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Abstract

This paper shows the equivalence of various integer functions to the integer sequence

A002620, and to the maximum of the product of certain pairs of combinatorial or graph-

ical invariants. This maximum is the same as the upper bound of the Nordhaus-Gaddum

inequality and related to Turán’s number. The computer algebra program MAPLE is used for

solutions of linear recurrence and differential equations in some of the proofs. Chapter three

of The Encyclopedia of Integer Sequences by Sloane and Plouffe describes the usefulness of

apparently different expressions of an integer sequence.

Define brc, the floor of r, to be the largest integer less than or equal to a real number r, and

dre, the ceiling of r, the smallest integer greater than or equal to r. For manipulations of floor

and ceiling operations, see chapter three of [20], and for graph theory terms see [10, 13, 21].
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Theorem 1.1 For n a positive integer the expressions in the following 29 paragraphs are

equal. (for n = 0 see the comment at the end of this list)

1. The nth term of the infinite sequence 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, . . .

which is sequence A002620 of the The On-Line Encyclopedia of Integer Sequences

(OEIS) [31] without the leading zeros. See the comment at end of this list.
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0, if n even
=
dn+1

2
e

∑

k=1

(2k−1) −
{

0, if n odd

dn+1
2
e, if n even .

7. The coefficient of xn in the power series expansion of x
1−2x+2x3−x4 = x

(1+x)(1−x)3
=

1
(1−x)2

∞∑

k=1

x2k−1. This is the generating function of the sequence.

8. recurrence equations. The nth term of the sequence 〈a(k)〉∞k=1 which is the solution

of any of the following recurrence equations for all positive integers k :

(a) a(k + 1) + a(k) =
(
k+2
2

)
= (k+2)(k+1)

2
with a(1) = 1.

(b) a(k + 2) = a(k) + k + 2 with a(1) = 1, a(2) = 2.

(c) a(k + 3) = a(k + 2) + a(k + 1)− a(k) + 1 with a(1) = 1, a(2) = 2, a(3) = 4.

(d) a(k + 4) = 2a(k + 3) − 2a(k + 1) + a(k) with a(1) = 1, a(2) = 2, a(3) = 4,

a(4) = 6.
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(e) (k + 1)a(k + 2) = 2a(k + 1) + (k + 3)a(k) with a(1) = 1, a(2) = 2.

(f) (k+2)a(k+3) = (k+3)a(k+2)+ (k+2)a(k+1)− (k+3)a(k) with a(1) = 1,

a(2) = 2, a(3) = 4.

9. difference equations. The nth term of the sequence 〈a(k)〉∞k=1 which is the solution

of any of the following difference equations for all positive integers k, where 4a(k) =

a(k + 1)− a(k) and 42a(k) = 4a(k + 1)−4a(k).

(a) 4a(k) = 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . , d k+1
2
e, . . . and with a(1) = 1. This difference

sequence is like the sequence A004526 of OEIS [31].

(b) 42a(k) =
{
1, if k odd
0, if k even with a(1) = 4a(1) = 1.

(c) 4a(k + 1) +4a(k) = k + 2 with a(1) = 4a(1) = 1.

(d) 4a(k + 2) = 4a(k) + 1 with a(1) = 4a(1) = 1,4a(2) = 2.

(e) 42a(k + 1) +42a(k) = 1 with a(1) = 4a(1) = 42a(1) = 1.

(f) 43a(k) + 242a(k) = 1 with a(1) = 4a(1) = 42a(1) = 1.

10. differential equations.

(a) The coefficient of xn−1 in the power series expansion of the solution F (x) of the

differential equation: (1− x2)
dF
dx (x) = 2(1 + 2x)F (x) with F (0) = 1.

The coefficient of xn in the power series expansion of the solution F (x) of any of the

following differential equations:

(b) (1− x2)
dF
dx (x) = (4 + 3x− 2x2 + x3)F (x) + 1 with F (0) = 0.

(c) (1− x2)
d2F
dx2

(x) = (4+ 5x− 2x2+ x3)
dF
dx (x) + (3− 4x+3x2)F (x) with F (0) = 0,

dF
dx (0) = 1.

The coefficient of xn+1 in the power series expansion of the solution F (x) of any of

the following differential equations:

(d) (1− x2)
dF
dx (x) = (6 + 2x− 4x2 + 2x3)F (x) + 2x with F (0) = 0.

(e) x(1− x2)
d2F
dx2

(x) = (1 + 6x+ 3x2 − 4x3 + 2x4)
dF
dx (x) + (−6− 4x2 + 4x3)F (x)

with F (0) = 0 and
d2F
d2x

(0) = 2. (or
dF
dx (−2) =

−4
27
,
dF
dx (2) =

28
9
)

11. Max
k∈{1,...,n}

k · (n− k + 1).
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12. Max
A∈Part(1..n)

|A| · Max
A∈A

|A| where Part(1..n) is the collection of set partitions of the set

{1, . . . , n}, |A| is the number of blocks, and Max
A∈A

|A| is the size of the largest block of

partition A.

13. Max
α∈perm(n)

i(α)·d(α) where perm(n) is the set of permutations of {1, . . . , n}, i(α) is the

length of the longest increasing subsequence and d(α) the longest decreasing subsequence

of permutation α. See [30].

14. Max
p∈S(n)

max(p) · len(p) where S(n) is the set of compositions or partitions of n (the

sequences, with or without regard to order, of positive integers which sum to n), max(p)

is the size of the largest part, and len(p) is the number of parts of p. See chapter 6

of [29].

15. Max
P∈ppart(n)

#rows(P ) ·#cols(P ) where ppart(n) is the set of plane partitions or Young

tableaux of n. See [8, p.217], [35, p.81], [17] and [30].

16. Max
G∈graph(n)

χ(G) ·χ(G) where graph(n) is the set of simple graphs on n vertices, χ(G)

is the chromatic number and G the complement of graph G.

17. Max
G∈graph(n)

ω(G)·ω(G) where graph(n) is the set of simple graphs on n vertices, ω(G) =

ω(G) is the independence number and ω(G) is the clique number of graph G.

18. Max
G∈graph(n)

(1+∆(G)) · γ(G) where ∆(G) is the size of the largest degree of the vertices

and γ(G) is the domination number of the simple graph G. (γ is the smallest size set

of vertices of G, such that every vertex is in the set or adjacent to it.)

19. Max
u∈Ωn

f(u) ·g(u) where 〈Ωk〉
∞
k=1 is a sequence of finite sets and for each positive integer

k, there are functions f and g from Ωk to {1, . . . , k} such that for all u ∈ Ωk, f(u) +

g(u) ≤ k+1, and there exist w ∈ Ωk, such that f(w)+g(w) = k+1 and |f(w)−g(w)| ≤

1.

Note that this is a generalization of the above items 11 to 18, which are special cases;

see section 2 below.

20. The number of graphs with multiple edges and loops on two vertices and n− 1 edges.

21. The number of connected bipartite graphs with part sizes n and 2. See Gordon Royle,

/www.cs.uwa.edu.au/~gordon/

22. The number of (noncongruent) integer-sided triangles with largest side n. See [22, 23]
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23. The value of f(n) where f is the solution of the functional equation f(m+ k)− f(m−

k) = k(m+ 1) for positive integers k < m, and f(1) = 1, f(2) = 2.

24. The nth term of the row 3 (and column 3) of Losanitsch’s array.

Losanitsch’s array, values of L(r, c) from [32]

r\ c 1 2 3 4 5 6 7 8 9 10 11 seq. no. in OEIS [31]

1 1 1 1 1 1 1 1 1 1 1 1 . . . A000012

2 1 1 2 2 3 3 4 4 5 5 6 . . . A004526

3 1 2 4 6 9 12 16 20 25 30 36 . . . A002620

4 1 2 6 10 19 28 44 60 85 110 146 . . . A005993

5 1 3 9 19 38 66 110 170 255 365 511 . . . A005994

6 1 3 12 28 66 126 236 396 651 1001 1512 . . . A005995

L(r, c) = L(r, c− 1) +L(r− 1, c)−
{
((r+c)/2

c/2 ), if both r, c even

0, otherwise
and L(1, c) = L(r, 1) = 1 for all

r, c positive integers.

25. 1 + |An| where An =
{
{i, j} ⊆ {1, . . . , n} | i 6= j and n ≤ i+ j

}

this is one more than the sum for n ≤ m ≤ 2n − 1 of the number of partitions of m

with two distinct parts from {1, . . . , n}.

26. The sum of the nth row of the following array.

n\ k 1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 1 2 1

4 1 2 2 1

5 1 2 3 2 1

6 1 2 3 3 2 1

7 1 2 3 4 3 2 1

8 1 2 3 4 4 3 2 1

9 1 2 3 4 5 4 3 2 1

27. One more than the sum for n ≤ m ≤ 2n− 1 of the number of partitions of m with two

parts minus n− 1 choose 2 = 1+
2n−1∑

m=n

⌊
m− 1

2

⌋

−

(
n− 1

2

)

= 1+
2n−1∑

m=n

⌊m

2

⌋

−

⌊n

2

⌋

−

(
n− 1

2

)

,

= 1 +
n−1∑

i=0

⌊
n− 1 + i

2

⌋

−

(
n− 1

2

)

= 1 +
n−1∑

i=0

⌈
n− 2 + i

2

⌉

−

(
n− 1

2

)

,
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=







ff (n) + n, if n odd

ff (n), if n even
where ff (n) = (n+ bn/2c)bn/2c −

(
n
2

)
,

=







fc(n)− n, if n odd

fc(n), if n even
where fc(n) = (n+ dn/2e)dn/2e −

(
n
2

)
.

28. Turán’s number for triangles in a graph on n + 1 vertices = the maximum number of

edges of a graph on n+1 vertices which has no triangles =
(
n+1
2

)
−
(
bn+1

2
c

2

)
−
(
bn+2

2
c

2

)
=

(
n+1
2

)
−
(
dn

2
e
2

)
−
(
dn+1

2
e

2

)
=
(
bn+2

2
c

2

)
+
(
bn+3

2
c

2

)
=
(
dn+1

2
e

2

)
+
(
dn+2

2
e

2

)
=
(
bn+2

2
c

2

)
+
(
dn+2

2
e

2

)
.

29. Max
u∈[0,1]n+1

∑

1≤i<j≤n+1

|ui−uj| where [0, 1]n+1 is the collection of sequences of real numbers

from the interval [0, 1] of length n+ 1. This is problem 97 of [4].

Other expressions. In OEIS [31] for this sequence, there is a reference to probability [16],

and in [14] the Encyclopedia of Combinatorial Structures 105 there is a combinatorial struc-

ture for this sequence. In [9] this sequence counts orbits of permutation groups. The inverse

image of diagonals (±i,±i) under the spiral function of [20, Exercise 40, p.99] is sequence

A002620.

Comment. For all of the expressions in theorem 1.1, it could be argued (or defined) that

they are zero for n = 0. In the OEIS [31] this sequence is preceded by two zeros. One reason

for this may be that the lower triangular matrix given by the method of [18] for A002620

has a simpler form when this input sequence has at least two leading zeros. See [27] for more

recent work on this method.

2 Antagonistic functions

Two integer functions which satisfy the conditions of item 19 of the main theorem, are

antagonistic in the sense that, in general, they are not both too large at the same time.

Definition 2.1 Let n be a positive integer, Ω a finite set, then f and g are (upper) antago-

nistic on Ω of order n if

1. f and g are functions from Ω to {1, . . . , n},

2. for any u ∈ Ω, f(u) + g(u) ≤ n+ 1,

3. Max
u∈Ω

f(u) · g(u) =
⌊(

n+1
2

)2
⌋

.

This is related to the upper bound of the Nordhaus-Gaddum inequality [26]; see [15].

Examples of antagonistic functions are in items 11 to 18 of the main theorem. In this paper,

only upper antagonistic functions are considered [34].
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2.1 Examples which are not antagonistic

A. Let Ωn = graph(n), the simple graphs on n vertices. Let f(G) = ω(G), the independence

number of graph G, and g(G) = 1+b 1
n

∑n
v=1 deg(v)c. If n = 6, f and g are not antagonistic,

because the graph G on 6 vertices which is the complement of K4, has ω(G) = 4 and

1 + b1
6

∑6
v=1 deg(v)c = 1 + b18

6
c = 4. Thus f(G) + g(G) > n+ 1 and the definition fails.

B. Let Ωn = {1, . . . , n}, f(i) = i and g(i) = dn
i
e for 1 ≤ i ≤ n. If 5 ≤ n, f and g are not

antagonistic, since Max
i∈{1..n}

f(i)·g(i) <
⌊(

n+1
2

)2
⌋

and the definition fails.

2.2 Properties of antagonistic functions

Proposition 2.2 Let n be a positive integer, Ω a finite set, f and g functions from Ω to

{1, . . . , n}, such that for every u ∈ Ω, f(u) + g(u) ≤ n+ 1, then

f and g are antagonistic of order n if and only if there is a w ∈ Ω such that
⌊(

n+1
2

)2
⌋

≤

f(w) · g(w).

Proof There exists w ∈ Ω such that f(w) ·g(w) ≥
⌊(

n+1
2

)2
⌋

is the same as Max
u∈Ω

f(u)·g(u) ≥
⌊(

n+1
2

)2
⌋

and the opposite inequality follows from the AM-GM inequality ab ≤
⌊(

a+b
2

)2
⌋

and the assumption f(u) + g(u) ≤ n+ 1. ¤

Lemma 2.3 Let i and j be positive integers, then |i− j| ≤ 1 ⇐⇒
⌊
(i+j)2

4

⌋

≤ i·j

Proof. Let i and j be positive integers, |i − j| ≤ 1 ⇐⇒ (i − j)2 ≤ 1 ⇐⇒ (i − j)2 <

4 ⇐⇒ (i+ j)2 < 4(ij + 1) ⇐⇒ (i+j)2

4
− 1 < ij ⇐⇒ b (i+j)

2

4
c ≤ ij, for the last implication

see [20, p.69]. ¤

Fact 2.4 The function m 7→ bm
2

4
c on the positive integers is

1. strictly increasing and thus is one-to-one, and

2. bm
2

4
c ≤ bn

2

4
c =⇒ m ≤ n for all m and n positive integers.

Lemma 2.5 Let n be a positive integer, Ω a finite set, f and g functions from Ω to

{1, . . . , n}, such that for every u ∈ Ω, f(u) + g(u) ≤ n+ 1, then for every w ∈ Ω,
⌊
(n+1)2

4

⌋

≤ f(w) · g(w) if and only if f(w) + g(w) = n+ 1 and |f(w)− g(w)| ≤ 1.

Proof. (⇒ left part) By AM-GM,
⌊
(n+1)2

4

⌋

≤ f(w) · g(w) ⇒
⌊
(n+1)2

4

⌋

≤
⌊
(f(w)+g(w))2

4

⌋

⇒

n+ 1 ≤ f(w) + g(w) the last by fact 2.4, and since f(w) + g(w) ≤ n+ 1 by assumption, we

get f(w) + g(w) = n+ 1.
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(right part) f(w)+g(w) ≤ n+1 and
⌊
(n+1)2

4

⌋

≤ f(w)·g(w)⇒
⌊
(f(w)+g(w))2

4

⌋

≤ f(w)·g(w)⇒

|f(w)− g(w)| ≤ 1 by lemma 2.3. ¤

Proof. (⇐) (this is used several times in the following proof of the main theorem) By

lemma 2.3 |f(w)− g(w)| ≤ 1⇒
⌊
(f(w)+g(w))2

4

⌋

≤ f(w) · g(w), but since f(w) + g(w) = n+ 1

we get
⌊
(n+1)2

4

⌋

≤ f(w) · g(w). ¤

In summary we have the following.

Proposition 2.6 (Characterization of antagonistic functions) Let n be a positive in-

teger, Ω a finite set, and f and g functions from Ω to {1, . . . , n} such that f(u)+g(u) ≤ n+1

for all u ∈ Ω, then f and g are antagonistic of order n on Ω if and only if there exists w ∈ Ω

such that f(w) + g(w) = n+ 1 and |f(w)− g(w)| ≤ 1.

Note that, |f(w) − g(w)| ≤ 1 can be replaced by |f(w) − g(w)| =
{
0, if n odd
1, if n even and those

w ∈ Ω for which the maximum is achieved are exactly those which satisfy the right hand

conditions.

Fact 2.7 Let A and B be finite sets, f a function from A onto B, G a mapping from B to

R and for all a ∈ A, let F (a) = G(f(a)), then Max
a∈A

F (a) = Max
b∈B

G(b) and Min
a∈A

F (a) =

Min
b∈B

G(b).

In items 13 to 17, of the theorem Ω is a complemented lattice. It would be interesting

to study those functions f from Ω to {1, . . . , n} such that f and f are antagonistic, where

f(u) = f(u).

Please send to the author other examples of these functions. (There are more in graph

theory, consider upper domination Γ, irredundance IR [12], and CO-irredundance COIR [11]

numbers)

We could count those elements which achieve the maximum in items 11 to 18 of the main

theorem. Note, we must define when two elements are different.

• For items 14, the count is 1, 2, 1, 2, 1, 2, 1, 2, 1 · · · =
{
1, if n odd
2, if n even which is sequence

A000034.

• For items 11, the count is 1, 2, 2, 6, 8, . . .

• For item 16, the count is 1, 2, 2, 6, 8, . . .

• For item 17, the count is 1, 2, 2, 6, 7, . . .

• For item 18, the count is 1, 2, 2, 5, 4, . . .
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3 Proof of the theorem

Most of the expressions involving floors and ceilings in the theorem may be shown to be

equal to item 2 by setting n = 2k and n = 2k− 1 and manipulating the resulting algebraic

expression. Such examples are items 3, 4, 5, 6, 27, and 28. This is how many of these

expressions were found.

• (1 = 2) From the pattern of the sequence in item 1, the 2k − 1th term is k2 and the 2kth

term is k2 + k.

• (2) use
{
0, if n odd
1, if n even =

1−(−1)n

2
for the last equality.

• (2 = 3) If n is odd, (n+1)
2

4
=
⌊
(n+1)2

4

⌋

since 4 divides (n+ 1)2 and if n is even (= 2k), then

(n+1)2−1
4

= (2k+1)2−1
4

= k2 + k =
⌊
k2 + k + 1

4

⌋
=
⌊
(2k+1)2

4

⌋

=
⌊
(n+1)2

4

⌋

.

• (2 = 4) if n even (n = 2k), then
⌊
n+1
2

⌋
·
⌈
n+1
2

⌉
=

⌊
k + 1

2

⌋
·
⌈
k + 1

2

⌉
= k(k + 1) and if n is

odd (= 2k − 1), then
⌊
n+1
2

⌋
·
⌈
n+1
2

⌉
= k2.

• (4) The expressions in this item are shown to equal by using dm
2
e = bm+1

2
c, dm

2
e− bm

2
c =

{
1, if m odd
0, if m even and d

m+1
2
e = dm

2
e+

{
0, if m odd
1, if m even from chapter 3 of [20].

• (4 = 5) item 5 =
∑n

k=1d
k
2
e = 2

(
∑dn/2e

k=1 k
)

−
{
dn/2e, if n odd
0, if n even

= dn
2
e
(
dn
2
e+ 1

)
−

{
dn/2e, if n odd
0, if n even

= dn
2
e
(

dn
2
e+

{
0, if n odd
1, if n even

)

= item 4.

• (4 = 6) Use m = bm
2
c+ dm

2
e.

• (6) In the last line:

For n = 2m,
∑n

k=bn+2
2
c 2k − n =

∑2m
k=m+1 2k − 2m =

∑m
i=1 2i =

∑2m
k=m+1 2k − 2m =

∑n
k=dn+1

2
e 2k − n.

For n = 2m− 1,
∑n

k=bn+2
2
c 2k−n =

∑2m−1
k=m 2k−2m+1 =

∑m
i=1 2i−1 =

∑2m−1
k=m 2k−2m+1 =

∑n
k=dn+1

2
e 2k−n.

• (7 = (8a, . . . , 8d))

Use rsolve of Maple V Release 5 (or Maple 7) with generating function option as follows.
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> 8(a) rsolve({f(n+1)+f(n)=(n+2)*(n+1)/2, f(1)=1}, f,’genfunc’(x)):factor(%);

−
x

(−1 + x)3 (1 + x)

> 8(b) rsolve({f(n+2) = f(n)+n+2, f(1)=1,f(2)=2}, f,’genfunc’(x)):factor(%);

−
x

(−1 + x)3 (1 + x)

> 8(c) rsolve({f(n+3) =

f(n+2)+f(n+1)-f(n)+1, f(1)=1,f(2)=2,f(3)=4}, f, ’genfunc’(x)):factor(%);

−
x

(−1 + x)3 (1 + x)

> 8(d) rsolve({f(n+4) =

2*f(n+3)-2*f(n+1)+f(n), f(1)=1,f(2)=2,f(3)=4,f(4)=6},

f,’genfunc’(x)):factor(%);

−
x

(−1 + x)3 (1 + x)

The generating function option of rsolve is only valid for constant coefficients equations.

• (2 = 8) Use rsolve of Maple V Release 5 (or Maple 7) as follows.

> 8(a) rsolve({f(n+1)+f(n)=(n+2)*(n+1)/2, f(1)=1}, f):simplify(%);
1

8
(−1)(n+1) +

1

4
n2 +

1

2
n +

1

8
> 8(b) rsolve({f(n+2) = f(n)+n+2, f(1)=1,f(2)=2}, f):simplify(%);

1

8
(−1)(n+1) +

1

4
n2 +

1

2
n +

1

8
> 8(c) rsolve({f(n+3) = f(n+2)+f(n+1)-f(n)+1, f(1)=1,f(2)=2,f(3)=4}, f):

simplify(%);
1

8
(−1)(n+1) +

1

2
n +

1

8
+

1

4
n2

> 8(d)

rsolve({f(n+4) = 2*f(n+3)-2*f(n+1)+f(n), f(1)=1,f(2)=2,f(3)=4,f(4)=6},

f):simplify(%);
1

8
(−1)(n+1) +

1

4
n2 +

1

2
n +

1

8
> 8(e) rsolve({(n+1)*f(n+2) = 2*f(n+1)+(n+3)*f(n), f(1)=1,f(0)=0},

f):simplify(%);
1

8
(−1)(n+1) +

1

4
n2 +

1

2
n +

1

8
> 8(f) rsolve({(n+2)*f(n+3)=

(n+3)*f(n+2)+(n+2)*f(n+1)-(n+3)*f(n), f(2)=2,f(1) = 1, f(0) = 0},f);

−
1

8
(−1)n +

1

8
+

1

2
n +

1

4
n2

• (8) Using rectohomrec from the Maple V Release 5 share package gfun, 8a gives 8e, 8b

gives 8f and 8c gives 8d.

• (5 = 9a) sum of difference, see [24].
• (7 = 9a) the generating function of the sequence in item 9a is x

(1−x)(1−x2)
=

1
(1−x)

∞∑

k=1

x2k−1 =
∞∑

k=1

dk+1
2
exk.
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• (8 = 9) Easy to show 8b=9c and 8c=9d.

• (9) These are shown to be equal by simple manipulations of differences; see [24].

• (7 = 10) Show (using Maple) that the generating function satisfies the differential equation.

• (7 = 10) Use dsolve of Maple V Release 5 (or Maple 7) as follows.

> 10(a) ode1:=(1-x2)*diff(F(x),x)=2*(1+2*x)*F(x);

ode1 := (1− x2) ( ∂∂x F(x)) = 2 (1 + 2x) F(x)

> dsolve({ode1,F(0)=1},F(x)); F(x) = −
1

(x + 1) (x− 1)3

> 10(b) ode2:=(1-x2)*diff(F(x),x)=1+(4+3*x-2*x2+x3)*F(x);

ode2 := (1− x2) ( ∂∂x F(x)) = 1 + (4 + 3x− 2x2 + x3) F(x)

> simplify(dsolve({ode2,F(0)=0},F(x))); F(x) = −
x

(x + 1) (x− 1)3

> 10(c) ode3:=(1-x2)*diff(F(x),x,x)=(4+5*x-2*x2+x3)*diff(F(x),x)+(3-4*x+3*x2)*F(x);

ode3 := (1−x2) ( ∂
2

∂x2 F(x)) = (4+5x−2x2+x3) ( ∂∂x F(x))+(3−4x+3x2) F(x)

> dsolve({ode3,F(0)=0,D(F)(0)=1},F(x)); F(x) = −
x

(x + 1) (x− 1)3

> 10(d) ode4:=(1-x2)*diff(F(x),x)=2x+(6+2*x-4*x2+2*x3)*F(x);

ode4 := (1− x2) ( ∂
2

∂x2 F(x)) = 2x + (6 + 2x− 4x2 + 2x3) F(x)

> dsolve({ode4,F(0)=0},F(x)); F(x) = −
x2

(x + 1) (x− 1)3

> 10(e) ode5:=x*(1-x2)*diff(F(x),x,x)=(1+6*x+3*x2-4*x3+2x4)*F(x)+(-6-4x2+4x3)*F(x);

ode5 := x(1−x2) ( ∂
2

∂x2 F(x)) = (1+6x+3x2−4x3+2x4)( ∂∂x F(x))+(−6−4x2+4x3) F(x)

> dsolve({ode5,F(0)=0,D(D(F))(0)=2},F(x)); F(x) = −
x2

(x + 1) (x− 1)3

• (1 = 10) listtodiffeq from Maple V R5 share package gfun was used to get 10a, 10b

and 10d.

• (10) Using diffeqtohomdiffeq from Maple V Release 5 share package gfun, 10b gives

10c and 10d gives 10e.

• (4 = 11) A quadratic f(x) = ax2 + bx + c with integer coefficients and a negative has

its maximum value at x = b−b
2a
c and x = d−b

2a
e. So item 11 = Max

k∈{1..n}
−k2 + (n + 1)k =

(n + 1 − bn+1
2
c)bn+1

2
c = dn+1

2
ebn+1

2
c = item 4, since m − bm

2
c = bm

2
c+

{
1, if n odd
0, if n even = dm

2
e.

Similarly for x = dn+1
2
e.

• (11 = 12) Since item 12 = Max
A∈Part(1..n)

|A| ·Max
A∈A

|A| = Max
m∈{1..n}

m Max
A∈Partm(1..n)

Max
A∈A

|A| =

Max
m∈{1..n}

m(n −m + 1) = item 11, where Partm(1..n) are the set partitions of {1..n} with m

blocks.

• (13 = 15) The Robinson-Schensted-Knuth algorithm [8, p.218], [35, p.94] gives a bijection

between permutations of {1, . . . , n} and ordered pairs of Young tableaux of n of the same

shape, where the number of rows of the tableaux is the length of the longest increasing

subsequence of the permutation and the number of columns is length of the longest decreasing
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subsequence.

The RSK algorithm as used in C. C. Rousseau’s Partitions and q-series in combinatorics

course at the University of Memphis in spring 2000.

Algorithm 3.1: RSK(n, 〈ai〉
n
i=1)

INPUT: n, a positive integer

INPUT: (ai)
n
i=1, a permutation of {1..n}

OUTPUT: (P,Q), a pair of standard Young tableaux of order n

and both of the same shape

P [ , ] := ∅, Q[ , ] := ∅ comment: these are empty 2D arrays

for p := 1 to n

do







b := ap

r := 1

while row r is not empty and b is not greater than the last cell in row r of P

do







c := Min{j | b ≤ P (r, j)}

swap(b, P (r, c))

r := r + 1

comment: add a new cell at end of row r of P and Q
c := 1 + the number of cells in row r

P (r, c) := b

Q(r, c) := p

return (P,Q)

For a partition of n, a, the #rows(shapeRSK(n, a) = the size of longest increasing sub-

sequence of a and #cols(shapeRSK(n, a) = the size of longest decreasing subsequence of

a.
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The inverse of the RSK algorithm.

Algorithm 3.2: iRSK(n, 〈P,Q〉)

INPUT: n, a positive integer

INPUT: (P,Q), a pair of standard Young tableaux of order n

and both of the same shape

OUTPUT: (ai)
n
i=1, a permutation of {1..n}

for p := n downto 1

do







(r, c) := find the row and column of the value of p in array Q

b := P (r, c)

delete cell (r, c) of P

while r 6= 1 do







r := r − 1

comment: in row r of P put b in the correct spot
and pass back the bumped value as b

c := Max{j | P (r, j) < b}

swap(b, P (r, c))

ap := b

return ((ai)
n
i=1)

For P,Q StdYoungTab of n with the same shape, then iRSK(n, (P,Q))−1 = iRSK(n, (Q,P ))

• (12 = 14) Use fact 2.7.

• (14) use fact 2.7 to show that compositions and partitions of n give the same result.

• (4 = 14) The partitions (bn+1
2
c, 1, . . . , 1
︸ ︷︷ ︸

dn−1
2
e 1’s

) and (dn+1
2
e, 1, . . . , 1
︸ ︷︷ ︸

bn−1
2
c 1’s

) are (the only) partitions of n

which achieve the maximum value since bn+1
2
c+ dn−1

2
e = n and dn+1

2
e+ bn−1

2
c = n and they

are equal if n is odd. But for the first partition, max·len = bn+1
2
c ·

(
dn−1

2
e+ 1

)
= item 4,

and for the second max·len = dn+1
2
e ·

(
bn−1

2
c+ 1

)
= item 4.

• (14 = 15) Use fact 2.7.

• (4 = 16) It is known that χ(G) + χ(G) ≤ n + 1 for any graph G with n vertices [26], [10,

p. 232]. Now if G = Kdn+1
2
e ] (n − dn+1

2
e)K1, then χ(G) = χ(Kdn+1

2
e) = dn+1

2
e and

χ(G) = χ(Kn −Kdn+1
2
e) = n+ 1− dn+1

2
e = bn+1

2
c. Now proposition 2.6.

• (3 = 17) Let G = (n−dn
2
e)·K1]Kdn

2
e, then ω(G) = dn

2
e and, since n = dn

2
e+ bn

2
c, ω(G) =

bn
2
c+1, so ω(G)−ω(G) = 1− (dn

2
e−bn

2
c) =

{
0, if n odd
1, if n even . We also have ω(H)+ω(H) ≤ n+1

for every H ∈ graph(n), so use proposition 2.6.

• (4 = 18) It is known that 1 + ∆(G) + γ(G) ≤ n + 1 for any graph G with n vertices [5,

p. 304]. Let G = dn−1
2
e·K1 ] K1,bn−1

2
c, then 1 + ∆(G) = 1 + bn−1

2
c = bn+1

2
c and γ(G) =

1 + dn−1
2
e = dn+1

2
e. note that |V (G)| = dn−1

2
e+ bn−1

2
c+ 1 = n.

• (3 = 19) See proposition 2.6.
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• (5 = 20) The number of graphs with only m loops on two vertices is equal to the number

of partitions of m with at most two parts (= bm+2
2
c). Of the n−1 edges if k ∈ {1, . . . , n−1}

are between vertices, there are then bn−1−k+2
2

c graphs with the remaining edges. Hence the

total number of graphs is
∑n−1

k=0b
n−1−k+2

2
c =

∑n−1
k=0b

k+2
2
c which is item 5.

• (6 = 22) From the following table of the triangles with largest side n, we see that the total

number of triangles is
bn−1

2
c

∑

k=0

(n−2k) which is item 6. n sides of triangle

1 111

2 222 221

3 333 332 331 , 322

4 444 443 442 441 , 433 432

5 555 554 553 552 551 , 544 543 542 , 533
Note the strict triangular inequality will be satisfied for integer sided triangles.

• (1 = 22) See [22].

• (9c = 23) Let k = 1 in 23, see [2].

• (9a = 24) From the definition of the Losanitsch number following the table of values of

L(r, c), we have L(3, c + 1) − L(3, c) = L(2, c + 1) = 1, 2, 2, 3, 3, 4, 4, . . . and L(2, 1) = 1,

which is item 9a.

• (25 = 26) an,k =
{

1, if k = 1
|{U∈An|min(U)=k−1}|, if k 6= 1

, where an,k is the values of the array in item 26,

and An is as in item 25. (this is how the array in item 26 was found)

• (2 = 26) If n is even item 26 = 2
∑n

2
k=1 k = n

2
(n
2
+ 1) = item 2. If n is odd item 26

= 2
∑n−1

2
k=1 k +

n+1
2

= n−1
2
(n−1
2

+ 1) + n+1
2

= item 2.

• (2 = 27) Let n = 2k and = 2k − 1. See chapter 6 of [29] for partitions.

• (28) use: if n = 2k then bn+1
2
c = dn

2
e = k, bn+2

2
c = dn+1

2
e = k + 1, and bn+3

2
c = dn+2

2
e =

k + 1.

if n = 2k+1 then bn+1
2
c = dn

2
e = k+1, bn+2

2
c = dn+1

2
e = k+1, and bn+3

2
c = dn+2

2
e = k+2.

• (4 = 28) Let s = 3 and m = n+ 1 in Turán’s theorem.

Every graph on m vertices not containing a complete graph of s vertices, Ks, has at most

ex(m;K
(2)
s ) vertices.

Proposition 3.1 (Turán[1, 25]) Let 2 ≤ m, s be positive integers, then the following are

equal.

1.
(
m
2

)
−

s−2∑

i=0

(
bm+i
s−1
c

2

)

, see [6, p.294],[7, p.54]

2.
∑

0≤i<j<s−1

⌊
m+ i

s− 1

⌋

·

⌊
m+ j

s− 1

⌋

, see [6, 294],[19, p.1234]

3. (s−2)(m2−k2)
2(s−1)

+
(
k
2

)
where k = mod (m, s− 1) = m− (s− 1)b m

s−1
c, see [21, p.18]
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4. ex(m;K
(2)
s ) := the maximum number of 2-sets (edges) of {1, . . . ,m} which have no s

cliques.

ex(m;K
(2)
s ) sequence

s\m 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 2 4 6 9 12 16 20 25 30 36 42 49 56 A002620

4 ↓ 3 5 8 12 16 21 27 33 40 48 56 65 75 A000212

5 ↓ 6 9 13 18 24 30 37 45 54 63 73 84 A033436

6 ↓ 10 14 19 25 32 40 48 57 67 78 90 A033437

7 ↓ 15 20 26 33 41 50 60 70 81 93

8 ↓ 21 27 34 42 51 61 72 84 96

9 ↓ 28 35 43 52 62 73 85 98
The numbers in the diagonal sequence 1, 3, 6, 10, 15, 21, 28, 36, . . . are the triangle num-

bers, sequence A000217 = lim
s→∞

ex(m;K
(2)
s ).

• (6 = 29) See proof in [4, Problem 97].

End of proof of the theorem. gp p

Redundancy in the above illustrates different methods. Some of these methods may

suggest ways to analyze other sequences, see [33, Ch.2].

Using
∑2n−1

k=n

{
0, if k odd
1, if k even = bn

2
c, p2(k) = p∗2(k)+

{
0, if k odd
1, if k even and 25 and 27 of the theorem we

have.

Corollary 3.2 For n a positive integer.

n−1∑

k=0

(p∗2(n+ k)− p∗2(max ≤ n, n+ k)) =
n−1∑

k=0

p∗2(max > n, n+ k) =

(
n− 1

2

)

where p∗2(m) = the number of partitions of m with two distinct parts, and p∗2(max > n,m) =

the number of partitions of m with two distinct parts, the largest part greater than n. See [3,

Ch.12,13,14],[28],[29, Ch.6] for partitions.
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