that for each positive integer r,

$$
\begin{equation*}
\frac{1}{p^{n}} \sum_{x_{1}, \ldots, x_{n}(\bmod p)}\left(\frac{1}{c_{n}^{1 / 2} h^{n-1 / 2}} S_{h}\left(x_{1}, \ldots, x_{n}\right)\right)^{r} \rightarrow \mu_{r}, \quad \text { as } p \rightarrow \infty \tag{3.3}
\end{equation*}
$$

where $\mu_{r}= \begin{cases}1 \cdot 3 \cdots(r-1), & \text { if } r \text { is even; } \\ 0, & \text { if } r \text { is odd. }\end{cases}$
Let $N_{n, p}(s)$ be the number of n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ with $0 \leq x_{i}<p, i=1, \ldots, n$ such that $S_{h}\left(x_{1}, \ldots, x_{n}\right) \leq s$. Then $N_{n, p}(s)$ is a non-decreasing function of s with discontinuities at certain integral values of s. We also note that $N_{n, p}(s)=0$ if $s<-h^{n}, N_{n, p}(s)=p^{n}$ if $s \geq h^{n}$, and $M_{n, p}(\lambda)=N_{n, p}\left(\lambda c_{n}^{\frac{1}{2}} h^{n-\frac{1}{2}}\right)$. We write (3.3) in the form

$$
\begin{equation*}
\frac{1}{p^{n}} \sum_{s=-h^{n}}^{h^{n}}\left(\frac{s}{c_{n}^{\frac{1}{2}} h^{n-\frac{1}{2}}}\right)^{r}\left(N_{n, p}(s)-N_{n, p}(s-1)\right) \rightarrow \mu_{r}, \quad \text { as } p \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

This is similar to relation (26) of Davenport-Erdős [0]. Following their argument, if we set

$$
\Phi_{n, p}(t)=\frac{1}{p^{n}} N_{n, p}\left(t c_{n}^{\frac{1}{2}} h^{n-\frac{1}{2}}\right)=\frac{1}{p^{n}} M_{n, p}(t)
$$

and

$$
\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} u^{2}} d u
$$

we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} t^{r} d \Phi_{n, p}(t) \rightarrow \int_{-\infty}^{\infty} t^{r} d \Phi(t), \quad \text { as } p \rightarrow \infty \tag{3.5}
\end{equation*}
$$

for any fixed positive integer r, which is the analogue of relation (28) from [5]. It now remains to show that, for each real number λ,

$$
\begin{equation*}
\Phi_{n, p}(\lambda) \rightarrow \Phi(\lambda), \quad \text { as } p \rightarrow \infty \tag{3.6}
\end{equation*}
$$

The assertion of (3.6) follows from the well-known fact (see [6]) in the theory of probability that if F_{k} and F are probability distributions with finite moments $m_{k, r}, m_{r}$ of all orders, respectively, and if F is the unique distribution with the moments m_{r} such that $m_{k, r} \rightarrow m_{r}$ for all r as $k \rightarrow \infty$, then $F_{k} \rightarrow F$ as $k \rightarrow \infty$. We give the outline of the proof following the argument of Davenport-Erdős [5]. Suppose that (3.6) fails for some λ. Then we can find a subsequence $\left\{\Phi_{n, p^{\prime}}\right\}$ and a $\delta>0$ such that

$$
\begin{equation*}
\left|\Phi_{n, p^{\prime}}(\lambda)-\Phi(\lambda)\right| \geq \delta, \quad \text { for all } p^{\prime} . \tag{3.7}
\end{equation*}
$$

By the two theorems of Helly (see the introduction to [0]) there exists a subsequence $\left\{\Phi_{n, p^{\prime \prime}}\right\}$ of $\left\{\Phi_{n, p^{\prime}}\right\}$ which converges to a distribution Ψ at every point of continuity, and

$$
\int_{-\infty}^{\infty} t^{r} d \Psi(t)=\lim _{p^{\prime \prime} \rightarrow \infty} \int_{-\infty}^{\infty} t^{r} d \Phi_{n, p^{\prime \prime}}=\int_{-\infty}^{\infty} t^{r} d \Phi(t) .
$$

Since Φ is the only distribution with these special moments μ_{1}, μ_{2}, \ldots, we have $\Psi(t)=\Phi(t)$ for all t. This contradicts (B.7). Hence one concludes that, as $p \rightarrow \infty$,

$$
\frac{1}{p^{n}} M_{n, p}(\lambda)=\Phi_{n, p}(\lambda) \rightarrow \Phi(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{1}{2} t^{2}} d t
$$

which completes the proof of the theorem.

We remark that c_{n} can be explicitly computed for any given value of n. The following proposition provides an equivalent formulation of c_{n}, which allows for easier computations in higher dimensions. For any n, consider the polynomial in two variables

$$
g_{n}(X, Y)=\sum_{l=0}^{n-1}\left(\sum_{k=0}^{l}(-1)^{k}\binom{n}{k}\binom{X+(l-k) Y+n-1}{n-1}\right)^{2} .
$$

Note that the total degree of $g_{n}(X, Y)$ is at most $2 n-2$.
Proposition 1. For any n,

$$
c_{n}=\sum_{k=0}^{2 n-2} \frac{a_{n, k}}{k+1},
$$

where $a_{n, k}$ is the coefficient of $X^{k} Y^{2 n-2-k}$ in $g_{n}(X, Y)$.
Proof. We know that for fixed n and $h \rightarrow \infty$,

$$
\sum_{m} N_{m}^{2}=h^{2 n-1} c_{n}+O_{n}\left(h^{2 n-2}\right),
$$

where $N_{m}=N_{m}(h, n)$ is the number of n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ such that $a_{1}+\cdots+a_{n}=m$, with $1 \leq a_{i} \leq h$. Replacing m by $m^{\prime}=m-n$ and each a_{i} by $b_{i}=a_{i}-1$, we get $\sum_{m} N_{m}^{2}=$ $\sum_{m^{\prime}}\left(N_{m^{\prime}}^{\prime}\right)^{2}$, where $N_{m^{\prime}}^{\prime}$ is the number of n-tuples $\left(b_{1}, \ldots, b_{n}\right)$ such that $b_{1}+\cdots+b_{n}=m^{\prime}$, with $0 \leq b_{i} \leq h-1$.

Now, the number of ways to obtain a sum of m^{\prime} from n non-negative integers, with no restrictions, is $\binom{m^{\prime}+n-1}{n-1}$. If we restrict any fixed b_{i} to satisfy the inequality $b_{i} \geq h$, then the number of ways drops to $\binom{m^{\prime}-h+n-1}{n-1}$. If we restrict any two b_{i}, b_{j} to satisfy $b_{i}, b_{j} \geq h$ then we have $\binom{m^{\prime}-2 h+n-1}{n-1}$ ways, and so on.

Since for each k, there are $\binom{n}{k}$ ways to choose exactly k of the b_{i} 's to be greater than h, we obtain by the inclusion-exclusion principle,

$$
N_{m^{\prime}}^{\prime}=\sum_{0 \leq k \leq m^{\prime} / h}(-1)^{k}\binom{n}{k}\binom{m^{\prime}-k h+n-1}{n-1}
$$

So we have, for $l h \leq m^{\prime}<(l+1) h, 0 \leq l \leq n-1$,

$$
N_{m^{\prime}}^{\prime}=\sum_{k=0}^{l}(-1)^{k}\binom{n}{k}\binom{m^{\prime}-k h+n-1}{n-1}
$$

Replacing m^{\prime} by $s+l h$, with $0 \leq s \leq h-1$, we get

$$
N_{s+l h}^{\prime}=\sum_{k=0}^{l}(-1)^{k}\binom{n}{k}\binom{s+(l-k) h+n-1}{n-1} .
$$

Therefore

$$
\begin{gathered}
\sum_{m^{\prime}}\left(N_{m^{\prime}}^{\prime}\right)^{2}=\sum_{s=0}^{h-1} \sum_{l=0}^{n-1}\left(\sum_{k=0}^{l}(-1)^{k}\binom{n}{k}\binom{s+(l-k) h+n-1}{n-1}\right)^{2} \\
=\sum_{s=0}^{h-1} g_{n}(s, h)
\end{gathered}
$$

It follows that

$$
\begin{equation*}
\sum_{s=0}^{h-1} g_{n}(s, h)=h^{2 n-1} c_{n}+O_{n}\left(h^{2 n-2}\right) \tag{3.8}
\end{equation*}
$$

Now, the main contribution in $g_{n}(s, h)$ comes from the terms where the exponents of s and h add up to $2 n-2$. Since for any $0 \leq k \leq 2 n-2$,

$$
\sum_{s=0}^{h-1} s^{k}=\frac{1}{k+1} h^{k+1}+O_{n}\left(h^{k}\right)
$$

we obtain

$$
\begin{aligned}
\sum_{s=0}^{h-1} g_{n}(s, h) & =\sum_{s=0}^{h-1}\left(\sum_{k=0}^{2 n-2} a_{n, k} s^{k} h^{2 n-2-k}+\text { lower order terms }\right) \\
& =\sum_{k=0}^{2 n-2} \sum_{s=0}^{h-1} a_{n, k} s^{k} h^{2 n-2-k}+O_{n}\left(h^{2 n-2}\right) \\
& =\sum_{k=0}^{2 n-2} \frac{a_{n, k}}{k+1} h^{2 n-1}+O_{n}\left(h^{2 n-2}\right)
\end{aligned}
$$

By combining this with (3.8), we obtain the desired result.
For $n=2,3,4,5,6$, one finds that $c_{2}=\frac{2}{3}, c_{3}=\frac{11}{20}, c_{4}=\frac{151}{315}, c_{5}=\frac{15619}{36288}, c_{6}=\frac{655177}{1663200}$. The numerator and the denominator of c_{n} grow rapidly as n increases. For instance, for $n=10$ and $n=25$ we have

$$
c_{10}=\frac{37307713155613}{121645100408832}
$$

and

$$
c_{25}=\frac{675361967823236555923456864701225753248337661154331976453}{3465993527260783822633915460520201577706853740052480000000}
$$

One can also work with boxes instead of cubes, and obtain similar distribution results. For example, in dimension two, we may consider the sum

$$
S_{h, k}(x, y)=\sum_{u=x+1}^{x+h} \sum_{v=y+1}^{y+k}\left(\frac{u+v}{p}\right),
$$

where x, y are any integers and h, k are positive integers, with $h \geq k$, say. Then, by using the same arguments as in the proof of Theorem [1, one can prove the following result.
Theorem 2. Let h, k be functions of p such that

$$
h \geq k, \quad \frac{h}{k} \rightarrow \alpha, \quad k \rightarrow \infty, \quad \frac{\log k}{\log p} \rightarrow 0, \quad \text { as } p \rightarrow \infty
$$

Denote $\beta=\sqrt{\alpha-\frac{1}{3}}$ and $\beta^{\prime}=\sqrt{1-\frac{1}{3 \alpha}}$. Let $M_{p}(\lambda)$ be the number of pairs (x, y) with $0 \leq x, y<p, x, y$ integers, such that $S_{h, k}(x, y) \leq \lambda \beta k^{\frac{3}{2}}$. Let $M_{p}{ }^{\prime}(\lambda)$ be the number of pairs (x, y) with $0 \leq x, y<p, x, y$ integers, such that $S_{h, k}(x, y) \leq \lambda \beta^{\prime} h^{\frac{1}{2}} k$. Then, as $p \rightarrow \infty$,

$$
\frac{1}{p^{2}} M_{p}(\lambda) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{1}{2} x^{2}} d x
$$

and

$$
\frac{1}{p^{2}} M_{p}^{\prime}(\lambda) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{1}{2} x^{2}} d x
$$

We remark that when h is much larger than $k, S_{h, k}(x, y)$ is close to k times the 1dimensional sum $S_{h}(x+y)$. Also, in this case α is large, β^{\prime} is close to 1 , and the above statement for $M_{p} \prime(\lambda)$ approaches the 1-dimensional result of Davenport and Erdős. Note also that in case $\alpha=1$, we have $\beta=\sqrt{2 / 3}=\sqrt{c_{2}}$, and the statement of Theorem 2 for $M_{p}(\lambda)$ coincides with that of Theorem for $n=2$.

References

[1] N. C. Ankeny, The least quadratic nonresidue, Ann. of Math. (2) 55 (1952), 65-72.
[2] D. A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. (3) 13 (1963), 524-536.
[3] F. R. K. Chung, Several generalizations of Weil sums, J. Number Theory 49 (1994), 95-106.
[4] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179-183.
[5] H. Davenport and P. Erdős, The distribution of quadratic and higher residues, Publ. Math. Debrecen 2 (1952), 252-265.
[6] W. Feller, An Introduction to Probalility Theory and Its Applications, Vol. 2, 2nd edition, Wiley, New York, 1971.
[7] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69-82.
[8] G. Pólya, Uber die verteilung der quadratischen Reste und Nichtreste, Nachrichten K. Ges. Wiss. Göttingen (1918), 21-29.
[9] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Math. Surveys No. 1, Amer. Math. Soc., New York, 1943.
[10] I. M. Vinogradov, Sur la distribution des résidus et des non-résidus des puissances, J. Phys.-Math. Soc. Perm. 1 (1919), 94-98.
[11] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA 34 (1948), 204-207.

2000 Mathematics Subject Classification: Primary 11T99; Secondary 11A15.
Keywords: Legendre symbol, normal distribution.

Received February 24, 2003; revised version received June 16, 2003. Published in Journal of Integer Sequences, July 9, 2003.

Return to Journal of Integer Sequences home pagd.

