
23 11

Article 03.2.8
Journal of Integer Sequences, Vol. 6 (2003),2

3

6

1

47

The Number of Inversions in Permutations:

A Saddle Point Approach

Guy Louchard
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Abstract

Using the saddle point method, we obtain from the generating function of the

inversion numbers of permutations and Cauchy’s integral formula asymptotic results

in central and noncentral regions.

1 Introduction

Let a1 · · · an be a permutation of the set {1, . . . , n}. If ai > ak and i < k, the pair (ai, ak)
is called an inversion; In(j) is the number of permutations of length n with j inversions.
In a recent paper [7], several facts about these numbers are nicely reviewed, and—as new
results—asymptotic formulæ for the numbers In+k(n) for fixed k and n → ∞ are derived.
This is done using Euler’s pentagonal theorem, which leads to a handy explicit formula for
In(j), valid for j ≤ n only.
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Figure 1: |Φ10(z)/z11| and the path of integration

Here, we show how to extend these results using the saddle point method. This leads,
e. g., to asymptotics for Iαn+β(γn+ δ), for integer constants α, β, γ, δ and more general ones
as well. With this technique, we will also show the known result that In(j) is asymptotically
normal.

The generating function for the numbers In(j) is given by

Φn(z) =
∑

j≥0
In(j)z

j = (1− z)−n

n
∏

i=1

(1− zi).

By Cauchy’s theorem,

In(j) =
1

2πi

∫

C
Φn(z)

dz

zj+1
,

where C is, say, a circle around the origin passing (approximately) through the saddle point.
In Figure 1, the saddle point (near z = 1

2
) is shown for n = j = 10.

As general references for the application of the saddle point method in enumeration we
cite [4, 8].

Actually, we obtain here local limit theorems with some corrections (=lower order terms).
For other such theorems in large deviations of combinatorial distributions, see, for instance,
Hwang [5].

The paper is organized as follows: Section 2 deals with the Gaussian limit. In Section 3,
we analyze the case j = n−k, that we generalize in Section 4 to the case j = αn−x, α > 0.
Section 5 is devoted to the moderate large deviation, and Section 6 to the large deviation.
Section 7 concludes the paper.
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2 The Gaussian limit, j = m + xσ,m = n(n− 1)/4

The Gaussian limit of In(j) is easily derived from the generating function Φn(z) (using the
Lindeberg-Lévy conditions, see for instance, Feller [3]); this is also reviewed in Margolius’
paper, following Sachkov’s book [9]. Another analysis is given in Bender [2]. Indeed, this
generating function corresponds to a sum for i = 1, . . . , n of independent, uniform [0..i− 1]
random variables. As an exercise, let us recover this result with the saddle point method,

with an additional correction of order 1/n. We have, with Jn := In/n!,

m := E(Jn) = n(n− 1)/4,

σ2 := V(Jn) = n(2n+ 5)(n− 1)/72.

We know that

In(j) =
1

2πi

∫

Ω

eS(z)

zj+1
dz

where Ω is inside the analyticity domain of the integrand and encircles the origin. Since
Φn(z) is just a polynomial, the analyticity restriction can be ignored. We split the exponent
of the integrand S = ln(Φn(z))− (j + 1) ln z as follows:

S := S1 + S2, (1)

S1 :=
n
∑

i=1

ln(1− zi),

S2 := −n ln(1− z)− (j + 1) ln z.

Set

S(i) :=
diS

dzi
.

To use the saddle point method, we must find the solution of

S(1)(z̃) = 0. (2)

Set z̃ := z∗−ε, where, here, z∗ = 1. (This notation always means that z∗ is the approximate
saddle point and z̃ is the exact saddle point; they differ by a quantity that has to be computed
to some degree of accuracy.) This leads, to first order, to the equation

[(n+1)2/4−3n/4−5/4− j]+ [−(n+1)3/36+7(n+1)2/24−49n/72−91/72− j]ε = 0. (3)

Set j = m + xσ in (3). This shows that, asymptotically, ε is given by a Puiseux series of
powers of n−1/2, starting with −6x/n3/2. To obtain the next terms, we compute the next
terms in the expansion of (2), i.e., we first obtain

[(n+ 1)2/4− 3n/4− 5/4− j] + [−(n+ 1)3/36 + 7(n+ 1)2/24− 49n/72− 91/72− j]ε

+ [−j − 61/48− (n+ 1)3/24 + 5(n+ 1)2/16− 31n/48]ε2 = 0. (4)

More generally, even powers ε2k lead to a O(n2k+1) · ε2k term and odd powers ε2k+1 lead to a
O(n2k+3) · ε2k+1 term. Now we set j = m+xσ, expand into powers of n−1/2 and equate each
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coefficient with 0. This leads successively to a full expansion of ε. Note that to obtain a given
precision of ε, it is enough to compute a given finite number of terms in the generalization
of (4). We obtain

ε = −6x/n3/2 + (9x/2− 54/25x3)/n5/2 − (18x2 + 36)/n3

+ x[−30942/30625x4 + 27/10x2 − 201/16]/n7/2 +O(1/n4). (5)

We have, with z̃ := z∗ − ε,

Jn(j) =
1

n!2πi

∫

Ω

exp
[

S(z̃) + S(2)(z̃)(z − z̃)2/2! +
∞
∑

l=3

S(l)(z̃)(z − z̃)l/l!
]

dz

(note carefully that the linear term vanishes). Set z = z̃ + iτ . This gives

Jn(j) =
1

n!2π
exp[S(z̃)]

∫ ∞

−∞
exp

[

S(2)(z̃)(iτ)2/2! +
∞
∑

l=3

S(l)(z̃)(iτ)l/l!
]

dτ. (6)

Let us first analyze S(z̃). We obtain

S1(z̃) =
n
∑

i=1

ln(i) + [−3/2 ln(n) + ln(6) + ln(−x)]n+ 3/2x
√
n+ 43/50x2 − 3/4

+ [3x/8 + 6/x+ 27/50x3]/
√
n+ [5679/12250x4 − 9/50x2 + 173/16]/n+O(n−3/2),

S2(z̃) = [3/2 ln(n)− ln(6)− ln(−x)]n− 3/2x
√
n− 34/25x2 + 3/4

− [3x/8 + 6/x+ 27/50x3]/
√
n− [5679/12250x4 − 9/50x2 + 173/16]/n+O(n−3/2),

and so
S(z̃) = −x2/2 + ln(n!) +O(n−3/2).

Also,

S(2)(z̃) = n3/36 + (1/24− 3/100x2)n2 +O(n3/2),

S(3)(z̃) = O(n7/2),

S(4)(z̃) = −n5/600 +O(n4),

S(l)(z̃) = O(nl+1), l ≥ 5.

We can now compute (6), for instance by using the classical trick of setting

S(2)(z̃)(iτ)2/2! +
∞
∑

l=3

S(l)(z̃)(iτ)l/l! = −u2/2,

computing τ as a truncated series in u, setting dτ = dτ
du

du, expanding with respect to n and
integrating on [u = −∞..∞]. (This amounts to the reversion of a series.) Finally, (6) leads
to

Jn ∼ e−x2/2 · exp[(−51/50 + 27/50x2)/n+O(n−3/2)]/(2πn3/36)1/2. (7)
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Figure 2: Jn(j) (circle) and the asymptotics (7) (line), without the 1/n term, n = 60

Note that S(3)(z̃) does not contribute to the 1/n correction.
To check the effect of the correction, we first give in Figure 2, for n = 60, the comparison

between Jn(j) and the asymptotics (7), without the 1/n term. Figure 3 gives the same
comparison, with the constant term −51/(50n) in the correction. Figure 4 shows the quotient
of Jn(j) and the asymptotics (7), with the constant term −51/(50n). The “hat” behaviour,
already noticed by Margolius, is apparent. Finally, Figure 5 shows the quotient of Jn(j) and
the asymptotics (7), with the full correction.

3 The case j = n− k

Figure 6 shows the real part of S(z) as given by (1), together with a path Ω through the
saddle point.

It is easy to see that here, we have z∗ = 1/2. We obtain, to first order,

[C1,n − 2j − 2 + 2n] + [C2,n − 4j − 4− 4n]ε = 0

with

C1,n = C1 +O(2−n),

C1 =
∞
∑

i=1

−2i
2i − 1

= −5.48806777751 . . . ,

C2,n = C2 +O(2−n),

C2 =
∞
∑

i=1

4
i(i2i − 2i + 1)

(2i − 1)2
= 24.3761367267 . . . .
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Figure 3: Jn(j) (circle) and the asymptotics (7) (line), with the constant in the 1/n term,
n = 60
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Figure 4: Quotient of Jn(j) and the asymptotics (7), with the constant in the 1/n term,
n = 60
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Figure 5: Quotient of Jn(j) and the asymptotics (7), with the full 1/n term, n = 60
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Figure 6: Real part of S(z). Saddle-point and path, n = 10, k = 0
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Set j = n − k. This shows that, asymptotically, ε is given by a Laurent series of powers of
n−1, starting with (k − 1 + C1/2)/(4n). Next, we obtain

[C1 − 2j − 2 + 2n] + [C2 − 4j − 4− 4n]ε+ [C3 + 8n− 8j − 8]ε2 = 0

for some constant C3. More generally, powers ε2k lead to a O(1) ·ε2k term, powers ε2k+1 lead
to a O(n) · ε2k+1 term. This gives the estimate

ε = (k − 1 + C1/2)/(4n) + (2k − 2 + C1)(4k − 4 + C2)/(64n
2) +O(1/n3).

Now we derive
S1(z̃) = ln(Q)− C1(k − 1 + C1/2)/(4n) +O(1/n2)

with Q :=
∏∞

i=1(1− 1/2i) = .288788095086 . . .. Similarly,

S2(z̃) = 2 ln(2)n+ (1− k) ln(2) + (−k2/2 + k − 1/2 + C2
1/8)/(2n) +O(1/n2)

and so

S(z̃) = ln(Q) + 2 ln(2)n+ (1− k) ln(2) + (A0 + A1k − k2/4)/n+O(1/n2)

with

A0 := −(C1 − 2)2/16,

A1 := (−C1/2 + 1)/2.

Now we turn to the derivatives of S. We will analyze, with some precision, S (2), S(3), S(4)

(the exact number of needed terms is defined by the precision we want in the final result).

Note that, from S(3) on, only S
(l)
2 must be computed, as S

(l)
1 (z̃) = O(1). This leads to

S(2)(z̃) = 8n+ (−C2 − 4k + 4) +O(1/n),

S
(3)
2 (z̃) = O(1),

S
(4)
2 (z̃) = 192n+O(1),

S
(l)
2 (z̃) = O(n), l ≥ 5.

We denote by S(2,1) the dominant term of S(2)(z̃), i.e., S(2,1) := 8n. We now compute (S
(3)
2 (z̃)

is not necessary here)

1

2π
exp[S(z̃)]

∫ ∞

−∞
exp[S2(z̃)(iτ)2/2!] exp[S4(z̃)(iτ)4/4! +O(nτ 5)]dτ

which gives

In(n− k) ∼ e2 ln(2)n+(1−k) ln(2) Q

(2πS(2,1))1/2
·

exp
{[

(A0 + 1/8 + C2/16) + (A1 + 1/4)k − k2/4
]

/n+O(1/n2)
}

. (8)
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To compare our result with Margolius’, we replace n by n+ k and find

In+k(n) =
22n+k−1
√
πn

(

q0 −
q0 + q2 − 2q1

8n
+

(q0 − q1)k

4n
− q0k

2

n
+O(n−2)

)

.

We have

q0 = Q =
∞
∏

i=1

(1− 2−i),

and

q1 = −2q0
∞
∑

i=1

i

2i − 1
,

and
q2
2q0

= −
∞
∑

i=1

i(i− 1)

2i − 1
+
(

∞
∑

i=1

i

2i − 1

)2

−
∞
∑

i=1

i2

(2i − 1)2
.

Margolius’ form of the constants follows from Euler’s pentagonal theorem, [1]

Q(z) =
∞
∏

i=1

(1− zi) =
∑

i∈Z

(−1)iz i(3i−1)
2

and differentiations:
q1 =

∑

i∈Z

(−1)ii(3i− 1)2−
i(3i−1)

2 ,

respectively,

q2 =
∑

i∈Z

(−1)ii(3i− 1)
(i(3i− 1)

2
− 1

)

2−
i(3i−1)

2 .

In our formula, k can be negative as well (which was excluded in Margolius’ analysis).
Figure 7 gives, for n = 300, In(n − k) normalized by the first two terms of (8) together

with the 1/n correction in (8); the result is a bell shaped curve, which is perhaps not too
unexpected. Figure 8 shows the quotient of In(n− k) and the asymptotics (8).

4 The case j = αn− x, α > 0

Of course, we must have that αn−x is an integer. For instance, we can choose α, x integers.
But this also covers more general cases, for instance Iαn+β(γn+ δ), with α, β, γ, δ integers.
We have here z∗ = α/(1 + α). We derive, to first order,

[C1,n(α)− (j + 1)(1 + α)/α + (1 + α)n] + [C2,n(α)− (j + 1)(1 + α)2/α2 − (1 + α)2n]ε = 0

with, setting ϕ(i, α) := [α/(1 + α)]i,

C1,n(α) = C1(α) +O([α/(1 + α)]−n),
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Figure 7: normalized In(n − k) (circle) and the 1/n term in the asymptotics (8) (line),
n = 300
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C1(α) =
∞
∑

i=1

i(1 + α)ϕ(i, α)

α[ϕ(i, α)− 1]
,

C2,n(α) = C2(α) +O([α/(1 + α)]−n),

C2(α) =
∞
∑

i=1

ϕ(i, α)i(1 + α)2(i− 1 + ϕ(i, α))/[(ϕ(i, α)− 1)2α2].

Set j = αn− x. This leads to

ε = [x+ αx− 1− α + C1α]/[(1 + α)3n] +O(1/n2).

Next, we obtain

[C1,n(α)− (j + 1)(1 + α)/α + (1 + α)n] + [C2,n(α)− (j + 1)(1 + α)2/α2 − (1 + α)2n]ε

+ [C3,n(α) + (1 + α)3n− (j + 1)(1 + α)3/α3]ε2 = 0

for some function C3,n(α). More generally, powers εk lead to a O(n) · εk term. This gives

ε = [x+ αx− 1− α + C1α]/[(1 + α)3n] + (x+ xα− 1− α + C1α)×
× (x+ 2xα + xα2 − α2 + C1α

2 − 2α + C2α− 1− C1)/[(1 + α)6n2] +O(1/n3).

Next we derive

S1(z̃) = ln(Q̂(α))− C1[x+ αx− 1− α + C1α]/[(1 + α)3n] +O(1/n2)

with

Q̂(α) :=
∞
∏

i=1

(1− ϕ(i, α)) =
∞
∏

i=1

(

1−
( α

1 + α

)i)

= Q
( α

1 + α

)

.

Similarly

S2(z̃) = [− ln(1/(1 + α))− α ln(α/(1 + α))]n+ (x− 1) ln(α/(1 + α))

+ {(C1α + α + 1)(C1α− α− 1)/[2α(1 + α)3] + x/[α(1 + α)]

−x2/[2α(1 + α)]}/n+O(1/n2).

So

S(z̃) = [− ln(1/(1 + α))− α ln(α/(1 + α))]n+ ln(Q̂(α)) + (x− 1) ln(α/(1 + α))

+ {−(C1α− α− 1)2/[2α(1 + α)3]− x(C1α− α− 1)/[α(1 + α)2]− x2/[2α(1 + α)]}/n
+ O(1/n2).

The derivatives of S are computed as follows:

S(2)(z̃) = (1 + α)3/αn− (2xα3 + 2C1α
3 − 2α3 + C2α

2 + 3xα2 − 3α2 − 2C1α− x+ 1)/α2 +O(1/n),

S
(3)
2 (z̃) = 2(1 + α3)(α2 − 1)/α2n+O(1),

S
(4)
2 (z̃) = 6(1 + α)4(α3 + 1)/α3n+O(1),

S
(l)
2 (z̃) = O(n), l ≥ 5.
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Figure 9: normalized In(αn − x) (circle) and the 1/n term in the asymptotics (10) (line),
α = 1/2, n = 300

We denote by S(2,1) the dominant term of S(2)(z̃), e.g., S(2,1) := n(1 + α)3/α. Note that,

now, S
(3)
2 (z̃) = O(n), so we cannot ignore its contribution. Of course, µ3 = 0 (third moment

of the Gaussian), but µ6 6= 0, so S
(3)
2 (z̃) contributes to the 1/n term. Finally, Maple gives us

In(αn− x) ∼ e[− ln(1/(1+α))−α ln(α/(1+α))]n+(x−1) ln(α/(1+α)) Q̂(α)

(2πS(2,1))1/2
×

× exp[{−(1 + 3α + 4α2 − 12α2C1 + 6C2
1α

2 + α4 + 3α3 − 6C2α
2 (9)

−12C3
1α)/[12α(1 + α)3]}]

+x(2α2 − 2C1α + 3α + 1)/[2α(1 + α)2]− x2/[2α(1 + α)]
}

/n+O(1/n2)
]

.

Figure 9 gives, for α = 1/2, n = 300, In(αn − x) normalized by the first two terms of (10)
together with the 1/n correction in (10). Figure 10 shows the quotient of In(αn − x) and
the asymptotics (10).

5 The moderate Large deviation, j = m + xn7/4

Now we consider the case j = m + xn7/4. We have here z∗ = 1. We observe the same
behaviour as in Section 2 for the coefficients of ε in the generalization of (4).

Proceeding as before, we see that asymptotically, ε is now given by a Puiseux series of
powers of n−1/4, starting with −36x/n5/4. This leads to

ε = −36x/n5/4−1164/25x3/n7/4+(−240604992/30625x5+54x)/n9/4+F1(x)/n
5/2+O(n−11/4),
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Figure 10: Quotient of In(αn− x) and the asymptotics (10), α = 1/2, n = 300

where F1 is an (unimportant) polynomial of x. This leads to

S(z̃) = ln(n!)− 18x2
√
n− 2916/25x4 − 27/625x2(69984x4 − 625)/

√
n

− 1458/15625x4(−4375 + 1259712x4)/n+O(n−5/4).

Also,

S(2)(z̃) = n3/36 + (1/24 + 357696/30625x4)n2 − 27/25x2n5/2 +O(n7/4),

S(3)(z̃) = −1/12n3 +O(n15/4),

S(4)(z̃) = −n5/600 +O(n9/2),

S(l)(z̃) = O(nl+1), l ≥ 5,

and finally we obtain

Jn ∼ e−18x
2√n−2916/25x4 ×

× exp
[

x2(−1889568/625x4 + 1161/25)/
√
n

+ (−51/50− 1836660096/15625x8 + 17637426/30625x4)/n

+O(n−5/4)
]

/(2πn3/36)1/2. (10)

Note that S(3)(z̃) does not contribute to the correction and that this correction is equivalent
to the Gaussian case when x = 0. Of course, the dominant term is null for x = 0.

To check the effect of the correction, we first give in Figure 11, for n = 60 and x ∈
[−1/4..1/4], the comparison between Jn(j) and the asymptotics (10), without the 1/

√
n and

1/n term. Figure 12 gives the same comparison, with the correction. Figure 13 shows the

13
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Figure 11: Jn(j) (circle) and the asymptotics (10) (line), without the 1/
√
n and 1/n term,

n = 60
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Figure 12: Jn(j) (circle) and the asymptotics (10) (line), with the 1/
√
n and 1/n term,

n = 60
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Figure 13: Quotient of Jn(j) and the asymptotics (10), with the 1/
√
n and 1/n term, n = 60

quotient of Jn(j) and the asymptotics (10), with the 1/
√
n and 1/n term.

The exponent 7/4 that we have chosen is of course not sacred; any fixed number below
2 could also have been considered.

6 Large deviations, j = αn(n− 1), 0 < α < 1/2

Here, again, z∗ = 1. Asymptotically, ε is given by a Laurent series of powers of n−1, but
here the behaviour is quite different: all terms of the series generalizing (4) contribute to the

computation of the coefficients. It is convenient to analyze separately S
(1)
1 and S

(1)
2 . This

gives, by substituting

z̃ := 1− ε, j = αn(n− 1), ε = a1/n+ a2/n
2 + a3/n

3 +O(1/n4),

and expanding with respect to n,

S
(1)
2 (z̃) ∼ (1/a1 − α)n2 + (α− αa1 − a2/a

2
1)n+O(1),

S
(1)
1 (z̃) ∼

n−1
∑

k=0

f(k),

where

f(k) := −(k + 1)(1− ε)k/[1− (1− ε)k+1]

= −(k + 1)(1− [a1/n+ a2/n
2 + a3/n

3 +O(1/n4)])k

/{1− (1− [a1/n+ a2/n
2 + a3/n

3 +O(1/n4)])k+1}.
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This immediately suggests to apply the Euler-Mac Laurin summation formula, which gives,
to first order,

S
(1)
1 (z̃) ∼

∫ n

0

f(k)dk − 1

2
(f(n)− f(0)),

so we set k = −un/a1 and expand −f(k)n/a1. This leads to

∫ n

0

f(k)dk ∼
∫ −a1

0

[

− ueu

a21(1− eu)
n2 +

eu[2a21 − 2eua21 − 2u2a2 − u2a21 + 2euua21]

2a31(1− eu)2
n

]

du+O(1)

−1

2
(f(n)− f(0))

∼
(

e−a1

2(1− e−a1)
− 1

2a1

)

n+O(1).

This readily gives

∫ n

0

f(k)dk ∼ −dilog(e−a1)/a21n
2

+ [2a31e
−a1 + a41e

−a1 − 4a2dilog(e
−a1) + 4a2dilog(e

−a1)e−a1

+ 2a2a
2
1e
−a1 − 2a21 + 2a21e

−a1 ]/[2a31(e
−a1 − 1)]n+O(1).

Combining S
(1)
1 (z̃) + S

(1)
2 (z̃) = 0, we see that a1 = a1(α) is the solution of

−dilog(e−a1)/a21 + 1/a1 − α = 0.

We check that limα→0 a1(α) =∞, limα→1/2 a1(α) = −∞.
Similarly, a2(α) is the solution of the linear equation

α− αa1 − a2/a
2
1 + e−a1/[2(1− e−a1)]− 1/(2a1)

+ [2a31e
−a1 + a41e

−a1 + 4a2dilog(e
−a1)(e−a1 − 1) + 2a2a

2
1e
−a1 − 2a21 + 2a21e

−a1 ]/[2a31(e
−a1 − 1)]

= 0

and limα→0 a2(α) = −∞, limα→1/2 a2(α) =∞.
We could proceed in the same manner to derive a3(α) but the computation becomes quite

heavy. So we have computed an approximate solution ã3(α) as follows: we have expanded
S(1)(z̃) into powers of ε up to ε19. Then an asymptotic expansion into n leads to a n0

coefficient which is a polynomial of a1 of degree 19 (of degree 2 in a2 and linear in a3).
Substituting a1(α), a2(α) immediately gives ã3(α). This approximation is satisfactory for
α ∈ [0.15..0.35]. Note that a1(1/4) = 0, a2(1/4) = 0 as expected, and a3(1/4) = −36. We
obtain

S(z̃) = ln(n!) + [1/72a1(a1 − 18 + 72α)]n

+ [1/72a31 − 1/4a2 + 1/4a1 − a1α− 5/48a21 + 1/36a1a2 + a2α + 1/2a21α]

+ [1/72a22 + 1/36a1a3 − 1/4a3 + 1/4a2 + a1 + a3α + a1a2α + 1/3a31α

− a2α− 1/2a21α− 5/24a1a2 + 1/24a21a2 + 13/144a21 − 1/16a31]/n+O(1/n2).
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Figure 14: normalized Jn(αn(n−1)) (circle) and the 1/n term in the asymptotics (11) (line),
n = 80

Note that the three terms of S(z̃) are null for α = 1/4, as expected. This leads to

S(2)(z̃) = n3/36 + (−5/24 + 1/12a1 + α)n2 +O(n),

S(3)(z̃) = 1/600a1n
4 +O(n3),

S(4)(z̃) = −n5/600 +O(n4),

S
(l)
2 (z̃) = O(nl+1), l ≥ 5.

Finally,

Jn(αn(n− 1))

∼ e[1/72a1(a1−18+72α)]n+[1/72a3
1−1/4a2+1/4a1−a1α−5/48a2

1+1/36a1a2+a2α+1/2a2
1α]

1

(2πn3/36)1/2
×

× exp[(1/72a22 + 1/36a1a3 − 1/4a3 + 1/4a2 − 1/2a1 + a3α + a1a2α + 1/3a31α− a2α

− 1/2a21α− 5/24a1a2 + 1/24a21a2 + 1139/18000a21 − 1/16a31 + 87/25− 18α)/n

+ O(1/n2)]. (11)

Note that, for α = 1/4, the 1/n term gives −51/50, again as expected.
Figure 14 gives, for n = 80 and α ∈ [0.15..0.35], Jn(αn(n − 1)) normalized by the first

two terms of (11) together with the 1/n correction in (11). Figure 15 shows the quotient of
Jn(αn(n− 1)) and the asymptotics (11).
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Figure 15: Quotient of Jn(αn(n− 1)) and the asymptotics (11), n = 80

7 Conclusion

Once more the saddle point method revealed itself as a powerful tool for asymptotic analysis.
With careful human guidance, the computational operations are almost automatic, and can
be performed to any degree of accuracy with the help of some computer algebra, at least in
principle. This allowed us to include correction terms in our asymptotic formulæ, where we
have covered all ranges of interest and one can see their effect in the figures displayed.

An interesting open problem would be to extend our results to q−analogues (see, for
instance, [6]).
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