Computing Igusa's Local Zeta Functions of Univariate Polynomials, and Linear Feedback Shift Registers

W. A. Zuniga-Galindo
Department of Mathematics and Computer Science
Barry University
11300 N. E. Second Avenue
Miami Shores, Florida 33161
USA
Wzuniga@mail.barry.edu

Abstract

We give a polynomial time algorithm for computing the Igusa local zeta function $Z(s, f)$ attached to a polynomial $f(x) \in \mathbb{Z}[x]$, in one variable, with splitting field \mathbb{Q}, and a prime number p. We also propose a new class of linear feedback shift registers based on the computation of Igusa's local zeta function.

1. Introduction

Let $f(x) \in \mathbb{Z}[x], x=\left(x_{1}, \cdots, x_{n}\right)$ be a non-constant polynomial, and p a fixed prime number. We put $N_{m}(f, p)=N_{m}(f)$ for the number of solutions of the congruence $f(x) \equiv 0$ $\bmod p^{m}$ in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}, m \geqq 1$, and $H(t, f)$ for the Poincaré series

$$
H(t, f)=\sum_{m=0}^{\infty} N_{m}(f)\left(p^{-n} t\right)^{m}
$$

with $t \in \mathbb{C},|t|<1$, and $N_{0}(f)=1$. This paper is dedicated to the computation of the sequence $\left\{N_{m}(f)\right\}_{m \geqq 0}$ when f is an univariate polynomial with splitting field \mathbb{Q}.

Igusa showed that the Poincaré series $H(t, f)$ admits a meromorphic continuation to the complex plane as a rational function of t [14], [15]. In this paper we make a first step towards the solution of the following problem: given a polynomial $f(x)$ as above, how difficult is to compute the meromorphic continuation of the Poincaré series $H(t, f)$?

The computation of the Poincaré series $H(t, f)$ is equivalent to the computation of Igusa's local zeta function $Z(s, f)$, attached to f and p, defined as follows. We denote by \mathbb{Q}_{p} the field of p-adic numbers, and by \mathbb{Z}_{p} the ring of p-adic integers. For $x \in \mathbb{Q}_{p}, v_{p}(x)$ denotes
the p-adic order of x, and $|x|_{p}=p^{-v_{p}(x)}$ its absolute value. The Igusa local zeta function associated to f and p is defined as follows:

$$
Z(s, f)=\int_{\mathbb{Z}_{p}^{n}}|f(x)|_{p}^{s}|d x|, \quad s \in \mathbb{C}
$$

where $\operatorname{Re}(s)>0$, and $|d x|$ denotes the Haar measure on \mathbb{Q}_{p}^{n} so normalized that \mathbb{Z}_{p}^{n} has measure 1. The following relation between $Z(s, f)$ and $H(t, f)$ holds (see [14], theorem 8.2.2):

$$
H(t, f)=\frac{1-t Z(s, f)}{1-t}, t=p^{-s}
$$

Thus, the rationality of $Z(s, f)$ implies the rationality of the Poincaré series $H(t, f)$, and the computation of $H(t, f)$ is equivalent to the computation of $Z(s, f)$. Igusa [14, theorem 8.2.1] showed that the local zeta function $Z(s, f)$ admits a meromorphic continuation to the complex plane as a rational function of p^{-s}.

The first result of this paper is a polynomial time algorithm for computing the local zeta function $Z(s, f)$ attached to a polynomial $f(x) \in \mathbb{Z}[x]$, in one variable, with splitting field \mathbb{Q}, and a prime number p. We also give an explicit estimate for its complexity (see algorithm Compute_Z(s,f) in section 2, and theorem (7.1).

Many authors have found explicit formulas for $Z(s, f)$, or $H(f, t)$, for several classes of polynomials, among them [6], [7], [10], [11], [[16] and the references therein], [19, [24], [25. In all these works the computation of $Z(s, f)$, or $H(f, t)$, is reduced to the computation of other problems, as the computation of the number of solutions of polynomial equations with coefficients in a finite field. Currently, there is no polynomial time algorithm solving this problem [23, 22. Moreover, none of the above mentioned works include complexity estimates for the computation of Igusa's local zeta functions.

Of particular importance is Denef's explicit formula for $Z(s, f)$, when f satisfies some generic conditions [6]. This formula involves the numerical data associated to a resolution of singularities of the divisor $f=0$, and the number of rational points of certain non-singular varieties over finite fields. Thus the computation of $Z(s, f)$, for a generic polynomial f, is reduced to the computation of the numerical data associated to a resolution of singularities of the divisor $f=0$, and the number of solutions of non-singular polynomials over finite fields. Currently, it is unknown if these problems can be solved in polynomial time on a Turing machine. However, during the last few years important achievements have been obtained in the computation of resolution of singularities of polynomials [2], [6], 国, [21].

The computation of the Igusa local zeta function for an arbitrary polynomial seems to be an intractable problem on a Turing machine. For example, for $p=2$, the computation of the number of solutions of a polynomial equation with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ is an $\mathbf{N P}$-complete problem on a Turing Machine [9, page 251, problem AN9]. Then in the case of 2 -adic numbers, the computation of the Igusa local zeta function is an NP-complete problem.

Recently, Anshel and Goldfeld have shown the existence of a strong connection between the computation of zeta functions and cryptography [1]. Indeed, they proposed a new class of candidates for one-way functions based on global zeta functions. A one-way function is a function F such that for each x in the domain of F, it is easy to compute $F(x)$; but for essentially all y in the range of F, it is an intractable problem to find an x such that $y=F(x)$. These functions play a central role, from a practical and theoretical point of view, in modern cryptography. Currently, there is no guarantee that one-way functions exist even
if $\mathbf{P} \neq \mathbf{N P}$. Most of the present candidates for one-way functions are constructed on the intractability of problems like integer factorization and discrete logarithms [12]. Recently, P. Shor has introduced a new approach to attack these problems 20. Indeed, Shor have shown that on a quantum computer the integer factorization and discrete logarithm problems can be computed in polynomial time.

We set

$$
\mathcal{H}=\{H(t, f) \mid f(x) \in \mathbb{Z}[x], \text { in one variable, with splitting field } \mathbb{Q}\},
$$

and $N^{\infty}(\mathbb{Z})$ for the set of finite sequences of integers. For each positive integer u and a prime number p, we define

$$
\begin{array}{cccc}
F_{u, p}: & \mathcal{H} & \rightarrow & \mathbb{N}^{\infty}(\mathbb{Z}) \\
H(t, f) & \rightarrow & \left\{N_{0}(f, p), N_{1}(f, p), \cdots, N_{u}(f, p)\right\} .
\end{array}
$$

Our second result asserts that $F_{u, p}(H(t, f))$ can be computed in polynomial time, for every $H(t, f)$ in \mathcal{H} (see theorem 8.1). It seems interesting to study the complexity on a Turing machine of the following problem: given a list of positive integers $\left\{a_{0}, a_{1}, \cdots, a_{u}\right\}$, how difficult is it to determine whether or not there exists a Poincaré series $H(t, f)=$ $\sum_{m=0}^{\infty} N_{m}(f)\left(p^{-1} t\right)^{m}$, such that $a_{i}=N_{i}(f), i=1, \cdots, u$?

Currently, the author does not have any result about the complexity of the above problem, however the mappings $F_{u, p}$ can be considered as new class of stream ciphers (see section 8).

2. The Algorithm Compute_ $Z(s, f)$

In this section we present a polynomial time algorithm, Compute_ $Z(s, f)$, that solves the following problem: given a polynomial $f(x) \in \mathbb{Z}[x]$, in one variable, whose splitting field is \mathbb{Q}, find an explicit expression for the meromorphic continuation of $Z(s, f)$. The algorithm is as follows.

Algorithm Compute_ $Z(s, f)$
Input : A polynomial $f(x) \in \mathbb{Z}[x]$, in one variable, whose splitting field is \mathbb{Q}.
Output: A rational function of p^{-s} that is the meromorphic continuation of $Z(s, f)$.
(1) Factorize $f(x)$ in $\mathbb{Q}[x]: f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x]$.
(2) Compute

$$
l_{f}=\left\{\begin{array}{cc}
1+\max \left\{v_{p}\left(\alpha_{i}-\alpha_{j}\right) \mid i \neq j, 1 \leq i, j \leq r\right\}, & \text { if } r \geqq 2 \\
1, & \text { if } r=1
\end{array}\right.
$$

(3) Compute the p-adic expansions of the numbers $\alpha_{i}, i=1,2, \cdots, r$ modulo $p^{l_{f}+1}$.
(4) Compute the tree $T\left(f, l_{f}\right)$ associated to $f(x)$ and p (for the definition of $T\left(f, l_{f}\right)$ see (4.2)).
(5) Compute the generating function $G\left(s, T\left(f, l_{f}\right), p\right)$ attached to $T\left(f, l_{f}\right)$ (for the definition of $G\left(s, T\left(f, l_{f}\right), p\right)$ see (5.1)).
(6) Return $Z(s, f)=G\left(s, T\left(f, l_{f}\right), p\right)$.
(7) End

In section 6, we shall give a proof of the correctness and a complexity estimate for the algorithm Compute_ $Z(s, f)$. The first step in our algorithm is accomplished by means of the
factoring algorithm by A.K. Lenstra, H. Lenstra and L. Lovász (17. If d_{f} denotes the degree of $f(x)=\sum_{i} a_{i} x^{i}$, and

$$
\|f\|=\sqrt{\sum_{i} a_{i}^{2}}
$$

then the mentioned factoring algorithm needs $O\left(d_{f}^{6}+d_{f}^{9}(\log \|f\|)\right)$ arithmetic operations, and the integers on which these operations are performed each have a binary length

$$
O\left(d_{f}^{3}+d_{f}^{2}(\log \|f\|)\right)
$$

[17, theorem 3.6].
The steps $2,3,4,5$ reduce in polynomial time the computation of $Z(s, f)$ to the computation of a factorization of $f(x)$ over \mathbb{Q}. This reduction is accomplished by constructing a weighted tree from the p-adic expansion of the roots of $f(x)$ modulo a certain power of p (see section 4), and then associating a generating function to this tree (see section 5). Finally, we shall prove that the generating function constructed in this way coincides with the local zeta function of $f(x)$ (see section 5).

3. p-adic Stationary Phase Formula

Our main tool in the effective computing of Igusa's local zeta function of a polynomial in one variable will be the p-adic stationary phase formula, abbreviated SPF [16]. This formula is a recursive procedure for computing local zeta functions. By using this procedure it is possible to compute the local zeta functions for many classes of polynomials [16 and the references therein], [19], [24, [25], [26].

Given a polynomial $f(x) \in \mathbb{Z}_{p}[x] \backslash p \mathbb{Z}_{p}[x]$, we denote by $\overline{f(x)}$ its reduction modulo $p \mathbb{Z}_{p}$, i.e., the polynomial obtained by reducing the coefficients of $f(x)$ modulo $p \mathbb{Z}_{p}$. We define for each $x_{0} \in \mathbb{Z}_{p}$,

$$
f_{x_{0}}(x)=p^{-e_{x_{0}}} f\left(x_{0}+p x\right)
$$

where $e_{x_{0}}$ is the minimum order of p in the coefficients of $f\left(x_{0}+p x\right)$. Thus $f_{x_{0}}(x) \in \mathbb{Z}_{p}[x] \backslash$ $p \mathbb{Z}_{p}[x]$. We shall call the polynomial $f_{x_{0}}(x)$ the dilatation of $f(x)$ at x_{0}. We also define

$$
\begin{gathered}
\nu(\bar{f})=\operatorname{Card}\left\{\bar{z} \in \mathbb{F}_{p} \mid \bar{f}(\bar{z}) \neq 0\right\} \\
\delta(\bar{f})=\operatorname{Card}\left\{\bar{z} \in \mathbb{F}_{p} \mid \bar{z} \text { is a simple root of } \bar{f}(\bar{z})=0\right\}
\end{gathered}
$$

We shall use $\{0,1, \cdots, p-1\} \subseteq \mathbb{Z}_{p}$ as a set of representatives of the elements of $\mathbb{F}_{p}=\mathbb{Z} /$ $p \mathbb{Z}=\{\overline{0}, \overline{1}, \cdots, \overline{p-1}\}$. Let $S=S(f)$ denote the subset of $\{0,1, \cdots, p-1\} \subseteq \mathbb{Z}_{p}$ which is mapped bijectively by the canonical homomorphism $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} / p \mathbb{Z}_{p}$ to the set of roots of $\bar{f}(\bar{z})=0$ with multiplicity greater than or equal to two.

With all the above notation we are able to state the p-adic stationary phase formula for polynomials in one variable.

Proposition 3.1 ($\mathbb{1 4}$, theorem 10.2.1]). Let $f(x) \in \mathbb{Z}_{p}[x] \backslash p \mathbb{Z}_{p}[x]$ be a non-constant polynomial. Then

$$
Z(s, f)=p^{-1} \nu(\bar{f})+\delta(\bar{f}) \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)}+\sum_{\xi \in S} p^{-1-e_{\xi} s} \int_{\mathbb{Z}_{p}}\left|f_{\xi}(x)\right|_{p}^{s} d x
$$

The following example illustrates the use of the p-adic stationary phase formula, and also the basic aspects of our algorithm for computing $Z(s, f)$.
3.1. Example. Let $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)^{3}\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)^{2}\left(x-\alpha_{5}\right)$ be a polynomial such that $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ are integers having the following p-adic expansions:

$$
\begin{aligned}
& \alpha_{1}=a+d p+k p^{2}, \\
& \alpha_{2}=a+d p+l p^{2}, \\
& \alpha_{3}=b+g p+m p^{2}, \\
& \alpha_{4}=c+h p+n p^{2}, \\
& \alpha_{5}=c+h p+r p^{2},
\end{aligned}
$$

where the p-adic digits $a, b, c, d, g, h, l, m, n, r$ belong to $\{0,1, \cdots, p-1\}$. We assume the p-adic digits to be different by pairs. The local zeta function $Z(s, f)$ will be computed by using SPF iteratively.

By applying SPF with $\overline{f(x)}=(x-\bar{a})^{4}(x-\bar{b})(x-\bar{c})^{3}, \nu(\bar{f})=p-3, \delta(\bar{f})=1, S=\{a, c\}$, $f_{a}(x)=p^{-4} f(a+p x)$, and $f_{c}(x)=p^{-3} f(c+p x)$, we obtain that

$$
\begin{align*}
Z(s, f)= & p^{-1}(p-3)+\frac{\left(1-p^{-1}\right) p^{-1-s}}{1-p^{-1-s}}+p^{-1-4 s} \int_{\mathbb{Z}_{p}}\left|f_{a}(x)\right|_{p}^{s}|d x| \\
& +p^{-1-3 s} \int_{\mathbb{Z}_{p}}\left|f_{c}(x)\right|_{p}^{s}|d x| . \tag{3.1}
\end{align*}
$$

We apply SPF to the integrals involving $f_{a}(x)$ and $f_{c}(x)$ in (3.1). First, we consider the integral corresponding to $f_{a}(x)$. Since $\overline{f_{a}(x)}=(x-\bar{d})^{4}(\bar{a}-\bar{b})(\bar{a}-\bar{c})^{3}, S=\{d\}, f_{a, d}(x)=$ $p^{-4} f_{a}(d+p x), \nu\left(\overline{f_{a}}\right)=p-1$, and $\delta\left(\overline{f_{a}}\right)=0$, it follows from (3.1) using SPF that

$$
\begin{align*}
Z(s, f)= & p^{-1}(p-3)+\frac{\left(1-p^{-1}\right) p^{-1-s}}{1-p^{-1-s}}+p^{-1}(p-1) p^{-1-4 s} \\
& +p^{-2-8 s} \int_{\mathbb{Z}_{p}}\left|f_{a, d}(x)\right|_{p}^{s}|d x|+p^{-1-3 s} \int_{\mathbb{Z}_{p}}\left|f_{c}(x)\right|_{p}^{s}|d x| \tag{3.2}
\end{align*}
$$

Now, we apply SPF to the integral involving $f_{c}(x)$ in (3.2). Since $\overline{f_{c}(x)}=(\bar{c}-\bar{a})^{4}(\bar{c}-\bar{b})(x-\bar{h})^{3}$, $S=\{h\}, f_{c, h}(x)=p^{-3} f_{c}(h+p x), \nu\left(\overline{f_{c}}\right)=p-1$, and $\delta\left(\overline{f_{c}}\right)=0$, it follows from (3.2) using SPF that

$$
\begin{align*}
Z(s, f)= & p^{-1}(p-3)+\frac{\left(1-p^{-1}\right) p^{-1-s}}{1-p^{-1-s}}+p^{-1}(p-1) p^{-1-4 s} \\
& +p^{-2-8 s} \int_{\mathbb{Z}_{p}}\left|f_{a, d}(x)\right|_{p}^{s}|d x|+p^{-1}(p-1) p^{-1-3 s} \\
& +p^{-2-6 s} \int_{\mathbb{Z}_{p}}\left|f_{c, h}(x)\right|_{p}^{s}|d x| . \tag{3.3}
\end{align*}
$$

By applying SPF to the integral involving $f_{a, d}(x)$ in ($\overline{3.3}$), with $\overline{f_{a, d}(x)}=(x-\bar{k})(x-\bar{l})^{3}(\bar{d}-$ $\bar{b})(\bar{d}-\bar{c})^{3}, S=\{k, l\}, f_{a, d, k}(x)=p^{-1} f_{a, d}(k+p x),\left|f_{a, d, k}(x)\right|_{p}^{s}=|x|_{p}^{s}, f_{a, d, l}(x)=p^{-3} f_{a, d}(l+p x)$, $\left|f_{a, d, l}(x)\right|_{p}^{s}=|x|_{p}^{3 s}, \nu\left(\overline{f_{a, d}}\right)=p-2$, and $\delta\left(\overline{f_{a, d}}\right)=1$, we obtain that

$$
\begin{align*}
Z(s, f)= & p^{-1}(p-3)+\frac{\left(1-p^{-1}\right) p^{-1-s}}{1-p^{-1-s}}+p^{-1}(p-1) p^{-1-4 s} \\
& +p^{-1}(p-1) p^{-1-3 s}+p^{-1}(p-2) p^{-2-8 s}+\frac{\left(1-p^{-1}\right) p^{-3-9 s}}{1-p^{-1-s}} \\
& +\frac{\left(1-p^{-1}\right) p^{-3-11 s}}{1-p^{-1-3 s}}+p^{-2-6 s} \int_{\mathbb{Z}_{p}}\left|f_{c, h}(x)\right|_{p}^{s}|d x| . \tag{3.4}
\end{align*}
$$

Finally, by applying SPF to the integral involving $f_{c, h}(x)$ in (3.4), we obtain that

$$
\begin{align*}
Z(s, f)= & p^{-1}(p-3)+\frac{\left(1-p^{-1}\right) p^{-1-s}}{1-p^{-1-s}}+p^{-1}(p-1) p^{-1-4 s} \\
& +p^{-1}(p-1) p^{-1-3 s}+p^{-1}(p-2) p^{-2-8 s}+\frac{\left(1-p^{-1}\right) p^{-3-9 s}}{1-p^{-1-s}} \\
& +\frac{\left(1-p^{-1}\right) p^{-3-11 s}}{1-p^{-1-3 s}}+p^{-1}(p-2) p^{-2-6 s}+\frac{\left(1-p^{-1}\right) p^{-3-7 s}}{1-p^{-1-s}} \\
& +\frac{\left(1-p^{-1}\right) p^{-3-8 s}}{1-p^{-1-2 s}} . \tag{3.5}
\end{align*}
$$

Remark 3.1. If $\alpha=\frac{a}{b} \in \mathbb{Q}$, and $v_{p}(\alpha)<0$, then

$$
\begin{equation*}
|x-\alpha|_{p}=|\alpha|_{p}, \text { for every } x \in \mathbb{Z}_{p} \tag{3.6}
\end{equation*}
$$

On the other hand, a polynomial of the form

$$
f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x]
$$

can be decomposed as $f(x)=\alpha_{0} f_{-}(x) f_{+}(x)$, where

$$
\begin{equation*}
f_{-}(x)=\prod_{\left\{\alpha_{i} \mid v_{p}\left(\alpha_{i}\right)<0\right\}}\left(x-\alpha_{i}\right)^{e_{i}}, \text { and } f_{+}(x)=\prod_{\left\{\alpha_{i} \mid v_{p}\left(\alpha_{i}\right) \geqq 0\right\}}\left(x-\alpha_{i}\right)^{e_{i}} . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) follow that

$$
Z(s, f)=\left|\alpha_{0} \prod_{\left\{\alpha_{i} \mid v_{p}\left(\alpha_{i}\right)<0\right\}} \alpha_{i}{ }^{e_{i}}\right|_{p}^{s} Z\left(s, f_{+}\right)
$$

Thus, from a computational point of view, we may assume without loss of generality that all roots of $f(x)$ are p-adic integers.

4. Trees and p-adic Numbers

The tree $U=U(p)$ of residue classes modulo powers of a given prime number p is defined as follows. Consider the diagram

$$
\{0\}=\mathbb{Z} / p^{0} \mathbb{Z} \underset{\longleftarrow}{\phi_{1}} \mathbb{Z} / p^{1} \mathbb{Z} \underset{\leftarrow}{\phi_{2}} \mathbb{Z} / p^{2} \mathbb{Z} \phi_{3} \cdots
$$

where ϕ_{l} the are the natural homomorphisms. The vertices of U are the elements of $\mathbb{Z} / p^{l} \mathbb{Z}$, for $l=0,1,2, \cdots$, and the directed edges are $u \rightarrow v$ where $u \in \mathbb{Z} / p^{l} \mathbb{Z}$ and $\phi_{l}(u)=v$, for some $l>0$. Thus U is a rooted tree with root $\{0\}$. Exactly one directed edge emanates from
each vertex of U; except from the vertex $\{0\}$, from which no edge emanates. In addition, every vertex is the end point of exactly p directed edges.

Given two vertices u, v the notation $u>v$ will mean that there is a sequence of vertices and edges of the form

$$
u \rightarrow u^{(1)} \rightarrow \cdots \rightarrow u^{(m)}=v
$$

The notation $u \geqq v$ will mean that $u=v$ or $u>v$. The level $l(u)$ of a vertex u is m if $u \in \mathbb{Z} / p^{m} \mathbb{Z}$. The valence $\operatorname{Val}(u)$ of a vertex u is defined as the number of directed edges whose end point is u.

A subtree, or simply a tree, is defined as a nonempty subset T of vertices of U, such that when $u \in T$ and $u>v$, then $v \in T$. Thus T together with the directed edges $u \rightarrow v$, where $u, v \in T$, is again a tree with root $\{0\}$.

A tree T is named a weighted tree, if there exists a weight function $W: T \rightarrow \mathbb{N}$. The value $W(u)$ is called the weight of vertex u.

If $x \in \mathbb{Z}_{p}$, and x_{l} denotes its residue class modulo p^{l}, then every vertex of U is of the type x_{l} with $l \in \mathbb{N}$.

A stalk is defined as a tree K having at most one vertex at each level. Thus a stalk is either finite, of the type

$$
\{0\} \longleftarrow u^{(1)} \longleftarrow \cdots \longleftarrow u^{(l)},
$$

or infinite, of the type

$$
\{0\} \longleftarrow u^{(1)} \longleftarrow \cdots .
$$

Clearly a finite stalk may be written as

$$
\{0\} \longleftarrow x_{1} \longleftarrow \cdots \longleftarrow x_{l},
$$

with $x \in \mathbb{Z}$, and infinite stalks as

$$
\{0\} \longleftarrow x_{1} \longleftarrow x_{2} \longleftarrow \cdots,
$$

with $x \in \mathbb{Z}_{p}$. Thus there is a $1-1$ correspondence between infinite stalks and p-adic integers.

4.1. Tree Attached to a Polynomial. Let

$$
\begin{equation*}
f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x] \tag{4.1}
\end{equation*}
$$

be a non-constant polynomial, in one variable, of degree d_{f}, such that $v_{p}\left(\alpha_{i}\right) \geqslant 0, i=$ $1,2, \cdots, r$. We associate to $f(x)$ and a prime number p the integer

$$
l_{f}=\left\{\begin{array}{cc}
1+\max \left\{v_{p}\left(\alpha_{i}-\alpha_{j}\right) \mid i \neq j, 1 \leq i, j \leq r\right\}, & \text { if } r \geqq 2 \\
1, & \text { if } r=1
\end{array}\right.
$$

We set

$$
\alpha_{i}=a_{0, i}+a_{1, i} p+\cdots+a_{j, i} p^{j}+\cdots+a_{l_{f}, i} p^{l_{f}} \bmod p^{l_{f}+1}
$$

$a_{j, i} \in\{0,1, \cdots, p-1\}, j=0,1, \cdots, l_{f}, i=1,2, \cdots, r$, for the p-adic expansion modulo $p^{l_{f}+1}$ of α_{i}. We attach a weighted tree $T\left(f, l_{f}\right)$ to f as follows:

$$
\begin{equation*}
T\left(f, l_{f}, p\right)=T\left(f, l_{f}\right)=\bigcup_{i=1}^{r} K\left(\alpha_{i}, l_{f}\right) \tag{4.2}
\end{equation*}
$$

where $K\left(\alpha_{i}, l_{f}\right)$ denotes the stalk corresponding to the p-adic expansion of α_{i} modulo $p^{l_{f}+1}$. Thus $T\left(f, l_{f}\right)$ is a rooted tree. We introduce a weight function on $T\left(f, l_{f}\right)$, by defining the weight of a vertex u of level m as

$$
W(u)=\left\{\begin{array}{cl}
\sum_{\left\{i \mid \alpha_{i} \equiv u \bmod p^{m}\right\}} e_{i}, & \text { if } m \geqq 1 ; \tag{4.3}\\
0, & \text { if } m=0 .
\end{array}\right.
$$

Given a vertex $u \in T\left(f, l_{f}\right)$, we define the stalk generated by u to be

$$
B_{u}=\left\{v \in T\left(f, l_{f}\right) \mid u \geqq v\right\} .
$$

We associate a weight $W^{*}\left(B_{u}\right)$ to B_{u} as follows:

$$
\begin{equation*}
W^{*}\left(B_{u}\right)=\sum_{v \in B_{u}} W(v) . \tag{4.4}
\end{equation*}
$$

4.2. Computation of Trees Attached to Polynomials. Our next step is to show that a tree $T\left(f, l_{f}\right)$ attached to a polynomial $f(x)$, of type (4.1), can be computed in polynomial time. There are well known programming techniques to construct and manipulate trees and forests (see e.g. [8, Volume 1]), for this reason, we shall focus on showing that such computations can be carry out in polynomial time, and set aside the implementation details of a particular algorithm for this task. We shall include in the computation of $T\left(f, l_{f}\right)$, the computation of the weights of the stalks generated by its vertices; because all these data will be used in the computation of the local zeta function of f.

Proposition 4.1. The computation of a tree $T\left(f, l_{f}\right)$ attached to a polynomial $f(x)$, of type (4.1), from the p-adic expansions modulo $p^{l_{f}+1}$ of its roots

$$
\alpha_{i}=a_{0, i}+a_{1, i} p+\cdots+a_{l_{f}, i} p^{l_{f}} \bmod p^{l_{f}+1}
$$

and multiplicities $e_{i}, i=1,2, \cdots, r$, involves $O\left(l_{f}^{2} d_{f}^{3}\right)$ arithmetic operations on integers with binary length

$$
O\left(\max \left\{\log p, \log \left(l_{f} d_{f}\right)\right\}\right)
$$

Proof. We assume that $T\left(f, l_{f}\right)$ is finite set of the form

$$
\begin{equation*}
T=\left\{\operatorname{Level}_{0}, \cdots, \operatorname{Level}_{j}, \cdots, \operatorname{Level}_{l_{f}+1}\right\} \tag{4.5}
\end{equation*}
$$

where Level $_{j}$ represents the set of all vertices with level j. Each Level ${ }_{j}$ is a set of the form

$$
\text { Level }_{j}=\left\{u_{j, 1}, \cdots, u_{j, i}, \cdots, u_{j, m_{j}}\right\},
$$

and each $u_{j, i}$ is a weighted vertex for every $i=1, \cdots, m_{j}$. A weighted vertex $u_{j, i}$ is a set of the form

$$
u_{j, i}=\left\{W\left(u_{j, i}\right), \operatorname{Val}\left(u_{j, i}\right), W^{*}\left(B_{u_{j, i}}\right)\right\},
$$

where $W\left(u_{j, i}\right)$ is the weight of $u_{j, i}, \operatorname{Val}\left(u_{j, i}\right)$ is its valence, and $W^{*}\left(B_{u i}\right)$ is the weight of stalk $B_{u_{j, i}}$. The weight of the stalk generated by $u_{j, i}$ can be written as

$$
W^{*}\left(B_{u_{j, i}}\right)=\sum_{v \in B_{u_{j, i}}} W(v) .
$$

For the computation of a vertex $u_{j, i}$ of level j, we proceed as follows. We put $I=$ $\{1,2, \cdots, r\}$, and

$$
M_{j}=\left\{\alpha_{i} \bmod p^{j} \mid i \in I\right\}
$$

For each $0 \leq j \leq l_{f}+1$, we compute a partition of I of type

$$
\begin{equation*}
I=\bigcup_{i=1}^{l_{j}} I_{j, i} \tag{4.6}
\end{equation*}
$$

such that

$$
\alpha_{t} \bmod p^{j}=\alpha_{s} \bmod p^{j},
$$

for every $t, s \in I_{j, i}$. Each subset $I_{j, i}$ corresponds to a vertex $u_{j, i}$ of level j. This computation requires $O\left(l_{f} r^{2}\right)$ arithmetic operations on integers with binary length $O(\log p)$. Indeed, the cost of computing a "yes or no" answer for the question: $\alpha_{t} \bmod p^{j}=\alpha_{s} \bmod p^{j}$? is $O(j)$ comparisons of integers with binary length $O(\log p)$. In the worst case, there are r vectors M_{j}, and the computation of partition (4.6), for a fixed j, involves the comparison of α_{t} with α_{l} for $l=t+1, t+2, \cdots, r$. This computation requires $O\left(j r^{2}\right)$ arithmetic operations on integers with binary length $O(\log p)$. Since $j \leqq l_{f}+1$, the computation of partition (4.6) requires $O\left(l_{f} r^{2}\right)$ arithmetic operations on integers with binary length $O(\log p)$.

The weight of the vertex $u_{j, i}$ is given by the expression

$$
W\left(u_{j, i}\right)=\sum_{k \in I_{j, i}} e_{k} .
$$

Thus the computation of the weight of a vertex requires $O(r)$ additions of integers with binary length $O\left(\log d_{f} r\right)$.

For the computation of the valence of $u_{j, i}$, we proceed as follows. The valence of $u_{j, i}$ can be expressed as

$$
\operatorname{Val}\left(u_{j, i}\right)=\operatorname{Card}\left\{I_{j+1, l} \mid I_{j+1, l} \subseteq I_{j, i}\right\}
$$

where $I_{j+1, l}$ runs through all possible sets that correspond to the vertices $u_{j+1, l}$, with level $j+1$. Thus the computation of $\operatorname{Val}\left(u_{j, m}\right)$ involves the computation of a "yes or no" answer for the question $I_{j+1, l} \subseteq I_{j, i}$? The computation of a "yes or no" answer involves $O(r)$ comparisons of integers with binary length $O(\log r)$. Therefore the computation of $\operatorname{Val}\left(u_{j, i}\right)$ involves $O(r)$ comparisons and $O(r)$ additions of integers with binary length $O(\log r)$.

For the computation of the weight of $B_{u_{j, i}}$, we observe that $W^{*}\left(B_{u_{j, i}}\right)$ is given by the formula

$$
W^{*}\left(B_{u_{j, i}}\right)=\sum_{l=0}^{j-1} \sum_{I_{j, i} \subseteq I_{l, k}} W\left(I_{l, k}\right),
$$

where $W\left(I_{l, k}\right)=W\left(v_{l, k}\right)$, and $v_{l, k}$ is the vertex corresponding to $I_{l, k}$. Thus the computation of $W^{*}\left(B_{u_{j, i}}\right)$ involves $O\left(l_{f}\right)$ additions of integers with binary length $O\left(\log \left(l_{f} d_{f}\right)\right)$, and $O\left(l_{f}\right.$ $r)$ comparisons of integers with binary length $O(\log r)$.

From the above reasoning follows that the computation of a vertex of a tree $T\left(f, l_{f}\right)$ involves at most $O\left(l_{f} r^{2}\right)$ arithmetic operations (additions and comparisons) on integers with binary length $O\left(\max \left\{\log p, \log \left(l_{f} d_{f}\right)\right\}\right)$. Finally, since the number of vertices of $T\left(f, l_{f}\right)$ is at most $O\left(l_{f} d_{f}\right)$, it follows that the computation of a tree of type $T\left(f, l_{f}\right)$ involves $O\left(l_{f}^{2} d_{f}^{3}\right)$ arithmetic operations on integers with binary length $O\left(\max \left\{\log p, \log \left(l_{f} d_{f}\right)\right\}\right)$.

5. Generating Functions and Trees

In this section we attach to a weighted tree $T\left(f, l_{f}\right)$ and a prime p a generating function $G\left(s, T\left(f, l_{f}\right), p\right) \in \mathbb{Q}\left(p^{-s}\right)$ defined as follows.

We set

$$
\mathcal{M}_{T\left(f, l_{f}\right)}=\left\{\begin{array}{l|l}
u \in T\left(f, l_{f}\right) & \begin{array}{c}
W(u)=1, \text { and there no exists } v \in T\left(f, l_{f}\right) \\
\text { with } W(v)=1, \text { such that } u>v
\end{array}
\end{array}\right\}
$$

and

$$
L_{u}\left(p^{-s}\right)=\left\{\begin{array}{ccc}
\frac{\left(1-p^{-1}\right) p^{-l(u)-W^{*}\left(B_{u}\right) s}}{\left(1-p^{-1-W(u) s}\right)}, & \text { if } & l(u)=1+l_{f}, \text { and } W(u) \geqq 2 \\
p^{-1}\left(p-\operatorname{Val(u))p^{-l(u)-W^{*}(B_{u})s},},\right. & \text { if } & 0 \leqq l(u) \leqq l_{f}, \text { and } W(u) \neq 1 ; \\
\frac{\left(1-p^{-1}\right) p^{-l(u)-W^{*}\left(B_{u}\right) s}}{1-p^{-1-s}}, & \text { if } & u \in \mathcal{M}_{T\left(f, l_{f}\right)} ; \\
0, \text { if } & W(u)=1, \text { and } u \notin \mathcal{M}_{T\left(f, l_{f}\right)} .
\end{array}\right.
$$

With all the above notation, we define the generating function attached to $T\left(f, l_{f}\right)$ and p as

$$
\begin{equation*}
G\left(s, T\left(f, l_{f}\right), p\right)=\sum_{u \in T\left(f, l_{f}\right)} L_{u}\left(p^{-s}\right) . \tag{5.1}
\end{equation*}
$$

Our next goal is to show that $G\left(s, T\left(f, l_{f}\right), p\right)=Z(s, f)$. The proof of this fact requires the following preliminary result.
Proposition 5.1. The generating function attached to a tree $T\left(f, l_{f}\right)$ and a prime p satisfies

$$
\begin{align*}
G\left(s, T\left(f, l_{f}\right), p\right)= & p^{-1} \nu(\bar{f})+\delta(\bar{f}) \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)} \\
& +\sum_{\xi \in S} p^{-1-e_{\xi} s} G\left(s, T\left(f_{\xi}, l_{f}-1\right), p\right) \tag{5.2}
\end{align*}
$$

Proof. Let $A_{f}=\left\{u \in T\left(f, l_{f}\right) \mid l(u)=1, W(u)=1\right\}$, and $B_{f}=\left\{u \in T\left(f, l_{f}\right) \mid l(u)=1\right.$, $W(u) \geqq 2\}$. We have the following partition for $T\left(f, l_{f}\right)$:

$$
\begin{equation*}
T\left(f, l_{f}\right)=\{0\} \bigcup A_{f} \bigcup\left(\bigcup_{u \in B_{f}} T_{u}\right) \tag{5.3}
\end{equation*}
$$

with

$$
T_{u}=\left\{v \in T\left(f, l_{f}\right) \mid v \geqq u\right\}
$$

Each T_{u} is a rooted tree with root $\{u\}$. From partition (5.3) and the definition of $G\left(s, T\left(f, l_{f}\right), p\right)$, it follows that

$$
\begin{align*}
G\left(s, T\left(f, l_{f}\right), p\right)= & p^{-1}(p-\operatorname{Val}(\{0\}))+\operatorname{Card}\left\{A_{f}\right\} \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)}+ \\
& \sum_{u \in B_{f}} G\left(s, T_{u}\right) \tag{5.4}
\end{align*}
$$

with $G\left(s, T_{u}\right)=\sum_{v \in T_{u}} L_{v}\left(p^{-s}\right)$.
Since there exists a bijective correspondence between the roots of $\bar{f}(x) \equiv 0 \bmod p$ and the vertices of $T\left(f, l_{f}\right)$ with level 1 ,

$$
\begin{equation*}
p-\operatorname{Val}(\{0\})=\nu(\bar{f}), \text { and } \operatorname{Card}\left\{A_{f}\right\}=\delta(\bar{f}) \tag{5.5}
\end{equation*}
$$

Now, if the vertex u corresponds to the root $\bar{f}(\xi) \equiv 0 \bmod p$, then

$$
\begin{equation*}
T_{u}=\left(\bigcup_{\left\{\alpha_{i} \mid \alpha_{i} \equiv \xi \bmod p\right\}} K\left(\alpha_{i}, l_{f}\right)\right) \backslash\{0\} \tag{5.6}
\end{equation*}
$$

On the other hand, we have that

$$
\begin{equation*}
T\left(f_{\xi}, l_{f}-1\right)=\bigcup_{\left\{\alpha_{i} \mid \alpha_{i} \equiv \xi \bmod p\right\}} K\left(\frac{\alpha_{i-\xi}}{p}, l_{f}-1\right) . \tag{5.7}
\end{equation*}
$$

Now we remark that the map $\alpha_{i} \rightarrow \frac{\alpha_{i}-\xi}{p}$ induces a isomorphism between the trees T_{u} and $T\left(f_{\xi}, l_{f}-1\right)$, that preserves the weights of the vertices; and thus we may suppose that T_{u} $=T\left(f_{\xi}, l_{f}-1\right)$. The level function l_{T} of $T\left(f_{\xi}, l_{f}-1\right)$ is related to the level function $l_{T_{u}}$ of T_{u} by means of the equality $l_{T}-l_{T_{u}}=-1$. In addition, $B_{f}=S$, where S is the subset of $\{0,1, \cdots, p-1\} \subseteq \mathbb{Z}_{p}$ whose reduction modulo $p Z_{p}$ is equal to the set of roots of $\bar{f}(\xi)=0$ with multiplicity greater or equal than two. Therefore, it holds that

$$
\begin{equation*}
G\left(s, T_{u}\right)=p^{-1-e_{\xi} s} G\left(s, T\left(f_{\xi}, l_{f}-1\right), p\right) \tag{5.8}
\end{equation*}
$$

The result follows from (5.4) by the identities (5.5) and (5.8).
Lemma 5.1. Let p be a fixed prime number and v_{p} the corresponding p-adic valuation, and

$$
f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x] \backslash \mathbb{Q}
$$

a polynomial such that $v_{p}\left(\alpha_{i}\right) \geqq 0$, for $i=1, \cdots, r$. Then

$$
Z(s, f)=G\left(s, T\left(f, l_{f}\right), p\right)
$$

Proof. We proceed by induction on l_{f}.
Case $l_{f}=1$
If $r=1$ the proof follows immediately, thus we may assume that $r \geqq 2$. Since $l_{f}=1$, it holds that $v_{p}\left(\alpha_{i}-\alpha_{j}\right)=0$, for every i, j, satisfying $i \neq j$, and thus $\overline{\alpha_{i}} \neq \overline{\alpha_{j}}$, if $i \neq j$. By applying SPF, we have that

$$
\begin{equation*}
Z(s, f)=p^{-1} \nu(\bar{f})+\delta(\bar{f}) \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)}+\sum_{\xi \in S} p^{-1-e_{\xi} s} \frac{\left(1-p^{-1}\right)}{\left(1-p^{-1-e_{\xi} s}\right)} \tag{5.9}
\end{equation*}
$$

where each $e_{\xi}=e_{j} \geqq 2$, for some j, and $\alpha_{j}=\xi+p \beta_{j}$.
On the other hand, $T\left(f, l_{f}\right)$ is a rooted tree with r vertices v_{j}, satisfying $l\left(v_{j}\right)=1$, and $W\left(v_{j}\right)=e_{j}$, for $j=1, \cdots, r$. These observations allow one to deduce that $Z(s, f)=$ $G\left(s, T\left(f, l_{f}\right), p\right)$.

By induction hypothesis, we may assume that $Z(s, f)=G\left(s, T\left(f, l_{f}\right), p\right)$, for every polynomial f satisfying both the hypothesis of the lemma, and the condition $1 \leqq l_{f} \leqq k$, $k \in \mathbb{N}$.

Case $l_{f}=k+1, k \in \mathbb{N}$
Let $f(x)$ be a polynomial satisfying the lemma's hypothesis, and $l_{f}=k+1, k \geqq 1$. By applying SPF, we obtain that

$$
\begin{equation*}
Z(s, f)=p^{-1} \nu(\bar{f})+\delta(\bar{f}) \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)}+\sum_{\xi \in S} p^{-1-e_{\xi} s} \int\left|f_{\xi}(x)\right|_{p}^{s} d x \tag{5.10}
\end{equation*}
$$

Now, since $l_{f_{\xi}}=l_{f}-1$, for every $\xi \in S$, it follows from the induction hypothesis applied to each $f_{\xi}(x)$ in (5.10), that

$$
\begin{equation*}
Z(s, f)=p^{-1} \nu(\bar{f})+\delta(\bar{f}) \frac{\left(1-p^{-1}\right) p^{-1-s}}{\left(1-p^{-1-s}\right)}+\sum_{\xi \in S} p^{-1-e_{\xi} s} G\left(s, T\left(f_{\xi}, l_{f}-1\right), p\right) \tag{5.11}
\end{equation*}
$$

Finally, from identity (5.2), and (5.11), we conclude that

$$
\begin{equation*}
Z(s, f)=G\left(s, T\left(f, l_{f}\right), p\right) \tag{5.12}
\end{equation*}
$$

The following proposition gives a complexity estimate for the computation of $G\left(s, T\left(f, l_{f}\right), p\right)$.
Proposition 5.2. The computation of the generating function

$$
G\left(s, T\left(f, l_{f}\right), p\right)
$$

from $T\left(f, l_{f}\right)$, involves $O\left(l_{f} d_{f}\right)$ arithmetic operations on integers with binary length $O(\max \{\log p$, $\left.\left.\log \left(l_{f} d_{f}\right)\right\}\right)$.

Proof. This is a consequence of proposition 4.1, and the definition of generating function.

6. Computation of p-adic Expansions

In this section we estimate the complexity of the steps 2 and 3 in the algorithm Compute_ $Z(s, f)$.

Proposition 6.1. Let

$$
B=\max _{\substack{1, j \leq r \\ i \neq j}}\left\{\left|c_{j, i}\right|,\left|d_{j, i}\right| \quad \left\lvert\, \alpha_{j}-\alpha_{i}=\frac{c_{j, i}}{d_{j, i}}\right., c_{j, i}, d_{j, i} \in \mathbb{Z} \backslash\{0\}\right\}
$$

The computation of the integer l_{f} involves $O\left(d_{f}^{2} \frac{\log B}{\log p}\right)$ arithmetic operations on integers with binary length $O(\max \{\log B, \log p\})$.
Proof. First, we observe that for $c \in \mathbb{Z} \backslash\{0\}$, the computation of $v_{p}(c)$ involves $O\left(\frac{\log |c|}{\log p}\right)$ divisions of integers of binary length $O(\max \{\log |c|, \log p\})$. Thus the computation of $v_{p}\left(\frac{c}{d}\right)=v_{p}(c)-v_{p}(d)$, involves $O\left(\frac{\max \{\log |c|, \log |d|\}}{\log p}\right)$ divisions and subtractions of integers with binary length

$$
O(\max \{\log |c|, \log |d|, \log p\})
$$

From these observations follow that the computation of $v_{p}\left(\alpha_{j}-\alpha_{i}\right), i \neq j, 1 \leq i, j \leq r$, involves $O\left(r^{2} \frac{\log B}{\log p}\right)$ arithmetic operations on integers with binary length $O(\max \{\log B, \log p\})$. Finally, the computation of the maximum of the $v_{p}\left(\alpha_{j}-\alpha_{i}\right), i \neq j, 1 \leq i, j \leq r$, involves $O(\log r)$ comparisons of integers with binary length $O(\max \{\log B, \log p\})$. Therefore the
computation of the integer l_{f} involves at most $O\left(d_{f}^{2} \frac{\log B}{\log p}\right)$ arithmetic operations on integers with binary length $O(\max \{\log B, \log p\})$.

Proposition 6.2. Let p be a fixed prime and $\gamma=\frac{c}{b} \in \mathbb{Q}$, with $c, b \in \mathbb{Z} \backslash\{0\}$, and $v_{p}(\gamma) \geqq 0$. The p-adic expansion

$$
\gamma=a_{0}+a_{1} p+\cdots+a_{j} p^{j}+\cdots+a_{m} p^{m}
$$

modulo p^{m+1} involves $O(m+\log (\max \{|b|, p\}))$ arithmetic operations on integers with binary length $O(\max \{\log |c|, \log |b|, \log p\})$.

Proof. Let $y \in\{1, \cdots, p-1\}$ be an integer such that $y b \equiv 1 \bmod p$. This integer can be computed by means of the Euclidean algorithm in $O(\log (\max \{|b|, p\}))$ arithmetic operations involving integers of binary length $O(\max \{\log |b|, \log p\})$ (cf. [B, Volume 2, section 4.5.2]).

We set $\gamma=\gamma_{0}=\frac{c}{b}, c_{0}=c$, and define $a_{0} \equiv y c \bmod p$. With this notation, the p-adic digits $a_{i}, i=1, \cdots, m$, can be computed recursively as follows:

$$
\begin{gathered}
\gamma_{i}=\frac{\frac{\left(c_{i-1}-a_{i-1} b\right)}{p}}{b}=\frac{c_{i}}{b}, \\
a_{i}=y c_{i} \bmod p .
\end{gathered}
$$

Thus the computation of the p-adic expansion of γ needs $O(m+\log (\max \{|b|, p\}))$ arithmetic operations on integers with binary length

$$
O(\max \{\log |c|, \quad \log |b|, \quad \log p\})
$$

Corollary 6.1. Let p be a fixed prime number and v_{p} the corresponding p-adic valuation, and

$$
f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x]
$$

a non-constant polynomial such that $v_{p}\left(\alpha_{i}\right) \geqq 0, i=1, \cdots, r$. The computation of the p-adic expansions modulo $p^{l_{f}+1}$ of the roots $\alpha_{i}, i=1,2, \cdots, r$, of $f(x)$ involves $O\left(d_{f} l_{f}+d_{f}\right.$ $\log (\max \{B, p\}))$ arithmetic operations on integers with binary length $O(\max \{\log B, \log p\})$.

Proof. The corollary follows directly from the two previous propositions.

7. Computing local zeta functions of polynomials with splitting \mathbb{Q}

In this section we prove the correctness of the algorithm Compute_ $Z(s, f)$ and estimate its complexity.

Theorem 7.1. The algorithm Compute_ $Z(s, f)$ outputs the meromorphic continuation of the Igusa local zeta function $Z(s, f)$ of a polynomial $f(x) \in \mathbb{Z}[x]$, in one variable, with splitting field \mathbb{Q}. The number of arithmetic operations needed by the algorithm is

$$
O\left(d_{f}^{6}+d_{f}^{9} \log (\|f\|)+l_{f}^{2} d_{f}^{3}+d_{f}^{2} \log (\max \{B, p\})\right)
$$

and the integers on which these operations are performed have a binary length

$$
O\left(\max \left\{\log p, \log l_{f} d_{f}, \log B, d_{f}^{3}+d_{f}^{2} \log (\|f\|)\right\}\right) .
$$

Proof. By remark (3.1), we may assume without loss of generality that

$$
f(x)=\alpha_{0} \prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{e_{i}} \in \mathbb{Q}[x] \backslash \mathbb{Q}
$$

with $v_{p}\left(\alpha_{i}\right) \geqq 0, i=1, \cdots, r$. The correctness of the algorithm follows from lemma 5.1. The complexity estimates are obtained as follows: the number of arithmetic operations needed in the steps 2 (cf. proposition 6.1), 3 (cf. corollary 6.1), 4 (cf. proposition 4.1), 5 (proposition 5.2), and 6 is at most

$$
O\left(l_{f}^{2} d_{f}^{3}+d_{f}^{2} \log (\max \{B, p\})\right)
$$

and these operations are performed on integers whose binary length is at most

$$
O\left(\max \left\{\log p, \log l_{f} d_{f}, \log B\right\}\right)
$$

The estimates for the whole algorithm follow from the above estimates and those of the factoring algorithm by A. K. Lenstra, H. Lenstra and L. Lovász (see theorem 3.6 of [17]).

8. Stream Ciphers and Poincaré series

There is a natural connection between Poincaré series and stream ciphers. In order to explain this relation, we recall some basic facts about stream ciphers 18. Let $\mathbb{F}_{p^{n}}$ be a finite field with p^{n} elements, with p a prime number. For any integer $r>0$ and r fixed elements $q_{i} \in \mathbb{F}_{p^{n}}, i=1, \cdots, r$ (called taps), a Linear Feedback Shift Register, abbreviated LFSR, of length r consists of r cells with initial contents $\left\{a_{i} \in \mathbb{F}_{p^{n}} \mid i=1, \cdots, r\right\}$. For any $n \geqslant r$, if the current state is $\left(a_{n-1}, \cdots, a_{n-r}\right)$, then a_{n} is determined by the linear recurrence relation

$$
a_{n}=-\sum_{i=1}^{r} a_{n-i} q_{i} .
$$

The device outputs the rightmost element a_{n-r}, shifts all the cells one unit right, and feeds a_{n} back to the leftmost cell.

Any configuration of the r cells forms a state of the LSFR. If $q_{r} \neq 0$, the following polynomial $q(x) \in \mathbb{F}_{p^{n}}[x]$ of degree r appears in the analysis of LFSRs:

$$
q(x)=q_{0}+q_{1} x+\cdots+q_{r} x^{r} \text { with } q_{0}=-1
$$

This polynomial is called the connection polynomial. An infinite sequence $A=\left\{a_{i} \in \mathbb{F}_{p^{n}} \mid i \in \mathbb{N}\right\}$ has period T if for any $i \geqslant 0, a_{i+T}=a_{i}$. Such a sequence is called periodic. If this is only true for i greater than some index i_{0}, then the sequence is called eventually periodic. The following facts about an LFSR of length r are well-known (18.
(1) There are only finitely many possible states, and the state with all the cells zero will produce a 0 -sequence. The output sequence is eventually periodic and the maximal period is $p^{n r}-1$.
(2) The Poincaré series $g(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ associated with the output sequence is called the generating function of the sequence. It is a rational function over $\mathbb{F}_{p^{n}}$ of the form $g(x)=\frac{L(x)}{R(x)}$, with $L(x), R(X) \in \mathbb{F}_{p^{n}}[x], \operatorname{deg}(R(X))<r$. The output sequence is strictly periodic if and only if $\operatorname{deg}(L(X))<\operatorname{deg}(R(X))$.
(3) There is a one-to-one correspondence between LFSRs of length r with $q_{r} \neq 0$ and rational functions $\frac{L(x)}{R(x)}$ with $\operatorname{deg}(R(X))=r$ and $\operatorname{deg}(L(X))<r$.

We set $\mathbb{F}_{p^{n}}(x)$ for the field of rational functions over $\mathbb{F}_{p^{n}}$, and $N^{\infty}\left(\mathbb{F}_{p^{n}}\right)$ for the set of sequences of the form $\left\{b_{0}, \cdots, b_{u}\right\}, b_{i} \in \mathbb{F}_{p^{n}}, 0 \leq i \leq u, u \in \mathbb{N}$. From the above considerations, it is possible to identify an LFSR with a function $F_{u}, u \in \mathbb{N}$, defined as follows:

$$
\begin{align*}
F_{u}: & \mathbb{F}_{p^{n}}(x) \\
& \rightarrow N^{\infty}\left(\mathbb{F}_{p^{n}}\right) \tag{8.1}\\
& \sum_{i=0}^{\infty} a_{i} x^{i}
\end{align*} \rightarrow\left\{a_{0}, \cdots, a_{u}\right\} .
$$

We set

$$
\mathcal{H}=\{H(t, f) \mid f(x) \in \mathbb{Z}[x], \text { in one variable, with splitting field } \mathbb{Q}\}
$$

and $N^{\infty}(\mathbb{Z})$ for the set of finite sequences of integers. Also, for each $u \in \mathbb{N}$, and a prime number p, we define

$$
\begin{array}{cccc}
F_{u, p}: & \mathcal{H} & \rightarrow & \mathbb{N}^{\infty}(\mathbb{Z}) \tag{8.2}\\
H(t, f) & \rightarrow & \left\{N_{0}(f, p), N_{1}(f, p), \cdots, N_{u}(f, p)\right\} .
\end{array}
$$

Thus the mappings $F_{u, p}$ can be seen as LFSRs, or stream ciphers, over \mathbb{Z}. If we replace each $N_{u}(f, p)$ by its binary representation, then the $F_{u, p}$ are LFSRs. For practical purposes it is necessary that $F_{u, p}$ can be computed efficiently, i.e., in polynomial time. With the above notation our second result is the following.

Theorem 8.1. For every $H(t, f) \in \mathcal{H}$, the computation of $F_{u, p}(H(t, f))$ involves $O\left(u^{2} d_{f} l_{f}\right)$ arithmetic operations, and the integers on which these operations are performed have binary length

$$
O\left(\max \left\{\left(l_{f}+u\right) \log p, \quad \log \left(d_{f} l_{f}\right)\right\}\right) .
$$

The proof of this theorem will be given at the end of this section. This proof requires some preliminary results. We set $t=q^{-s}$, and

$$
Z(s, f)=Z(t, f)=\sum_{m=0}^{\infty} c_{m}(f, p) t^{m}
$$

with $c_{m}(f, p)=\operatorname{vol}\left(\left\{x \in \mathbb{Z}_{p} \mid v_{p}(f(x))=m\right\}\right)$.
Proposition 8.1. Let $f(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be a polynomial in one variable and p a prime number. The following formula holds for $N_{n}(f, p)$:

$$
N_{n}(f, p)=\left\{\begin{array}{cl}
1, & \text { if } n=0 \tag{8.3}\\
p^{n}\left(1-\sum_{j=1}^{n} c_{j-1}(f, p)\right), & \text { if } n \geqslant 1
\end{array}\right.
$$

Proof. The result follows by comparing the coefficient of t^{n} of the series

$$
\sum_{n=0}^{\infty} \frac{N_{n}(f, p)}{p^{n}} t^{n} \quad \text { and } \quad \sum_{n=0}^{\infty} d_{n} t^{n}
$$

in the following equality :

$$
H(t, f)=\sum_{n=0}^{\infty} \frac{N_{n}(f, p)}{p^{n}} t^{n}=\frac{1-t\left(\sum_{m=0}^{\infty} c_{m}(f, p) t^{m}\right)}{1-t}=\sum_{n=0}^{\infty} d_{n} t^{n}
$$

We associate to each $u \in T\left(f, l_{f}\right)$, and $j \in \mathbb{N}$, a rational integer $a_{j}(u)$ defined as follows:

$$
a_{j}(u)=\left\{\begin{array}{ccc}
\frac{(p-1)}{p^{l(u)+1+y(u)}}, \text { if } & l(u)=1+l_{f}, W(u) \geqq 2, j=W^{*}\left(B_{u}\right)+y(u) W(u) \tag{8.4}\\
\frac{(p-V a l(u))}{p^{l(u)+1}}, & \text { if } & 0 \leqq l(u) \leqq l_{f}, W(u) \neq 1, j=W^{*}\left(B_{u}\right) ; \\
\frac{(p-1)}{p^{l(u)+1+y(u)},} \text { if } & u \in \mathcal{M}_{T\left(f, l_{f}\right)}, j=W^{*}\left(B_{u}\right)+y(u) \\
0, & \text { if } & \text { for some } y(u) \in \mathbb{N} ; \\
0, & W(u)=1, \text { and } u \notin \mathcal{M}_{T\left(f, l_{f}\right)} \\
0, & \text { in other cases. }
\end{array}\right.
$$

Proposition 8.2. Let $f(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be a polynomial in one variable, with splitting field \mathbb{Q}, and p a prime number. The following formula holds:

$$
\begin{equation*}
c_{j}(f, p)=\sum_{u \in T\left(f, l_{f}\right)} a_{j}(u), j \geqq 0 \tag{8.5}
\end{equation*}
$$

Proof. As a consequence of lemma (5.1), we have the following identity:

$$
\begin{equation*}
Z(t, f)=\sum_{u \in T\left(f, l_{f}\right)} L_{u}(t) \tag{8.6}
\end{equation*}
$$

with

$$
L_{u}(t)=\left\{\begin{array}{ccc}
\frac{(p-1) T^{*}\left(B_{u}\right)}{p^{l(u)+1}\left(1-p^{-1} t{ }^{W(u)}\right)}, & \text { if } & l(u)=1+l_{f}, W(u) \geqq 2 \tag{8.7}\\
\frac{(p-V a l(u))}{p^{l(u)+1}} t^{W^{*}\left(B_{u}\right)}, & \text { if } & 0 \leqq l(u) \leqq l_{f}, W(u) \neq 1 \\
\frac{(p-1)) W^{*}\left(B_{u}\right)}{p^{l(u)+1}\left(1-p^{-1} t\right)}, & \text { if } & u \in \mathcal{M}_{T\left(f, l_{f}\right)} \\
0, \quad \text { if } & W(u)=1, \text { and } u \notin \mathcal{M}_{T\left(f, l_{f}\right)} .
\end{array}\right.
$$

The result follows by comparing the coefficient of t^{j} in the series $Z(t, f)=\sum_{m=0}^{\infty} c_{m}(f, p) t^{m}$, and $Z(t, f)=\sum_{u \in T\left(f, l_{f}\right)} L_{u}(t)$.

Proposition 8.3. Let $f(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be a polynomial in one variable, with splitting field \mathbb{Q}, and p a prime number.
(1) The computation of $N_{n}(f, p)$, $n \geqq 1$, from the $c_{j-1}(f, p), j=1, \cdots, n$, involves $O(n)$ arithmetic operations on integers with binary length $O(n \log p)$.
(2) The computation of $c_{j}(f, p), j \geqq 0$, from $Z(t, f)$, involves $O\left(d_{f} l_{f}\right)$ arithmetic operations on integers with binary length

$$
O\left(\max \left\{\left(j+l_{f}\right) \log p, \log p, \log \left(d_{f} l_{f}\right)\right\}\right) .
$$

(3) The computation of any $N_{n}(f, p)$, $n \geqq 1$, from $Z(t, f)$, involves $O\left(n d_{f} l_{f}\right)$ arithmetic operations on integers with binary length

$$
O\left(\max \left\{\left(n+l_{f}\right) \log p, \log \left(d_{f} l_{f}\right)\right\}\right)
$$

Proof. (1) By (8.4) and (8.5), $c_{j}(f, p)=\frac{v_{j}}{p^{m_{j}}}, v_{j}, m_{j} \in \mathbb{N}$. In addition,

$$
c_{j-1}(f, p)=p^{-j+1} N_{j-1}(f, p)-p^{-j} N_{j}(f, p) .
$$

Thus $p^{n} c_{j-1}(f, p) \in \mathbb{N}$, for $j=1, \cdots, n$, and $m_{j} \leq n$, for $j=1, \cdots, n$. From (8.3), it follows that

$$
\begin{equation*}
N_{n}(f, p)=p^{n}-\sum_{j=1}^{n} p^{n} c_{j-1}(f, p), n \geqslant 1 \tag{8.8}
\end{equation*}
$$

The above formula implies that the computation of $N_{n}(f, p), n \geqq 1$, from the $c_{j-1}(f, p)$, $j=1, \cdots, n$, involves $O(n)$ arithmetic operations on integers with binary length $O(n \log p)$.
(2) The computation of $a_{j}(u)$ from $L_{u}(t)$ (i.e. from $Z(t, f)$, cf. (8.6)) involves $O(1)$ arithmetic operations (cf. (8.4), (8.7)) on integers of binary length $O\left(\max \left\{\log p, \log \left(d_{f} l_{f}\right)\right\}\right)$. Indeed, since the numbers $l(u), W^{*}\left(B_{u}\right), W(u), u \in T\left(f, l_{f}\right)$ are involved in this computation, we know by proposition 4.1 that their binary length is bounded by $O\left(\max \left\{\log p, \log \left(d_{f} l_{f}\right)\right\}\right)$.

The cost of computing $c_{j}(f, p)$ from $L_{u}(t), u \in T\left(f, l_{f}\right)$ (i.e. from $\left.Z(t, f)\right)$ is bounded by the number of vertices of $T\left(f, l_{f}\right)$ multiplied by an upper bound for the cost of computing $a_{j}(u)$ from $L_{u}(t)$, for any j, and u (cf. (8.5)). Therefore, from the previous discussion the cost of computing $c_{j}(f, p)$ from $Z(t, f)$ is bounded by $O\left(d_{f} l_{f}\right)$ arithmetic operations. These arithmetic operations are performed on integers of binary length bounded by $O(\max \{(j+$ $\left.\left.\left.l_{f}\right) \log p, \log p, \log \left(d_{f} l_{f}\right)\right\}\right)$. Indeed, the binary lengths of the numerator and the denominator of $a_{j}(u)+a_{j}\left(u^{\prime}\right), u, u^{\prime} \in T\left(f, l_{f}\right)$ are bounded by $\left(l_{f}+1+j\right) \log p$ (cf. (8.4)). Thus, the mentioned arithmetic operations for calculating $c_{j}(f, p)$ from $L_{u}(t)$ are performed on integers whose binary length is bounded by $O\left(\max \left\{\left(j+l_{f}\right) \log p, \log p, \log \left(d_{f} l_{f}\right)\right\}\right)$.
(3) The third part follows the first and second parts by (8.8).
8.1. Proof of Theorem 8.1. The theorem follows from proposition 8.3 (3).

9. Acknowledgments.

This work supported by COLCIENCIAS-Grant \# 089-2000.

References

[1] Anshel, M., and Goldfeld, D., Zeta functions, one-way functions and pseudorandom number generators, Duke Math. J. 88 (1997), 371-390.
[2] Bierstone., E., Milman, P., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.
[3] Bodnár, Gábor; Schicho, Josef. A computer program for the resolution of singularities. Resolution of singularities (Obergurgl, 1997), 231-238, Progr. Math., 181, Birkhäuser, Basel, 2000.
[4] Bodnár, G., Schicho, J., Automated resolution of singularities for hypersurfaces, J. Symbolic Comput. 30 (2000), 401-428.
[5] Denef J., Report on Igusa's local zeta function, Séminaire Bourbaki 1990/1991 (730-744) in Astérisque 201-203 (1991), 359-386.
[6] Denef J., On the degree of Igusa's local zeta functions, Amer. Math. J. 109 (1987), 991-1008.
[7] Denef J., Hoornaert Kathleen, Newton polyhedra and Igusa local zeta function, J. Number Theory 89 (2001), 31-64.
[8] Knuth, D., The Art of Computer Programming, 3 volumes, Addison-Wesley, 1999.
[9] Garey, M. R., Johnson, D. S., Computers and Intractability: A Guide to the Theory of NPCompleteness, 1979, W. H. Freeman and Company, New York.
[10] Goldman, Jay R., Numbers of solution of congruences: Poincaré series for strongly nondegenerate forms, Proc. Amer. Math. Soc., 87 (1983), 586-590.
[11] Goldman, Jay R., Numbers of solution of congruences: Poincaré series for algebraic curves, Adv. in Math. 62 (1986), 68-83.
[12] Goldreich, O., Levin, L. A., and Nisan, N., On constructing 1-1 one-way functions, preprint available at http://www.wisdom.weizmann.ac.il/ ~oded/cryptography.html.
[13] Goldreich, O., Krawczyk, H., Luby, M., On the existence of pseudorandom number generators, SIAM J. on Computing, 22 (1993), 1163-1175.
[14] Igusa, Jun-Ichi, An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, v. 14, 2000.
[15] Igusa, J., Complex powers and asymptotic expansions, I J. Reine Angew. Math. 268/269 (1974), 110-130; II, ibid., 278/279 (1975), 357-368.
[16] Igusa, J., A stationary phase formula for p-adic integrals and its applications, in Algebraic Geometry and its Applications, Springer-Verlag (1994), 175-194.
[17] Lenstra, A.K., Lenstra, H.W., Lovász, L., Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534.
[18] Rueppel R., Analysis and Design of Stream Ciphers, Springer-Verlag, New York, 1986.
[19] Saia, M.J., Zuniga-Galindo, W.A., Local zeta functions, Newton polygons and non degeneracy conditions, to appear in Trans. Amer. Math. Soc.
[20] P. Shor, Algorithms for quantum computation, discrete logarithms, and factoring, in Proceedings of 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los alamitos, California, 1994, 124-134.
[21] Villamayor, O., Constructiveness of Hironaka's resolution, Ann. Scient. Ecole Norm. Sup. 4 (1989), 1-32.
[22] von zur Gathen, J., Karpinski, M., Shparlinski, I., Counting curves and their projections, in Proceedings ACM STOC 1993, 805-812.
[23] Daqing Wan, Algorithmic theory of zeta functions over finite fields,to appear in MSRI Computational Number Theory Proceedings.
[24] Zuniga-Galindo W. A., Igusa's local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), 3193-3207.
[25] Zuniga-Galindo W. A., Local zeta functions and Newton polyhedra, to appear in Nagoya Math. J.
[26] Zuniga-Galindo W.A., Local zeta function for non-degenerate homogeneous mappings, preprint 2003.

2000 Mathematics Subject Classification: Primary 11S40, 94A60; Secondary 11Y16, 14GG50.
Key words: Igusa's local zeta function, polynomial time algorithms, one-way functions, linear feedback shift registers.

Received May 3, 2003; revised version received September 25, 2003. Published in Journal of Integer Sequences, October 20, 2003.

Return to Journal of Integer Sequences home page.

