Journal of Integer Sequences, Vol. 6 (2003), Article 03.4.1

Two Game-Set Inequalities

Walter Shur
11 Middle Road
Port Washington, NY 11050
USA
shur@optonline.net

Abstract

Two players compete in a contest where the first player to win a specified number of points wins the game, and the first player to win a specified number of games wins the set. This paper proves two generalized inequalities, each independent of the probability of winning a point, concerning the better player's chances of winning. Counterexamples are given for two additional conjectured inequalities. A sequence of integers which plays a significant role in this paper can be found in A033820 of the On-line Encyclopedia of Integer Sequences.

1 Introduction

A and B play a set of games. The winner of each game is the first player to win k points, and the winner of the set is the first player to win n games. The probabilities that A and B win each point are p and q, respectively, with $p+q=1$. Let $P(n, k, p)$ and $Q(n, k, p)$ be the probabilities that A wins and loses the set, respectively. Let $P(n, p)=P(n, 1, p)=P(1, n, p)$ and $Q(n, p)=Q(n, 1, p)=Q(1, n, p)$ be the probabilities that A wins and loses an n point game, respectively. (Note that $P(n, k, p)=P(n, P(k, p))$ and $Q(n, k, p)=Q(n, P(k, p))$. This paper proves the following two theorems:

Theorem 1. If $n \geq 2, k \geq 2$, and $.5<p<1$, then $P(n, k, p)>P(n k, p)$.

Theorem 2. If $2 \leq k<n$ and $.5<p<1$, then $P(n, k, p)>P(k, n, p)$.

2 Proofs

Lemma 1. $P(k, p)=\frac{1}{2}+\frac{1}{2}(p-q) \sum_{i=0}^{k-1}\binom{2 i}{i}(p q)^{i}$.
Proof. We show first that

$$
\begin{equation*}
P(k+1, p)-P(k, p)=\frac{1}{2}(p-q)\binom{2 k}{k}(p q)^{k}, k \geq 1 . \tag{1}
\end{equation*}
$$

The only $(k+1)$-point games in which the winner might be different than the winner of the k-point game are those which are tied at k points each.

The increase in A 's chance of winning a $k+1$-point game over his chance of winning a k-point game is the excess of (a) the probability that there is a k-point tie, B having won the k-point game, and A wins the next point, over (b) the probability that there is a k-point tie, A having won the k-point game, and B wins the next point. Note that in half of those tied games, B won the k-point game, and in the other half, A won the k-point game. Since $\binom{2 k}{k}(p q)^{k}$ is the probability of a k-point tie, (1) holds.

Lemma 1 is true since it is true for $k=1$, and its right hand side simply sums the differences in (1).

Lemma 2. Let $a_{k, i}:=\frac{1}{2}\binom{2 k}{k}\binom{2 i}{i} \frac{k}{k+i}$. Then $P(k, p) Q(k, p)=(p q)^{k} \sum_{i=0}^{k-1} a_{k, i}(p q)^{i}$,
(Note that $a_{k, i}$ is equal to $a_{k+i-1, k-1}$ in A033820 of the On-line Encyclopedia of Integer Sequences.)

Proof. We see from Lemma 1, noting that $-(p-q)^{2}=4 p q-1$, that

$$
\begin{equation*}
P(k, p) Q(k, p)=\frac{1}{4}+\frac{1}{4}(4 p q-1)\left(\sum_{i=0}^{k-1}\binom{2 i}{i}(p q)^{i}\right)^{2} . \tag{2}
\end{equation*}
$$

Since

$$
\left(\sum_{i=0}^{\infty}\binom{2 i}{i}(p q)^{i}\right)^{2}=\left(\frac{1}{\sqrt{1-4 p q}}\right)^{2}=\sum_{i=0}^{\infty} 4^{i}(p q)^{i}
$$

we see that if $1 \leq t \leq k-1$, the coefficient of $(p q)^{t}$ in (2) equals $\frac{1}{4} \cdot 4 \cdot 4^{t-1}-\frac{1}{4} \cdot 4^{t}=0$, and equals 0 for $t=0$ as well.

Hence, we can define $a_{k, i}$ such that

$$
\begin{equation*}
P(k, p) Q(k, p)=(p q)^{k} \sum_{i=0}^{k-1} a_{k, i}(p q)^{i} \tag{3}
\end{equation*}
$$

Thus, $a_{k, t-k}$ is the coefficient of $(p q)^{t}$ in (2).

We have, then

$$
\begin{align*}
& a_{k, t-k}=\sum_{j=t-k}^{k-1}\binom{2 j}{j}\binom{2 t-2 j-2}{t-j-1}-\frac{1}{4} \sum_{j=t-k+1}^{k-1}\binom{2 j}{j}\binom{2 t-2 j}{t-j} \\
&=\binom{2 t-2 k}{t-k}\binom{2 k-2}{k-1}+\sum_{j=t-k+1}^{k-1}\binom{2 j}{j}\left(\binom{2 t-2 j-2}{t-j-1}-\frac{1}{4}\binom{2 t-2 j}{t-j}\right) \\
&=\binom{2 t-2 k}{t-k}\binom{2 k-2}{k-1}+\frac{1}{2} \sum_{j=t-k+1}^{k-1}\binom{2 j}{j}\binom{2 t-2 j-2}{t-j-1} \frac{1}{t-j} . \tag{4}\\
& \operatorname{Let} g(t, j)=\frac{j(2 t-2 j-1)\binom{2 j}{j}\binom{2 t-2 j-2}{t-j-1}}{(t-j) t} .
\end{align*}
$$

We show that

$$
\begin{equation*}
\binom{2 j}{j}\binom{2 t-2 j-2}{t-j-1} \frac{1}{t-j}=g(t, j+1)-g(t, j) \tag{5}
\end{equation*}
$$

by dividing both sides of the equation by $\binom{2 j}{j}\binom{2 t-2 j-2}{t-j-1}$ to obtain

$$
\frac{1}{t-j}=\frac{1+2 j}{t}-\frac{j(2 t-2 j-1)}{(t-j) t}=\frac{1}{t-j} .
$$

Let $S(t, k)$ equal the sum in (4). By summing both sides of (5) from $j=t-k+1$ to $k-1$, we see that $S(t, k)$ is equal to $g(t, k)-g(t, t-k+1)$, and we have

$$
S(t, k)=\frac{k(2 t-2 k-1)\binom{2 k}{k}\binom{2 t-2 k-2}{t-k-1}}{(t-k) t}-\frac{(t-k+1)(2 k-3)\binom{(2 t-2 k+2}{t-k+1}\binom{2 k-4}{k-2}}{(k-1) t} .
$$

We see from (4) that

$$
a_{k, t-k}=\binom{2 t-2 k}{t-k}\binom{2 k-2}{k-1}+\frac{1}{2} S(t, k) .
$$

Dividing both sides by $\binom{2 k}{k}\binom{2 t-2 k}{t-k}$, we have

$$
\frac{a_{k, t-k}}{\binom{2 k}{k}\binom{2 t-2 k}{t-k}}=\frac{k}{4 k-2}+\frac{1}{2}\left(\frac{k}{2 t}-\frac{k(2 t-2 k+1)}{2(2 k-1) t}\right)=\frac{k}{2 t} .
$$

Replacing t by $k+i$ gives

$$
a_{k, i}=\frac{1}{2}\binom{2 k}{k}\binom{2 i}{i} \frac{k}{k+i} .
$$

Lemma 3.

$$
P^{\prime}(k, p)=\frac{1}{2} k\binom{2 k}{k}(p q)^{k-1} \text {, where the derivative is taken with respect to } p .
$$

Proof. The probability that A wins a k-point game on the $(k+i)^{t h}$ point played is

$$
p^{k}\binom{k-1+i}{i}(1-p)^{i}
$$

Hence,

$$
P(k, p)=p^{k} \sum_{i=0}^{k-1}\binom{k-1+i}{i}(1-p)^{i}=p^{k} \sum_{j=0}^{k-1}(-1)^{j}\left(\sum_{i=j}^{k-1}\binom{i}{j}\binom{k-1+i}{i}\right) p^{j} .
$$

We have

$$
\begin{aligned}
\sum_{i=j}^{k-1}\binom{i}{j}\binom{k-1+i}{i} & =\sum_{i=j}^{k-1}\binom{k-1+i}{i-j}\binom{k-1+j}{j}=\binom{k-1+j}{j}\binom{2 k-1}{k+j} \\
& =\frac{k}{k+j}\binom{k+j}{j}\binom{2 k-1}{k+j}=\frac{1}{2}\binom{2 k}{k}\binom{k-1}{j} \frac{k}{k+j}
\end{aligned}
$$

Hence,

$$
P(k, p)=\frac{1}{2} k\binom{2 k}{k} \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} \frac{1}{k+j} p^{k+j} .
$$

Taking the derivative with respect to p, we have

$$
P^{\prime}(k, p)=\frac{1}{2} k\binom{2 k}{k} \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} p^{k+j-1}=\frac{1}{2} k\binom{2 k}{k}(p q)^{k-1} .
$$

Lemma 4. The function

$$
r_{n, k}(p)=\frac{P^{\prime}(n, k, p)}{P^{\prime}(n k, p)}
$$

is a decreasing function of p, for $.5 \leq p<1$.

Proof.

$$
\begin{align*}
r_{n, k}(p) & =\frac{P^{\prime}(n, k, p)}{P^{\prime}(n k, p)}=\frac{P^{\prime}(n, P(k, p))}{P^{\prime}(n k, p)} \\
& =\frac{\frac{1}{2} n\binom{2 n}{n}(P(k, p) Q(k, p))^{n-1} \frac{1}{2} k\binom{2 k}{k}(p q)^{k-1}}{\frac{1}{2} n k\binom{2 n k}{n k}(p q)^{n k-1}} \\
& =\frac{1}{2} \frac{\binom{2 n}{n}\binom{2 k}{k}(P(k, p) Q(k, p))^{n-1}}{\binom{2 n k}{n k}(p q)^{k(n-1)}}, \quad .5 \leq p<1 . \tag{6}
\end{align*}
$$

Substituting from Lemma 2, we have

$$
r_{n, k}(p)=\frac{1}{2} \frac{\binom{2 n}{n}\binom{2 k}{k}}{\binom{2 k}{n k}}\left(\sum_{i=0}^{k-1} a_{k, i}(p q)^{i}\right)^{n-1},
$$

where $a_{k, i}=\frac{1}{2}\binom{2 k}{k}\binom{2 i}{i} \frac{k}{k+i}$.
Since $a_{k, i}>0$, and $p q$ is a decreasing function of p, it follows that $r_{n, k}(p)$ is a decreasing function of p.

Lemma 5. If $2 \leq t \leq m$, then

$$
4^{t} \frac{\binom{2 m-2 t}{m-t}}{\binom{2 m}{m}} \frac{2 m-t}{m}>2
$$

Proof. For $t=2$, the left hand side of Lemma 5 reduces to

$$
\frac{8(m-1)^{2}}{(2 m-1)(2 m-3)}=2+\frac{2}{(2 m-1)(2 m-3)}
$$

which is clearly greater than 2 when $m \geq 2$. We show by induction that Lemma 5 holds for all t. Suppose it is true for some t, and consider the left hand side of Lemma 5 with t replaced by $t+1$. We have,

$$
\begin{aligned}
4^{t+1} \frac{\binom{2 m-2 t-2}{m-t-1}}{\binom{2 m}{m}} \frac{2 m-t-1}{m} & =4\left(4^{t} \frac{\binom{2 m-2 t}{m-t}}{\binom{2 m}{m}} \frac{2 m-t}{m}\right) \frac{(m-t)^{2}}{(2 m-2 t-1)(2 m-2 t)} \frac{2 m-t-1}{2 m-t} \\
& >\frac{4(m-t)(2 m-t-1)}{(2 m-2 t-1)(2 m-t)}
\end{aligned}
$$

The right hand side of the inequality is greater than 2 when $m>t$ since

$$
\frac{4(m-t)(2 m-t-1)}{(2 m-2 t-1)(2 m-t)}=2+\frac{2 t}{(2 m-2 t-1)(2 m-t)}
$$

When $m=t$, and $t \geq 2$, it is shown easily by induction that $\frac{4^{t}}{\binom{2 t}{t}}>2$.

Lemma 6. If $n \geq 2$ and $k \geq 2$, then $r_{n, k}(.5)>1$.
Proof. Noting that $P(k, .5)=Q(k, .5)=.5$, we have from (6),

$$
r_{n, k}(.5)=\frac{1}{2} \frac{\binom{2 n}{n}\binom{2 k}{k}}{\binom{2 n k}{n k}} 4^{(k-1)(n-1)}
$$

Lemma 6 is true for $k=2$, since we have

$$
r_{n, 2}(.5)=34^{n-1} \frac{\binom{2 n}{n}}{\binom{4 n}{2 n}}>1,
$$

and we apply Lemma 5 with $m=2 n$ and $t=n$.
We show by induction that Lemma 6 holds for all k. Suppose it is true for some k, and consider Lemma 6 with k replaced by $k+1$.

$$
\begin{aligned}
r_{n, k+1}(.5) & =\frac{1}{2} \frac{\binom{2 n}{n}\binom{2 k+2}{k+1}}{\binom{n k+2 n}{n k+n}} 4^{k(n-1)} \\
& =4^{n-1}\left(\frac{1}{2} \frac{\binom{2 n}{n}\binom{2 k}{k}}{\binom{2 n k}{n k}} 4^{(k-1)(n-1)}\right) \frac{(2 k+2)(2 k+1)}{(k+1)^{2}} \frac{\binom{2 n k}{n k}}{\binom{2 n k+2 n}{n k+n}} \\
& >\frac{1}{2} 4^{n} \frac{\binom{n k k}{n k}}{\binom{n k+2 n}{n k+n}} \frac{2 k+1}{k+1}>1 .
\end{aligned}
$$

The final inequality is obtained by applying Lemma 5 with $m=n k+n$ and $t=n$.

Theorem 1. If $n \geq 2, k \geq 2$, and $.5<p<1$, then $P(n, k, p)>P(n k, p)$.
Proof. We have $P(n, k, .5)=P(n k, .5)=.5$, and $P(n, k, 1)=P(n k, 1)=1$.

If there existed a point $p_{1}, .5<p_{1}<1$, such that $P\left(n, k, p_{1}\right)=P\left(n k, p_{1}\right)$, then $r_{n, k}(p)=$ $\frac{P^{\prime}(n, k, p)}{P^{\prime}(n k, p)}$ would need to be 1 at least twice, once on the interval $.5<p<p_{1}$ and once on the interval $p_{1}<p<1$ (since $r_{n, k}(p)$ cannot be greater than 1 (or less than 1) over the
full extent of either interval). But $r_{n, k}(p)$ cannot be 1 at least twice because we know from Lemma 4 that $r_{n, k}(p)$ is a decreasing function of p. Hence, either $P(n, k, p)>P(n k, p)$, or $P(n k, p)>P(n, k, p)$, on the interval $.5<p<1$. Since we know from Lemma 6 that $r_{n, k}(.5)>1$, we must have $P(n, k, p)>P(n k, p)$ over that same range.

Lemma 7. Let

$$
f(n, x)=\sum_{i=0}^{n-1} a_{n, i} x^{i}
$$

If the function

$$
h(n, k, x)=(n-1) f(n, x) f^{\prime}(k, x)-(k-1) f(k, x) f^{\prime}(n, x)
$$

has at most one positive zero, then the functions $P(n, k, p)$ and $P(k, n, p)$ cannot intersect on the interval $.5<p<1$.

Proof. Let

$$
R_{n, k}(p)=\frac{P^{\prime}(n, k, p)}{P^{\prime}(k, n, p)}
$$

Looking at the proof of Lemma 4 we see that

$$
R_{n, k}(p)=\frac{\frac{1}{2} n\binom{2 n}{n}(P(k, p) Q(k, p))^{n-1} \frac{1}{2} k\binom{2 k}{k}(p q)^{k-1}}{\frac{1}{2} k\binom{2 k}{k}(P(n, p) Q(n, p))^{k-1} \frac{1}{2} n\binom{2 n}{n}(p q)^{n-1}} .
$$

Substituting from Lemma 2, and simplifying, we have

$$
R_{n, k}(p)=\frac{f(k, p q)^{n-1}}{f(n, p q)^{k-1}}, \quad .5 \leq p<1
$$

Following the simple argument made in the the proof of Theorem 1, if $P(n, k, p)$ and $P(k, n, p)$ intersected on $.5<p<1, R_{n, k}(p)$ would equal 1 at least twice on that interval. Furthermore, since $f(n, .25)=4^{n-1}$ and $f(k, .25)=4^{k-1}$ (see Lemma 2 with $p=.5$ and $p q=.25), R_{n, k}(.25)=1$. Hence, there would be at least three different values of $p q$ for which $R_{n, k}(p)=1$.

Therefore, the logarithm of $R_{n, k}(p)$ would equal 0 at least three times, and the derivative of that logarithm with respect to $p q$ would equal 0 at least twice. The derivative of the logarithm of $R_{n, k}(p)$ with respect to $p q$ is equal to

$$
\frac{h(n, k, p q)}{f(n, p q) f(k, p q)}
$$

proving the Lemma.

Lemma 8. Let $\left\{a_{i}\right\}_{1}^{n}$ be a sequence such that $a_{1}<0, \sum_{i=1}^{n} a_{i} \leq 0$ and such that either

Case 1: $a_{i} \leq 0$ if $2 \leq i \leq n$, or
Case 2: there exists $a t \leq n$ such that $a_{i} \leq 0$ if $2 \leq i<t$, and $a_{i}>0$ if $i \geq t$.
holds.
Let $\left\{r_{i}\right\}_{1}^{n}$ be a sequence such that for all $i, r_{i}>0$ and $r_{i+1}<r_{i}$.
Then $\sum_{i=1}^{n} r_{i} a_{i}<0$.
Proof. The Lemma is obvious for Case 1.
For Case 2, $\sum_{i=1}^{n} r_{i} a_{i}-\sum_{i=1}^{n} r_{t} a_{i}<0$, since $\left(r_{1}-r_{t}\right) a_{1}$ is negative, and if $i>1, r_{i}-r_{t}$ is positive when a_{i} is negative or zero, and zero or negative when a_{i} is positive. Hence,

$$
\sum_{i=1}^{n} r_{i} a_{i}<\sum_{i=1}^{n} r_{t} a_{i} \leq 0
$$

Lemma 9. Each of the ratios $\frac{a_{n, t}}{a_{n, t-1}}$ and $\frac{a_{n+1, t}}{a_{n, t-1}}$ decreases as t decreases. Proof.

$$
\frac{a_{n, t}}{a_{n, t-1}}-\frac{a_{n, t-1}}{a_{n, t-2}}=\frac{2\left(1+n^{2}+2 n(t-1)+t(3 t-5)\right)}{t(t-1)(n+t-1)(n+t)}
$$

which is positive for $t \geq 2$ and $n \geq 3$.

$$
\frac{a_{n+1, t}}{a_{n, t-1}}-\frac{a_{n+1, t-1}}{a_{n, t-2}}=\frac{4(2 n+1)(n(n-1)+2 n t+t(5 t-7))}{(t-1) \operatorname{tn}(n+t)(n+1+t)},
$$

which is positive for $t \geq 2$ and $n \geq 3$.

We note that, as defined, the quantity $R_{n, k}(1)$ is indeterminate. We take $R_{n, k}(1)$ to mean $\lim _{p \rightarrow 1} R_{n, k}(p)$.

Lemma 10. If $1<k<n$ then $R_{n, k}(1)<1$.

Proof. Noting that $p q=0$ when $p=1$,

$$
R_{n, k}(1)=\frac{f(k, 0)^{n-1}}{f(n, 0)^{k-1}}=\frac{a_{k, 0}^{n-1}}{a_{n, 0}^{k-1}}=\frac{\left(\frac{1}{2}\binom{2 k}{k}\right)^{n-1}}{\left(\frac{1}{2}\binom{2 n}{n}\right)^{k-1}}
$$

Let $u_{n, k}=\frac{R_{n+1, k}(1)}{R_{n, k}(1)}=\left(\frac{n+1}{4 n+2}\right)^{k-1} \frac{1}{2}\binom{2 k}{k}$, and

Let $v_{n, k}=\frac{u_{n, k+1}}{u_{n, k}}=\frac{n+1}{4 n+2} / \frac{k+1}{4 k+2}$
It is assumed in the following that $1<k<n$.
$v_{n, k}<1$, since $n>k$, and the function $\frac{r+1}{4 r+2}$ is a decreasing function of r;
Since $v_{n, k}<1, u_{n, k}$ is a decreasing function of k, and since $u_{n, 1}=1, u_{n, k}<1$;
Since $u_{n, k}<1, R_{n, k}(1)$ is a decreasing function of n, and since $R_{k, k}(1)=1, R_{n, k}(1)<1$.

Theorem 2. If $2 \leq k \leq n$ and $.5<p<1$, then $P(n, k, p)>P(k, n, p)$.
Proof. The $h(n, k, x)$ of Lemma 7 can be written as

$$
h(n, k, x)=(n-1) \sum_{i=0}^{n-1} a_{n, i} x^{i} \sum_{i=0}^{k-1} i a_{k, i} x^{i-1}-(k-1) \sum_{i=0}^{k-1} a_{k, i} x^{i} \sum_{i=0}^{n-1} i a_{n, i} x^{i-1}=\sum_{r=0}^{n+k-3} c_{n, k, r} x^{r} .
$$

We show that $h(n, k, x)$ has at most one positive zero by showing that the sequence $\left\{c_{n, k, r}\right\}_{r=0}^{n+k-3}$ has exactly one change in sign, and applying Descartes' Rule of Signs.

We do this by considering four cases,
Case 1: $0 \leq r \leq k-2$. We show that $c_{n, k, r}>0$.
Case 2: $k-1 \leq r \leq n-2$. We show that if $c_{n, k, r} \leq 0$, then $c_{n, k, r+1}<0$.
Case 3: $n-1 \leq r \leq n+k-4$. We show that $c_{n, k, r}<0$.
Case 4: $r=n+k-3$. We show that $c_{n, k, r}=0$.
Case 1: $0 \leq r \leq k-2$.

$$
c_{n, k, r}=\sum_{j=0}^{r+1}((n-1) j-(k-1)(r+1-j)) a_{k, j} a_{n, r+1-j} .
$$

We see that $c_{n, k, r}$ is an increasing function of n, since the bracketed term in $c_{n, k, r}$ is an increasing funtion of n, and

$$
\frac{a_{n+1, t}}{a_{n, t}}=1+\frac{3 n^{2}+n+2 t+3 n t}{n(n+t+1)}>1
$$

Since $c_{k, k, r}=0, c_{n, k, r}>0$.
Case 2: $k-1 \leq r \leq n-2$.

$$
c_{n, k, r}=\sum_{j=0}^{k-1}((n-1) j-(k-1)(r+1-j)) a_{k, j} a_{n, r+1-j}
$$

Let

$$
b(n, k, r, j)=((n-1) j-(k-1)(r+2-j)) a_{k, j} a_{n, r+1-j}
$$

so that

$$
c_{n, k, r+1}=\sum_{j=0}^{k-1} b(n, k, r, j) \frac{a_{n, r+2-j}}{a_{n, r+1-j}}
$$

We see that $b(n, k, r, 0)<0$, the bracketed term in $b(n, k, r, j)$ increases as j increases, and if $c_{n, k, r} \leq 0$, then $\sum_{j=0}^{k-1} b(n, k, r, j)<0$ (since the bracketed term in $b(n, k, r, j)$ is less than the bracketed term in $c_{n, k, r}$). Furthermore, we know from Lemma 9 that the sequence $\left\{\frac{a_{n, r+2-j}}{a_{n, r+1-j}}\right\}$ is decreasing as j increases.

Hence the conditions set forth in Lemma 8 are met, and we have $c_{n, k, r+1}<0$.
Case 3: $n-1 \leq r \leq n+k-4$.
Let $r=n-1+t, \quad 0 \leq t \leq k-3$.

$$
c_{n, k, n-1+t}=\sum_{j=t+1}^{k-1}((n-1) j-(k-1)(n+t-j)) a_{k, j} a_{n, n+t-j} .
$$

Let $b(n, k, t, j)=(n j-(k-1)(n+1+t-j)) a_{k, j} a_{n, n+t-j}$, so that

$$
c_{n+1, k, n+t}=\sum_{j=t+1}^{k-1} b(n, k, t, j) \frac{a_{n+1, n+1+t-j}}{a_{n, n+t-j}} .
$$

We see that $b(n, k, t, t+1)=(n(t-(k-2))) a_{k, j} a_{n, n-1}<0$, the bracketed term in $b(n, k, t, j)$ increases as j increases, and if $c_{n, k, n-1+t}<0$, then $\sum_{j=t+1}^{k-1} b(n, k, t, j)<0$ (since the bracketed term in $b(n, k, t, j)$ is less than or equal to the bracketed term in $\left.c_{n, k, n-1+t}\right)$. Furthermore, from Lemma 9 we know that the sequence $\left\{\frac{a_{n+1, n+1+t-j}}{a_{n, n+t-j}}\right\}$ is decreasing as j increases.

Hence the conditions set forth in Lemma 8 are met, and we have $c_{n+1, k, n+t}<0$. Since $c_{k, k, k-1+t}=0$, we have for all $n>k, c_{n, k, n-1+t}<0$.

Case 4: $r=n+k-3$.
$c_{n, k, r}=((n-1)(k-1)-(k-1)(n-1)) a_{n, n-1} a_{k, k-1}=0$.

We have proved that $h(n, k, x)$ has at most one positive zero. Hence we know from Lemma 7 that on the interval $.5<p<1, P(n, k, p)$ and $P(k, n, p)$
cannot intersect. From Lemma 10, we know that $\lim _{p \rightarrow 1} \frac{P^{\prime}(n, k, p)}{P^{\prime}(k, n, p)}<1$. Hence, we must have $P(n, k, p)>P(k, n, p)$ on $.5<p<1$.

3 Counterexamples for two conjectured inequalities

Define $\operatorname{Maxpoints}(m, n):=(2 m-1)(2 n-1)$, the maximum number of points possible where the winner is the first player to win $m n$-point games.

Initial examination of numerical values of $P(n, k, p)$ for a wide range of values of n, k and p suggested that the following conjectured inequalities might be universally true and provable (. $5<p<1$):

Conjecture 1. If $\operatorname{Maxpoints}(a, b)>\operatorname{Maxpoints}(c, d)$, then $P(a, b, p)>P(c, d, p)$.
Conjecture 2. If $a b=c d$ and $\min (a, b)>\min (c, d)$, then $P(a, b)>P(c, d)$.
The following computations show that neither of these conjectures is universally true:

$$
\begin{array}{lr}
\operatorname{Maxpoints}(3,2)=15 & P(3,2, .6)=.7617 \cdots \\
\operatorname{Maxpoints}(1,7)=13 & P(7, .6)=.7711 \cdots
\end{array}
$$

$$
\begin{array}{ll}
\min (4,3)=3 & P(4,3, .99)=.999999999999999999670 \cdots \\
\min (6,2)=2 & P(6,2, .99)=.999999999999999999676 \cdots
\end{array}
$$

4 Remark

The integers $a_{k, i}$, which play a significant role in this paper, are the same as the integers $a_{k+i-1, k-1}$ in A033820 of the On-line Encyclopedia of Integer Sequences. They appear in quite different contexts in [1], 2].

References

[1] A. Burstein, Enumeration of words with forbidden patterns, Ph. D. Thesis, U. of Pennsylvania, 1998.
[2] I. Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.

2000 Mathematics Subject Classification: 60C05.

Keywords: games, inequalities, probability, sets.
(Concerned with sequence A033820.)

Received July 29 2003; revised version received November 24 2003. Published in Journal of Integer Sequences, December 62003.

Return to Journal of Integer Sequences home pagd.

