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Abstract

In 2003 Cohen and Iannucci introduced a multiplicative arithmetic function D by assigning
D(pa) = apa−1 when p is a prime and a is a positive integer. They defined D0(n) = n
and Dk(n) = D(Dk−1(n)) and they called {Dk(n)}∞k=0 the derived sequence of n. This
paper answers some open questions about the function D and its iterates. We show how to
construct derived sequences of arbitrary cycle size, and we give examples for cycles of lengths
up to 10. Given n, we give a method for computing m such that D(m) = n, up to a square
free unitary factor.

1. Introduction and Results

Cohen and Iannucci [1] introduced a multiplicative arithmetic function D by assigning
D(pa) = apa−1 when p is a prime and a is a positive integer. They defined D0(n) = n and
Dk(n) = D(Dk−1(n)) and they called {Dk(n)}∞k=0 the derived sequence of n. Cohen and
Iannucci showed that for all n < 1.5 × 1010 the derived sequences are bounded. Moreover,
they showed that the set of n where the derived sequence of n is bounded has a density of
at least 0.996. Bounded sequences effectively end in a cycle. Although Cohen and Iannucci
found only cycles of lengths 1 to 6, and 8, they conjectured the existence of cycles of any
order. This paper gives a constructive proof for the existence of cycles of any order.

Given n, an integer m such that D(m) = n is referred to as a value of D−1(n), and m
is called canonical if it has no square free unitary factor. (A factor d of n is unitary if
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gcd(d, n/d) = 1 and square free if p2 - d for any prime p.) We give a method for computing
canonical values of D−1(n) and we give an example where D−1(n) has at least 27101 different
canonical values.

2. Cycles of arbitrary order

We say that the derived sequence has a cycle of order r > 0 if for sufficiently large k we
have Dk+r(n) = Dk(n) and r is minimal.

For example, we see that the derived sequence of n = 4 is

{22, 22, 22, · · · }

and hence this has a cycle of order 1. Considering the derived sequence of n = 16 gives

{24, 25, 5 · 24, 25, 5 · 24, · · · }

and hence this has a cycle of order 2.
First we introduce some notation: Let p̄ = [p1, p2, · · · , pk] and ā = [a1, a2, · · · , ak]. Then

we use the notation
p̄ā := pa1

1 · p
a2

2 · · · p
ak

k .

Here we show how to create a cycle of arbitrary order. First we need a lemma:

Lemma 2.1. Let k be odd. Let gcd(a, k) and gcd(b, k) be square free. Then there exists an
n such that a + kn and b + kn are both square free.

Proof. We do this by showing that the set of n with the property that a+ kn and b+ kn are
square free has positive density. For a subset U ⊂ N, let

Density(U) = lim
n→∞

#{x ∈ U : x < n}

n
.

For p prime, define:

Rp := {n ∈ N : a + kn 6≡ 0 (mod p2) and b + kn 6≡ 0 (mod p2)}

and Sp = Density(Rp).
If p|k then Sp either equals 1, 1− 1

p
, or 1− 2

p
. (It is worth remarking here that if k is even,

and we took p = 2 then 1 − 2
p
= 0, and hence positive density is not necessarily shown.) If

p - k then Sp either equals 1− 1
p2 or 1− 2

p2 . Let

R = {n ∈ N : a + kn and b + kn are square free }

=
⋂

p prime

Rp.

Then, we get that the density of R is
∏

p prime

Sp =
∏

p|k

(Sp)
∏

p-k

(Sp)

≥
∏

p|k

(

1−
2

p

)

∏

p-k

(

1−
2

p2

)

.

We see that the first product is positive, as there are only a finite number of primes p such
that p|k. We see that the second infinite product is positive because

∑

2
p2 converges.
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Thus we see that the density of n where a+nk and b+nk are both square free is positive,
hence there exists at least one. ¤

Theorem 2.1. There exist cycles of every order.

Proof. This result is proved by constructing a cycle of order k for arbitrary k. Pick k > 1.
Pick k distinct odd primes p1, · · · , pk.

For ā = [a1, · · · , ak] let āi = [a1, · · · , ai−1, ai + 1, ai+1, · · · , ak]. The goal is to find an ā
such that

D(p̄ā1) = s1 · p̄
ā2

and in general

D(p̄āi) = si · p̄
āi+1

where i + 1 is taken modulo k, and the si are square free coprime to p1 · p2 · · · pk. Then for
any i, p̄āi gives a cycle of order k.

Note that if we find ai such that

• ai is square free,
• ai + 1 is square free,
• gcd(ai, pi) = pi,
• gcd(ai + 1, pi+1) = pi+1,
• gcd(ai, pj) = 1 for j 6= i,
• gcd(ai + 1, pj) = 1 for j 6= i + 1,
• gcd(ai + 1, a1a2 · · · ai−1) = 1 for i > 1,
• gcd(ai, a1a2 · · · ai−1) = 1 for i > 1,
• gcd(ai, (a1 + 1)(a2 + 1) · · · (ai−1 + 1)) = 1 for i > 1,

then ā = [a1, · · · , ak] has the desired property. It is worth noting here that the last two
conditions require all of the ai to be odd. To see that ā has the desired property, note that

D(si−1p̄
āi) = D(p̄āi) = a1a2 · · · (ai + 1) · · · anp̄

āi−1 = sip̄
ai+1 ,

where the last equality follows from the properties of ā.
We can solve for each ai in order by the use of the Chinese remainder Theorem and Lemma

2.1. ¤

In Table 1, ā is given for cycles of sizes 2 to 10 for the first 10 primes. It should be noted
that this construction does not give the smallest n where the derived sequence is of order k.
For example, let s1 = 2 · 7 and s2 = 2 · 23 then s2 · 3

70 · 55 and s1 · 3
69 · 56 gives rise to a cycle

of order two. The smallest cycle of order two is 25 and 5 · 24, which is considerably smaller.
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Cycle Size Primes
3 5 7 11 13 17 19 23 29 31

2 69 5
3 129 265 77
4 129 265 1561 1397
5 309 265 1561 12661 221
6 309 265 1561 12661 10777 1037
7 309 1945 1561 12661 10777 15997 437
8 309 1945 1561 12661 10777 15997 20653 1541
9 309 1945 1561 12661 10777 15997 20653 4117 2117
10 669 1945 4333 12661 10777 15997 20653 4117 6757 4061

Table 1. ā that give rise to an various cycle sizes.

3. Computing D−1(n).

By noticing that D(s) = 1 for all square free numbers s, we see that if we have D(m) = n
then D(ms) = n for all square free factors s coprime to m. To eliminate these trivial
alternate values to D−1(n), we introduce the definition:

Definition 3.1. If p̄b̄ has no square free components (i.e. bi 6= 1 for all i) and D(p̄b̄) = n

then we say that p̄b̄ is a canonical value of D−1(n). We define Dc(n) to be the set of all
canonical values of D−1(n).

To compute Dc(n) we need the following lemma.

Lemma 3.1. If n = p̄ā and Dc(n) 6= ∅, then for every k ∈ Dc(n) we have k = p̄b̄. Further-
more 0 ≤ bi ≤ ai + 1.

Proof. This follows immediately by applying D to p̄b̄. ¤

In particular an element of Dc(n) cannot have prime factors that are not also factors of n.

Corollary 3.1. Let p be a prime. Then Dc(p
a) 6= ∅ if and only if a = pk + k − 1 for some

k. Further Dc(p
pk+k−1) = {ppk

}.

Corollary 3.2. If s is an odd square free number, then Dc(s) = ∅.

Given Lemma 3.1, it is an easy matter to determine Dc(n). Simply compute D(p̄b̄) where
0 ≤ bi ≤ ai + 1 and bi 6= 1, and check which ones work. For large exponents b̄ this is not
particularly efficient, but it suffices for n < 107.

We see from Corollary 3.1 and 3.2 that Dc(n) is empty for some values n. Table 2 lists
Dc(n), if they are nonempty, for all n ≤ 100. It is worth noting that, in the case of the
first 100, there is a unique canonical value in Dc(n). This is not true in general. The
first example when Dc(n) does not have a unique element is 108 = 22 · 33 for which we
Dc(108) = {2

2 · 33, 34}. The first six examples of multiple canonical values, less than 2000
are listed in Table 3.

We have the following results concerning the non-uniqueness of the canonical values in
Dc(n).
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n Dc(n)
1 = 1 {1 = 1}
4 = 22 {4 = 22}
6 = 2 · 3 {9 = 32}
10 = 2 · 5 {25 = 52}
12 = 22 · 3 {8 = 23}
14 = 2 · 7 {49 = 72}
22 = 2 · 11 {121 = 112}
24 = 23 · 3 {36 = 22 · 32}
26 = 2 · 13 {169 = 132}
27 = 33 {27 = 33}
32 = 25 {16 = 24}
34 = 2 · 17 {289 = 172}
38 = 2 · 19 {361 = 192}
40 = 23 · 5 {100 = 22 · 52}
46 = 2 · 23 {529 = 232}
56 = 23 · 7 {196 = 22 · 72}
58 = 2 · 29 {841 = 292}
60 = 22 · 3 · 5 {225 = 32 · 52}
62 = 2 · 31 {961 = 312}
72 = 23 · 32 {72 = 23 · 32}
74 = 2 · 37 {1369 = 372}
75 = 3 · 52 {125 = 53}
80 = 24 · 5 {32 = 25}
82 = 2 · 41 {1681 = 412}
84 = 22 · 3 · 7 {441 = 3272}
86 = 2 · 43 {1849 = 432}
88 = 23 · 11 {484 = 22 · 112}
94 = 2 · 47 {2209 = 472}

Table 2. Dc(n) for n ≤ 100 when Dc(n) is non-empty.

n Dc(n)
108 = 22 · 33 {81 = 34, 108 = 22 · 33}
192 = 26 · 3 {144 = 24 · 32, 64 = 26}
448 = 26 · 7 {784 = 24 · 72, 128 = 27}
1080 = 23 · 33 · 5 {2025 = 34 · 52, 2700 = 22 · 33 · 52}
1512 = 23 · 33 · 7 {3969 = 34 · 72, 5292 = 22 · 33 · 72}
1920 = 27 · 3 · 5 {3600 = 24 · 32 · 52, 1600 = 26 · 52}

Table 3. Examples of two different Canonical values, for n ≤ 2000
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Lemma 3.2. If m ∈ Dc(p+ 1), then Dc((p+ 1)pp) has at least two elements, namely m · pp

and pp+1.

Proof. One only needs to check that m is coprime to p, which follows from Lemma 3.1. ¤

Lemma 3.3. If Dc(n) and Dc(m) have k and l elements in them, and for every x ∈ Dc(n)
and y ∈ Dc(m) we have gcd(x, y) = 1, then Dc(nm) has at least kl elements.

Proof. For x ∈ Dc(n) and y ∈ Dc(m), note that D(xy) = D(x)D(y) = mn, since x and y
are coprime. ¤

Example 1. Notice that:

Dc(3 · 2 · 5
5) = {56, 55 · 32}

and

Dc(2 · 7 · 13
13) = {1314, 72 · 1313}.

Combining these together, either by Lemma 3.3, or by direct computation we get

Dc(2
2 · 3 · 55 · 7 · 1313) = {1314 · 56, 72 · 1313 · 56,

1314 · 32 · 55, 72 · 1313 · 32 · 55}.

It should be noted that Lemma 3.3 only shows that these four values are contained in Dc(2
2 ·

3 · 55 · 7 · 1313). Equality comes from direct computation.

In particular if p and 2p− 1 are both prime, then for n = 2 · p · (2p− 1)2p−1 we have Dc(n)
has at least 2 elements, namely p2 · (2p − 1)2p−1 and (2p − 1)2p. Primes with this property
are similar to Sophie Germain primes, in which p and 2p + 1 must both be prime [2, 3]. It
is not known if there are infinitely many Sophie Germain primes, and there do not appear
to be any results of primes p where 2p− 1 is also prime. If anything is learned about primes
of this form, then the following Theorem can be strengthened. In particular, if Dickson’s
Conjecture is true (see for instance page 180 of [4]), then there are an infinite number of
primes p such that 2p − 1 is also prime. In this case, this Theorem can be strengthen, by
replacing 27101 with M an arbitrarily large number.

Theorem 3.1. There exists an n such that Dc(n) has at least 2
7101 elements.

Proof. A quick computation verifies that there are 7101 primes p less than a million, where
2p − 1 is also prime, and all of these terms are coprime. Let Pi := 2pi − 1. By Lemma 3.2
we see that Dc(2 · pi · P

Pi

i ) has (at least) two elements, P Pi+1
i and P Pi

i · p2i . By Lemma 3.3
we see that if n =

∏

2 · pi · P
Pi

i then Dc(n) has at least 2
7101 elements. ¤

4. Conclusions

In Section 3 we considered primes p where 2p−1 is also prime. An interesting observation
is that, empirically, there appears to be the same number of these types of primes as there
are of Sophie Germain primes.

In [1], Cohen and Iannucci conjectured the existence of n such that the derived sequence
of n is unbounded. It would be interesting to know if this is in fact true or not.

It would also be interesting to explore the properties of the D function if it is extended in
the natural way to rational numbers. For example: D

(

16
9

)

= D (24 · 3−2) = 4·23 ·(−2)·3−3 =
−26 · 3−3 = −64

27
and D(−1) = −1.
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