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Abstract

A new lower bound on the number of n-letter ternary square-free words is presented:
110n/42, which improves the previous best result of 65n/40.

1. Introduction

A word w is a finite sequence of letters from a certain alphabet Σ. The length of a word is
the number of letters of the word. Binary words are the words from a two-letter alphabet {0,
1}, whereas ternary words are from a three-letter alphabet {0, 1, 2}. A word is square-free
if it does not contain two identical consecutive subwords (factors), i.e., w cannot be written
as axxb where a, b, x are words with x non-empty.
It is easy to see that there are only finitely many binary square-free words. However,

there are infinitely many ternary square-free words. The fact was proved by utilizing what is
now called the Prouhet-Thue-Morse sequence (see [10]). Brinkhuis[3], Brandenburg[2] (also
in [1]), Zeilberger[5] and Grimm[8] showed that the numbers of such words of length n are
greater than 2n/24, 2n/21, 2n/17, and 65n/40 respectively. Details on words and related topics
can be found in [6] and [11].
While the best available upper bound has been very close to the estimate as described

later, the available lower bounds still have much room for improvement. Finding better lower
bounds has posed as a algorithmic challenge, as well as a theoretic one. As explained later,
the complexity of the algorithm used here is likely (very) exponential.

2. Brinkhuis Triples

We denote a(n) to be the number of ternary square-free words of length n. It is easy to
see that

a(m+ n) ≤ a(m)a(n) (2.1)
1

mailto:xysun@math.temple.edu


2

for all m, n ≥ 0, which implies (see in [1]) the existence of the limit

s := lim
n→∞

a(n)1/n, (2.2)

which is also called the growth rate or “connective constant” of ternary square-free words.
It is widely believed that the available upper bounds are very close to the actual value

of s. In fact, it has been estimated by Noonan and Zeilberger [7] that s ≈ 1.302 using the
Zinn-Justin method, and they have also proved that s ≤ 1.30201064 by implementing the
Golden-Jackson method.

Definition 1. An n-Brinkhuis k-triple is three sets of words B = {B0, B1, B2}, Bi = {wi
j|1 ≤

j ≤ k}, where wi
j are square-free words of length n, such that for any square-free word i1i2i3,

0 ≤ i1, i2, i3 ≤ 2, and any 1 ≤ j1, j2, j3 ≤ k, the word wi1
j1
wi2

j2
wi3

j3
of length 3n is also square-

free.

Based on an n-Brinkhuis k-triple, we can define the following set of uniformly growing
morphisms:

ρ =











0→ w0
j0
, 1 ≤ j0 ≤ k;

1→ w1
j1
, 1 ≤ j1 ≤ k;

2→ w2
j2
, 1 ≤ j2 ≤ k.

(2.3)

As proven in [2], [4] and [9], ρ are square-free morphisms, i.e., they map each square-free
word of length m onto km different images of square-free words of length nm.
Therefore, the existence of an n-Brinkhuis k-triple indicates that

a(mn)

a(m)
≥ km (2.4)

for any m ≥ 1, which implies

sn−1 = lim
n→∞

(

a(mn)

a(m)

)1/m

≥ k, (2.5)

and thus yields the lower bound of s ≥ k1/(n−1).
Given the permutation τ = (0, 1, 2), we can have

Definition 2. A quasi-special n-Brinkhuis k-triple is an n-Brinkhuis k-triple such that B1 =
τ(B0), B2 = τ(B1).

Definition 3. A special n-Brinkhuis k-triple is a quasi-special n-Brinkhuis k-triple such that
w ∈ B0 implies w ∈ B0, where w is the reversion of w.

Grimm[8] was able to construct a special 41-Brinkhuis 65-triple, hence proved s ≥ 651/40.

3. Main Results

Definition 4. A word w is admissible if (w, τ(w), τ 2(w)) is a quasi-special Brinkhuis 1-triple
by itself.

Definition 5. An optimal quasi-special (special) n-Brinkhuis k-triple is a quasi-special (spe-
cial) n-Brinkhuis k-triple such that any quasi-special (special) n-Brinkhuis l-triple has l ≤ k.
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To find the optimal quasi-special n-Brinkhuis triples, we only need to find the set of all
admissible words of length n, and its largest subset in which any three words w1, w2, w3 can
form a quasi-special n-Brinkhuis 3-triple, i.e., {{w1, w2, w3}, {τ(w1), τ(w2), τ(w3)}, {τ

2(w1),
τ 2(w2), τ

2(w3)}} is a quasi-special n-Brinkhuis 3-triple. A Maple package was written to
calculate such words and sets. The results are listed below.

Proposition 3.1. Special n-Brinkhuis triples yield the best possible results for each 13 ≤
n ≤ 20, and quasi-special Brinkhuis triples do not yield better results than special n-Brinkhuis
triples for each 13 ≤ n ≤ 39, except 37.

n b1 k1 b2 k2

13 1 1 1 1
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 1 1 1 1
18 1 2 1 2
19 1 1 1 1
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 1 3 1 3
24 5 2 3 2
25 1 5 1 5
26 2 2 2 2
27 1 3 1 3
28 4 4 2 4
29 2 6 2 6
30 1 8 1 8
31 4 7 2 7
32 1 8 1 8
33 1 12 1 12
34 33 10 5 10
35 2 18 2 18
36 1 32 1 32
37 66 32 24 31
38 9 28 3 28
39 1 32 1 32
40 2 48
41 8 65
42 4 76
43 2 110

In the table above, n is the length of the words; b1 and k1 are the numbers of all available
optimal quasi-special Brinkhuis triples and the numbers of elements in the triples; b2 and k2

are those of the special Brinkhuis triples. Notice the numbers of the triples and their sizes
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do not always grow as n does, and occasionally there are extraordinary amount of the triples
for certain word lengths, i.e., 34 and 37.
Although there are often more choices for the regular and quasi-special Brinkhuis triples

than the special Brinkhuis triples as listed above, none of them can be combined to form
larger triples. And the exception of n = 37 has hardly any significance because the results
are superceded by the 36-Brinkhuis 32-triples already. These results strongly suggest that
the special Brinkhuis triples will generally yield the best results regardless of n.
It is reasonable to believe that there exist n-Brinkhuis triples that are not quasi-special

when n > 20, or quasi-special n-Brinkhuis triples that are not special when n > 39. However,
as explained in the proof of the following proposition, it is vary hard to find such triples due
to the complexity.

Proposition 3.2. The following 43-Brinkhuis 110-triple exists, and thus shows s ≥ 1101/42 =
1.118419 . . . > 651/40 = 1.109999 . . .:

{ 0120212012102120102012102010212012102120210,

0120212010210120102012102010210120102120210,

0120212010201210212021020120212012102120210,

0120212012102120210201202120121020102120210,

0120210201210120210121020120212012102120210,

0120212012102120210201210120210121020120210,

0120210201210120102120210120212012102120210,

0120212012102120210120212010210121020120210,

0120210201210120212010210120212012102120210,

0120212012102120210120102120210121020120210,

0120212010201210212010210120212012102120210,

0120212012102120210120102120121020102120210,

0120212010210121021201210120212012102120210,

0120212012102120210121021201210120102120210,

0120212012101201021201210120212012102120210,

0120212012102120210121021201021012102120210,

0120212010210121021202102010212012102120210,

0120212012102120102012021201210120102120210,

0120212012101201021202102010212012102120210,

0120212012102120102012021201021012102120210,

0120212010210120102012102010212012102120210,

0120212012102120102012102010210120102120210,

0120210201210120102012102010212012102120210,

0120212012102120102012102010210121020120210,

0120210201210120212012102010212012102120210,
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0120212012102120102012102120210121020120210,

0120212010201210212012102010212012102120210,

0120212012102120102012102120121020102120210,

0120210201210212021012102010212012102120210,

0120212012102120102012101202120121020120210,

0120212012101201021012102010212012102120210,

0120212012102120102012101201021012102120210,

0120212010201210201021012010212012102120210,

0120212012102120102101201020121020102120210,

0120212010212021020121012010212012102120210,

0120212012102120102101210201202120102120210,

0120212010210121020121012010212012102120210,

0120212012102120102101210201210120102120210,

0120212012101201021202102012021012102120210,

0120212012101202102012021201021012102120210,

0120210201210120212012102012021012102120210,

0120212012101202102012102120210121020120210,

0120212010201210212012102012021012102120210,

0120212012101202102012102120121020102120210,

0120212010210120102120121012021012102120210,

0120212012101202101210212010210120102120210,

0120210201210120102120121012021012102120210,

0120212012101202101210212010210121020120210,

0120212010210120102120210201021012102120210,

0120212012101201020120212010210120102120210,

0120210201210120102120210201021012102120210,

0120212012101201020120212010210121020120210,

0120212010210121021201210201021012102120210,

0120212012101201020121021201210120102120210,

0120212010210120102012021201021012102120210,

0120212012101201021202102010210120102120210,

0120210201210120102012021201021012102120210,

0120212012101201021202102010210121020120210,

0120210201210212021012021201021012102120210,

0120212012101201021202101202120121020120210,

0120210201210120210121021201021012102120210,

0120212012101201021201210120210121020120210,

0120212010210120102012101201021012102120210,

0120212012101201021012102010210120102120210,

0120210201210120212012101201021012102120210,

0120212012101201021012102120210121020120210,

0120212010201210212012101201021012102120210,
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0120212012101201021012102120121020102120210,

0120210201210120212012102012021020102120210,

0120212010201202102012102120210121020120210,

0120212010201210212012102012021020102120210,

0120212010201202102012102120121020102120210,

0120212010210120102120121012021020102120210,

0120212010201202101210212010210120102120210,

0120210201210120102120121012021020102120210,

0120212010201202101210212010210121020120210,

0120210201210212012101201020121020102120210,

0120212010201210201021012102120121020120210,

0120210201210212012101202120121020102120210,

0120212010201210212021012102120121020120210,

0120212010210120102012102120121020102120210,

0120212010201210212012102010210120102120210,

0120210201210212021012102120121020102120210,

0120212010201210212012101202120121020120210,

0120210201210212021020102120121020102120210,

0120212010201210212010201202120121020120210,

0120212010201210120102120210121020102120210,

0120212010201210120212010210121020102120210,

0120210201210212021020120210121020102120210,

0120212010201210120210201202120121020120210,

0120212010210120102120210201202120102120210,

0120212010212021020120212010210120102120210,

0120210201210120102120210201202120102120210,

0120212010212021020120212010210121020120210,

0120212010210121021201210201202120102120210,

0120212010212021020121021201210120102120210,

0120212010210121021202102010210120102120210,

0120212010210120102012021201210120102120210,

0120210201210120102012102010210120102120210,

0120212010210120102012102010210121020120210,

0120210201210120212012102010210120102120210,

0120212010210120102012102120210121020120210,

0120210201210212021012102010210120102120210,

0120212010210120102012101202120121020120210,

0120210201210120102012021201210120102120210,

0120212010210121021202102010210121020120210,

0120210201210212021012021201210120102120210,

0120212010210121021202101202120121020120210,

0120210201210120210121021201210120102120210,

0120212010210121021201210120210121020120210 }

Proof: Each admissible word is of length at least 13 and of the form either 012021 · · · 120210
or 012102 · · · 201210 as proved by Grimm [8]. So we first find all the square-free words of
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length n − 12, attach the two pairs of prefixes and suffixes to these words, then determine
if the results are square-free and admissible words, and label them from 1 to m, where m is
the total number of such words. The next step is to find all quasi-special (special) Brinkhuis
3-triples and replace the words with the labels we just assigned to them. Thus each triple
correspond to a unique ordered list of three different integers, and we have created a set of
lists of integers S. Note that if the square-free words of length n − 12 are known, the rest
of the process above only take polynomial time. Now the problem is reduced to find the
largest subset T of {1, . . . ,m} so that the list of any three elements of T is an element of S.
Such a question is obviously NP, because the certificate will be the solution itself, and the
time required to verify the certificate will be O(

(

n
3

)

), thus polynomial. Fortunately, we are
not obliged to tell how long it takes to get the certificate.
We now create a graph G so that each element in S is a vertex of G, and any two vertices

are connected if and only if any combination of three different numbers from the two lists
can form a quasi-special (special) Brinkhuis 3-triple. For example, if [1, 2, 3] and [1, 2, 4] are
vertices of the graph, they can be connected if and only if [1, 3, 4] and [2, 3, 4] are vertices of
the graph too. And in this case, the four vertices will form a complete graph. Now we have
reduced the problem into finding the largest complete subgraph of a graph, which is known
to be NP-complete, in polynomial time. Although what we did does not imply the original
problem to be NP-complete, it does shed some light on how to solve the problem: we will
use the backtracking method to find the largest Brinkhuis triple.
We say a number i is compatible with a list of numbers i1, . . . , in if any three words chosen

from the corresponding words wi, wi1 , . . . , win can form a quasi-special (special) Brinkhuis
3-triple.
Assuming all the numbers in the vertices are ordered increasingly, we try to construct

the largest quasi-special (special) Brinkhuis triples recursively: We start with the pair of
numbers, a1 and a2, who has the largest set of compatible numbers of all pairs of numbers
in {1, . . . ,m}. After we have a list a1, . . . , an−1 such that every three numbers in the list can
form a quasi-special (special) Brinkhuis 3-triple, we try to find an as the number such that
an is compatible with a1, . . . , an−1, and a1, . . . , an has the largest possible set of compatible
numbers. If there is a tie, we choose the smallest possible number. Once we cannot add
another number to the current list of a1, . . . , an, we have found a “locally optimal” Brinkhuis
n-triple. We then backtrack to an−1 and search for the next best choice of an. When all
such choices are analyzed, we backtrack to an−2. We repeat the process until we backtrack
to a1 and a2, when we try the pair of numbers who has the next largest set of compatible
numbers. We will continue until all the possibilities are considered. Of course, we can always
break out of the search if the size of the list of numbers found plus the number of compatible
numbers available is less than the best known size of the triples at the time.
The complexity of searching the largest complete subgraph of n vertices is equivalent to

searching the largest independent set of vertices of the complement of the graph, whose av-
erage rate of growth is subexponential, i.e., O(nlog n). However, the exact amount of labor
required for a specific kind of graphs can be very exponential. Theoretically, we can take ad-
vantage of the special structure of the graphs to increased the performance: if vertices [1, 2, 3]
and [4, 5, 6] are connected, there is automatically a complete subgraph of 20 vertices, namely
any combinations of three numbers from 1 to 6. But such an approach will use recursive
programming, which would have required exponential space and thus is impractical. Unless
we can find other methods to find the lower bound, using Brinkhuis triples cannot provide
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must better results, even with more powerful (multi-processor) computers. Unfortunately,
this is the best method known yet, if not the only one.
The Maple package and the results on optimal Brinkhuis triples are all available at

http://www.math.temple.edu/∼xysun/ternarysf/ternary square free.htm.
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