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Abstract

We prove two new formulas for the central trinomial coefficients and the Motzkin

numbers.

1 Introduction

Let cn denote the nth central trinomial coefficient, defined as the coefficient of xn in the
expansion of (1 + x + x2)n, or more combinatorially as the number of planar paths starting
at (0, 0) and ending at (n, 0), whose allowed steps are (1, 0), (1, 1), (1,−1). Let mn denote the
nthMotzkin number, defined as the number of such planar paths which do not descend below
the x-axis. The first few cn’s are 1, 3, 7, 19, 51, ..., and the first few mn’s are 1, 2, 4, 9, 21, ....
We prove

Theorem 1
mn =

b(n+2)/2c
∑

k=d(n+2)/3e

(3k − 2)!

(2k − 1)!(n + 2− 2k)!(3k − n− 2)!
(1)

cn = (−1)n+1 + 2n

bn/2c
∑

k=dn/3e

(3k − 1)!

(2k)!(n− 2k)!(3k − n)!
(2)

It is interesting to compare these formulas with some of the other known formulas [6] for mn

and cn:

mn =

bn/2c
∑

k=0

n!

k!(k + 1)!(n− 2k)!
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mn =
n
∑

k=0

(−1)n+k n! (2k + 2)!

k! ((k + 1)!)2 (k + 2)(n− k)!

cn =

bn/2c
∑

k=0

n!

(k!)2(n− 2k)!

cn =
1

2n

bn/2c
∑

k=0

3k(2n− 2k)!

k!(n− k)!(n− 2k)!

Formulas such as (1) and (2) can be proven automatically by computer, using the methods
and software of Petkovšek, Wilf and Zeilberger [5]. We offer an independent, non-automatic
proof that involves a certain symmetry idea which might lead to the discovery of other such
identities. Two simpler auxiliary identities used in the proof are also automatically verifiable
and shall not be proved.

2 Proof of the main result

Proof of (1). Our proof uses a variant of the generating function [6] for the numbers mn,
namely

f(x) =
1− x +

√
1 + 2x− 3x2

2
= 1− x2 +

∞
∑

n=3

(−1)n+1mn−2x
n

Then f satisfies f(0) = 1, f(1) = 0 and is decreasing on [0, 1]. Another property of f that
will be essential in the proof is that it satisfies the functional equation

f(x)2 − f(x)3 = x2 − x3, 0 ≤ x ≤ 1, (3)

as can easily be verified. A simple corollary of this is that f(f(x)) = x for x ∈ [0, 1].
Next, define

g(x) =
∞
∑

k=1

2(3k − 2)!

(2k)!(k − 1)!
(x2 − x3)k

Since on [0, 1], the maximal value attained by x2 − x3 is 4/27 (at x = 2/3), by Stirling’s
formula the series is seen to converge everywhere on [0, 1], to a function g(x) which is real-
analytic except at x = 2/3. We now expand g(x) in powers of 1 − x; all rearrangement
operations are permitted by absolute convergence:

g(x) =
∞
∑

k=1

2(3k − 2)!

(2k)!(k − 1)!
x2k(1− x)k =

=
∞
∑

k=1

2(3k − 2)!

(2k)!(k − 1)!
(1− x)k

k
∑

j=0

(

2k

j

)

(−1)j(1− x)j =

=
∞
∑

n=1





n
∑

k=dn/3e

(

2k

n− k

)

(−1)n+k 2(3k − 2)!

(2k)!(k − 1)!



 (1− x)n = 1− x,

2



where the last equality follows from the automatically verifiable [5] identity

n
∑

k=dn/3e

(−1)k(3k − 2)!

(k − 1)!(n− k)!(3k − n)!
= 0, n > 1.

We have shown that g(x) = 1 − x near x = 1. But since g(x) is defined as a function of
x2 − x3, by (3) it follows that g(f(x)) = g(x), and therefore near x = 0 we have

g(x) = g(f(x)) = 1− f(x) = x2 +
∞
∑

n=3

(−1)nmn−2x
n.

Now to prove (1), we expand g(x) into powers of x, again using easily justifiable rearrange-
ment operations

g(x) =
∞
∑

k=1

2(3k − 2)!

(2k)!(k − 1)!
x2k(1− x)k =

=
∞
∑

k=1

2(3k − 2)!

(2k)!(k − 1)!
x2k

k
∑

j=0

(

k

j

)

(−1)jxj =

=
∞
∑

n=2



(−1)n
bn/2c
∑

k=dn/3e

(3k − 2)!

(2k − 1)!(n− 2k)!(3k − n)!



 xn.

Equating coefficients in the last two formulas gives (1).

Proof of (2). We use a similar idea, this time using instead of the function f(x) the
function − log f(x), which generates a sequence related to cn. Since the generating function
for cn is well known [6] to be 1/

√
1− 2x− 3x2, it is easy to verify that

f ′(x)

f(x)
=

∞
∑

n=0

(−1)ncn+1 − 1

2
xn

and therefore

− log f(x) =
∞
∑

n=1

(−1)ncn + 1

2n
xn.

Now define the function

h(x) =
∞
∑

k=1

(3k − 1)!

k!(2k)!
(x2 − x3)k

which again converges for all x ∈ [0, 1] to a function which is analytic except at x = 2/3.
Expanding h(x) into powers of 1− x gives

h(x) =
∞
∑

k=1

(3k − 1)!

k!(2k)!
(1− x)k

2k
∑

j=0

(

2k

j

)

(−1)j(1− x)j =

3



=
∞
∑

n=1





n
∑

k=dn/3e

(

2k

n− k

)

(−1)n−k (3k − 1)!

k!(2k)!



 (1− x)n =

=
∞
∑

n=1

(1− x)n

n
= − log x,

again making use of a verifiable identity [5], namely that

(−1)n
n
∑

k=dn/3e

(−1)k(3k − 1)!

k!(n− k)!(3k − n)!
=

1

n
, n ≥ 1. (4)

So h(x) = − log x near x = 1, and therefore because of the symmetry property (3) we have
that h(x) = − log f(x) near x = 0. Expanding h(x) in powers of x near x = 0 gives

− log f(x) = h(x) =
∞
∑

k=1

(3k − 1)!

k!(2k)!
x2k

k
∑

j=0

(

k

j

)

(−1)jxj =

=
∞
∑

n=2



(−1)n
bn/2c
∑

k=dn/3e

(3k − 1)!

(2k)!(n− 2k)!(3k − n)!



 xn

Equating coefficients with our previous expansion of h(x) gives (2).

Remarks.

1. One obvious question on seeing formulas (1) and (2) is, Can they be explained combi-
natorially? That is, do there exist bijections between sets known to be enumerated by
the numbers mn and cn, and sets whose cardinality is seen to be the right-hand sides
of (1) and (2)? Such explanations elude us currently.

2. Identity (4) is a special case of a more general identity [4, Eq. (6)] that was discovered
by Thomas Liggett.

3. See [1, 2, 3, 6] for some other formulas involving the central trinomial coefficients
and the Motzkin numbers, and for more information on the properties, and the many
different combinatorial interpretations, of these sequences.
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