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Abstract. We consider (generalized) matrix coefficients associated to irre-

ducible unitary representations of a simple Lie group G which admit holo-
morphic continuation to a complex semigroup domain S⊆GC . Vanishing

theorems for these analytically continued matrix coefficients, one of Howe-
Moore type and one for cusp forms, are proved.

Introduction

Recall the Howe-Moore Theorem (cf. [9]; see also [18] and [20]) on the vanishing
of matrix coefficients:

Theorem. Let G be a semisimple Lie group with no compact simple factors and
compact center. If (π,H) is a non-trivial irreducible unitary representation of
G , then for all v, w ∈ H one has

lim
g→∞

〈π(g).v, w〉 = 0.

Now, if G happens to be hermitian and (π,H) is a unitary highest weight
representation of G , then it was discovered by Olshanski and Stanton (cf. [16],
[19]) that (π,H) analytically extends to a complex G × G -biinvariant domain
S ⊆ GC . These domains turn out to be complex semigroups, so-called complex
Olshanski semigroups. There is a maximal one Smax which is the compression
semigroup of the bounded symmetric domain G/K ⊆ GC/KCP

+ . Here G ⊆
P−KCP

+ denotes the Harish-Chandra decomposition. Hence one always has
S ⊆ P−KCP

+ . Our interest however lies in the minimal complex Olshanski
semigroup which is given by

Smin = G exp(iWmin)

with Wmin a minimal Ad(G)-invariant closed convex cone in Lie(G) of non-
empty interior. Our first result is (cf. Theorem 2.5):
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Theorem A. (Vanishing at infinity of analytically continued matrix coefficients)
Let G be a linear hermitian group and (πλ,Hλ) a unitary highest weight rep-
resentation of G analytically continued to the minimal complex Olshanski semi-
group Smin . Then for all v, w ∈ Hλ we have that

lim
s→∞
s∈Smin

〈πλ(s).v, w〉 = 0,

i.e, the analytically continued matrix coefficients s 7→ 〈πλ(s).v, w〉 , s ∈ Smin ,
vanish at infinity.

It is interesting to observe that the proof of this theorem relies on geomet-
ric facts only: firstly that the middle projection κ:P−KCP+ → KC restricted to
Smin is a proper mapping (cf. Proposition 1.2) and secondly an explicit descrip-
tion of κ(Smin) (cf. Corollary 2.4). Since G ⊆ Smin is closed, our methods imply
a simple new proof of the Howe-Moore Theorem for the special case of unitary
highest weight representations.

Let now Γ < G be a lattice and η ∈ (H−∞λ )Γ a Γ-invariant distribution
vector for (πλ,Hλ). Then for all K -finite vectors v of (πλ,Hλ) the prescription

θv,η: Γ\G→ C, Γg 7→ 〈πλ(g).v, η〉: = η(πλ(g).v)

defines an automorphic form of Γ\G . One can show that θv,η naturally extends
to a function on Γ\Smin ⊆ Γ\GC . We denote this extension by the same symbol.
Then our next result is (cf. Theorem 3.3):

Theorem B. (Vanishing at infinity of analytically continued automorphic forms)
Let Γ < G be a lattice and η ∈ (H−∞λ ) a cuspidal element for a non-trivial uni-
tary highest weight representation (πλ,Hλ) of the hermitian Lie group G . Then
for all K -finite vectors v of (πλ,Hλ) the analytically continued automorphic
forms θv,η vanish at infinity:

lim
Γs→∞

Γs∈Γ\Smin

θv,η(Γs) = 0.

Theorem B has applications to complex analysis. For example it implies
that the bounded holomorphic functions on Γ\ intSmin separate the points (cf.
[1]).

For G = Sl(2,R) the results in this paper were first proved in the diplome
thesis of the second named author (cf. [17]).

It is our pleasure to thank the referee for his careful work.

1. Preliminaries on hermitian Lie groups

Let g be a real semisimple Lie algebra with Cartan decomposition g = k ⊕ p .
Then g is called hermitian if g is simple and z(k) 6= {0} . Here z(k) denotes the
center of k .
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Hermitian Lie algebras are classified. The complete list is as follows (cf.
[6, p. 518]):

su(p, q), so∗(2n), sp(n,R), so(2, n), e6(−14), e7(−25).

That g is hermitian implies in particular that z(k) = RX0 is one dimen-
sional, and after a renormalization of X0 we can assume that

Spec(adX0) = {−i, 0, i}

(cf. [6, Ch. VIII]). If l is a Lie algebra we denote by lC its complexification. The
spectral decomposition of adX0 then reads as follows

gC = p+ ⊕ kC ⊕ p−

with p± = {X ∈ gC: [X0, X] = ∓iX} . Note that p± are abelian, [kC, p±] ⊆ p±

and pC = p+ ⊕ p− .
We extend z(k) to a compact Cartan subalgebra t of g . We may assume

that t ⊆ k . Let ∆ = ∆(gC, tC) denote the root system with respect to tC . Then

gC = tC ⊕
⊕
α∈∆

gα
C

with gα
C

the root spaces.
A root α ∈ ∆ is called compact if α(X0) = 0 and non-compact otherwise.

The collection of compact roots, resp. non-compact roots, is denoted by ∆k ,
resp. ∆n . Note that ∆ = ∆k∪̇∆n and that α ∈ ∆k if and only if gα

C
⊆ kC and

α ∈ ∆n iff gα
C
⊆ pC .

If ∆+ is a positive system of ∆ we set ∆− = −∆+ , ∆±k = ∆k ∩ ∆±

and ∆±n = ∆k ∩∆± . We can choose ∆+ such that

∆+
n = {α ∈ ∆:α(X0) = −i}.

Note that p± = ⊕α∈∆±n
gα
C

.

If l is a Lie algebra and a < l is a subalgebra of l , then we define
Inng(a): = 〈eadX :X ∈ a〉 .

Define the little Weyl group of (g, t) by Wk: = NInnk(t)/ZInnk(t) . If α ∈ ∆
we write α̌ ∈ it for its coroot, i.e., α̌ ∈ [gα

C
, g−α
C

] ⊆ tC with α(α̌) = 2.

If X is a topological space and Y ⊆ X , then we write clY for the closure
and intY for the interior of Y . If V is a vector space and E ⊆ V , then we
write convE for the convex hull of E and coneE for the convex cone generated
by E .

Define the minimal cone in t by

Cmin: = cl(cone{−iα̌:α ∈ ∆+
n }).
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Note that Cmin is a Wk -invariant convex cone with non-empty interior in t .
Define the minimal cone in g by

Wmin: = cl
(

conv(Inn(g).R+X0)
)
.

Note that Wmin is a convex Inn(g)-invariant cone in g with non-empty interior
and Wmin∩ t = Cmin (cf. [7, Sect. 7]). In the sequel we set W : = intWmin . Then
clW = Wmin .

We write G for a linear connected Lie group with Lie algebra g . Then
G ⊆ GC with GC the universal complexification of G . The prescription

S: = G exp(iW )

defines a subsemigroup of GC , a so-called complex Olshanski semigroup. The
closure of S is given by clS = G exp(i clW ). This is a consequence of Lawson’s
Theorem which states that the polar mapping

G× clW → clS, (g,X) 7→ g exp(iX)

is a homeomorphism (cf. [13] or [15, Th. XI.1.7]).
Write GC → GC, g 7→ g for the complex conjugation of GC with respect

to the real form G . Then the prescription

clS → clS, s = g exp(iX) 7→ s∗: = s−1 = exp(iX)g−1

defines an involution on clS which is antiholomorphic when restricted to the
open subset S of GC .

Write K,KC, P+ and P− for the analytic subgroups of GC correspond-
ing to k, kC, p

+ and p− . A theorem of Harish-Chandra states that the multipli-
cation mapping

P− ×KC × P+ → GC, (p−, k, p+) 7→ p−kp+

is a biholomorphism onto its open image and that G ⊆ P−KCP
+ (cf. [6, Ch.

VIII]). If s ∈ P−KCP
+ , then s = l−(s)κ(s)l+(s) with holomorphic maps

l±:P−KCP+ → P± and κ:P−KCP+ → KC . The Harish-Chandra realization
D ⊆ p− of the hermitian symmetric space G/K is the image of the injective
holomorphic map

ζ:G/K → p−, gK 7→ log l−(g).

Note that D is a bounded symmetric domain (cf. [6, Ch. VIII]). The compression
semigroup of D is defined by

comp(D): = {g ∈ GC: g.D ⊆ D}
= {g ∈ GC: g exp(D)KCP− ⊆ exp(D)KCP−}.

Then the G -biinvariance of comp(D) together with exp(iR+X0) ⊆ comp(D)
imply that

clS ⊆ comp(D).

This was first realized by Olshanski (cf. [16] or [15, Th. XII.3.3]).
The idea behind the following Lemma is not new and can also be found

in [8].
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Lemma 1.1. We have

clS ⊆ exp(D)KCexp(D)

with exp(D) ⊆ P+ the complex conjugate of exp(D) .

Proof. Since clS compresses D , we conclude that

clS ⊆ exp(D)KCP+.

Now cl(S) is ∗ -invariant and so together with D = −D we get that

clS = (clS)∗ ⊆ P−KCexp(D).

Finally

clS ⊆ exp(D)KCP+ ∩ P−KCexp(D) = exp(D)KCexp(D).

Proposition 1.2. The middle projection restricted to clS

κ: clS → KC, s 7→ κ(s)

is a proper mapping.

Proof. Let A ⊆ KC be a compact subset. Then κ−1(A) is closed in clS by
the continuity of κ . By Lemma 1.1 we have that κ−1(A) ⊆ exp(D)Aexp(D) and
the latter set is relatively compact in GC by the boundedness of D . Hence the
assertion follows.

Remark 1.3. There are many other interesting complex Olshanski semigroups
than the one associated to the minimal cone. There is a distinguished maximal
cone Wmax characterized by

Cmax: = Wmax ∩ t = {X ∈ t: (∀α ∈ ∆+
n ) α(iX) ≥ 0}

and with it comes a continuous family of closed convex Inn(g)-invariant cones
W0 lying between Wmin and Wmax :

Wmin ⊆W0 ⊆Wmax.

To each W0 one can associate a complex Olshanski semigroup
S0 = G exp(i intW0)

featuring the same properties as S . In particular Lemma 1.1 and Proposition
1.2 remain true for clS0 . One has Smax = G exp(iWmax) = comp(D) (cf. [7, Th.
8.49]). However, for the applications we have in mind, namely vanishing proper-
ties of matrix coefficients on S and Γ\S , the assumption on the minimalilty of
the cone is crucial. For more details we refer to [15, Sect. VII.3, Ch. X-XI].



414 Krötz and Otto

2. Matrix coefficients on S

In the sequel (πλ,Hλ) denotes a unitary highest weight representation of G with
highest weight λ ∈ it∗ and with respect to the positive system ∆+ . We refer to
[15, Ch. XI] for more on unitary highest weight representations.

Let H be a Hilbert space with bounded operators B(H). By a holomor-
phic representation of S we understand a holomorphic semigroup homomorphism

π:S → B(H)

which in addition satisfies π(s∗) = π(s)∗ for all s ∈ S .
If V is a finite dimensional real vector space, V ∗ its dual and C ⊆ V a

subset, then we define the dual cone of C by

C?: = {α ∈ V ∗: (∀X ∈ C) α(X) ≥ 0}.

Note that C is a closed convex subcone of V ∗ .
The central ideas of part (ii) in the next theorem go back to Olshanski

and Stanton (cf. [16], [19]); a very systematic approach to these results is due to
Neeb (cf. [14]).

Theorem 2.1. Let G be a hermitian Lie group and S an associated minimal
complex Olshanski semigroup. Then for every non-trivial unitary highest weight
representation of G the following statements hold:

(i) λ ∈ i intC?min .
(ii) (πλ,Hλ) extends to a strongly continuous and contractive representation

πλ: clS → B(Hλ) with πλ |S a holomorphic representation.

Proof. (i) [15, Th. IX.2.17].
(ii) This follows from (i) and [15, Th. XI.4.8].

We now take a closer look at the inclusion clS ⊆ P+KCP
− and prove

a refinement of Lemma 1.1. This will be accomplished with tools provided by
representation theory.

Let (πλ,Hλ) be a unitary highest weight representation of G . In view
of Theorem 2.1(ii) we henceforth consider (πλ,Hλ) as a representation of clS .
We denote by Vλ ⊆ Hλ the space of K -finite vectors. Since every vector in
Vλ is p+ -finite we have a natural representation σλ of the semidirect product
group KC o P+ on Vλ obtained by exponentiating the derived representation
dπλ |kCop+ .

If vλ ∈ Vλ is a highest weight vector, then we set

F (λ): = span
C
{πλ(K).vλ}

for the finite dimensional subspace of the highest K -type.
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Lemma 2.2. Let (πλ,Hλ) be a unitary highest weight representation of G .
Then we have for all s ∈ clS and v, w ∈ F (λ) that

〈πλ(s).v, w〉 = 〈σλ(κ(s)).v, w〉.

Proof. This follows from [11, Prop. 2.20].

We write HW (G) for those λ ∈ it∗ for which there exists a unitary
highest weight representation of G with respect to ∆+ . Recall that HW (G) ⊆
i intC?min ∪ {0} (cf. Theorem 2.1(i)). Moreover, from our knowledge on the
unitarizable highest weight modules for G we have

(2.1) iHW (G)? = Cmin

(cf. [10, Lemma II.5]; this follows basically from the fact that HW (G) contains
a subset of the form Γ∩ (x+ i intC?min) with Γ ⊆ it∗ a vector lattice and x ∈ it∗
a certain element). Write WK : = Ad(K).Cmin and note that WK is a convex
cone, a consequence of Kostant’s convexity theorem. Define now the semigroup

SK : = K exp(iWK) = K exp(iCmin)K ⊆ KC

and note that
SK ⊆ clS.

Proposition 2.3. The following inclusion holds

clS ⊆ exp(D)SKexp(D).

Proof. We define

U : =
⋂

λ∈HW (G)

{k ∈ KC:σλ(k) |F (λ) is a contraction}.

Note that Lemma 2.2 together with Lemma 1.1 and the fact that the rep-
resentation (πλ,Hλ) of clS is contractive (cf. Theorem 2.1(ii)) imply that
clS ⊆ exp(D)Uexp(D). Hence it is sufficient to show that U = SK .

From the definition of U it is clear that U is K -biinvariant and so
U = K exp(iC)K with C ⊆ it a convex cone (note that t is abelian). By a
theorem of Kostant we know that the tC -weight spectrum of F (λ) is contained
in conv(Wk.λ). Thus we obtain that

U = K
( ⋂
λ∈HW (G)

exp({X ∈ it: (∀w ∈ Wk) (w.λ)(X) ≤ 0})
)
K,

and so (2.1) implies that C = Cmin , concluding the proof of the proposition.

Corollary 2.4. We have that κ(clS) = SK .

Proof. Since SK ⊆ clS ∩ KC the inclusion ′′ ⊇′′ is clear. The converse
inclusion follows from Proposition 2.3.

We now come to the main result of this Section.
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Theorem 2.5. (Vanishing at infinity of analytically continued matrix coeffi-
cients) Let (πλ,Hλ) be a unitary highest weight representation of G analytically
continued to clS . Then for all v, w ∈ Hλ we have that

lim
s→∞
s∈clS

〈πλ(s).v, w〉 = 0,

i.e, the analytically continued matrix coefficients 〈πλ(s).v, w〉 , s ∈ clS , vanish
at infinity.

Proof. Since Vλ ⊆ Hλ is a dense subspace and ‖πλ(s)‖ ≤ 1 for all s ∈ clS ,
it is sufficient to prove the theorem for v, w ∈ Vλ . For v, w ∈ Vλ the proof of
[11, Prop. 2.20] shows that

〈πλ(s).v, w〉 = 〈σλ(κ(s))σλ(l+(s)).v, σλ(l−(s)
−1

).w〉.

Write l+(s) = exp(X), l−(s)
−1

= exp(Y ) for elements X,Y ∈ D ⊆ p+ (cf.
Lemma 1.1). Hence there exists an N ∈ N , independent from s ∈ clS , such
that

〈πλ(s).v, w〉 =
N∑

j,k=1

1
j!k!
〈σλ(κ(s))dπλ(X)j .v, dπλ(Y )k.w〉.

Note that
sup 1≤j,k≤N

s∈clS
{‖dπλ(X)j .v‖, ‖dπλ(Y )k.w‖} <∞

since D is bounded. Hence it is sufficient to show that

(2.2) 〈σλ(κ(s)).v, w〉 → 0

for s → ∞ in clS and v, w ∈ Vλ . As κ: cl(S) → KC is proper by Proposition
1.2, Corollary 2.4 implies that (2.2) is equivalent to

(2.3) lim
s→∞
s∈SK

〈σλ(s).v, w〉 = 0

for all v, w ∈ Vλ .
Now we make a final reduction from which the theorem will follow.

Write C+
min: = {X ∈ Cmin: (∀α ∈ ∆+) iα(X) ≥ 0} and note that C+

min is a
fundamental domain in Cmin for the Wk -action (see also Remark 1.3 for the
inclusion Cmin ⊆ Cmax which is needed here).

Since SK = K exp(iCmin)K , we obtain that SK = K exp(iC+
min)K .

Hence the fact that K is compact, and v, w are K -finite implies that (2.3) is
equivalent to

(2.4) lim
X→∞
X∈C+

min

〈σλ(exp(iX)).v, w〉 = 0

for all v, w ∈ Vλ . W.l.o.g. we may assume that v, w are tC -weight vectors.
Recall that

Spec(dπλ |tC) ⊆ λ− N0[∆+].

The fact that λ(iX) < 0 for all X ∈ Cmin\{0} (cf. Theorem 2.1(i)) proves (2.4)
and hence the theorem.
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3. Analytic continuation of holomorphic automorphic forms

Let H∞λ be the G -Fréchet module of smooth vectors of (πλ,Hλ). Then the
strong antidual (the space of antilinear continuous functionals equipped with the
strong topology) of H∞λ is denoted by H−∞λ and we refer to it as the space of
distribution vectors of (πλ,Hλ). Recall the chain of continuous inclusions

H∞λ ↪→ Hλ ↪→ H−∞λ .

For a discrete subgroup Γ < G we write (H−∞λ )Γ for the Γ-invariants
of H−∞λ . If η ∈ (H−∞λ )Γ and v ∈ H∞λ , then we consider the general matrix
coefficient

θv,η: Γ\G→ C, Γg 7→ 〈πλ(g).v, η〉: = η(πλ(g).v).

Note that θv,η ∈ C∞(Γ\G).
Since Γ acts properly discontinuously on GC , we get Hausdorff quotients

Γ\S,Γ\ clS ⊆ Γ\GC . Note that Γ\S is also a complex submanifold of Γ\GC .
In view of the results of [12, App.], we have πλ(clS).H∞λ ⊆ H∞λ and

so the functions θv,η naturally extend to functions on Γ\ clS . We denote
these extensions also by θv,η . Note that θv,η |Γ\S is a holomorphic map since
πλ(S).H−∞λ ⊆ Hλ (cf. [12, App.]).

Remark 3.1. If v ∈ Vλ is a K -finite vector of (πλ,Hλ), then θv,η |Γ\G is an
automorphic form in the sense of Borel and Wallach (cf. [Wal92, 11.9.1]).

If v ∈ F (λ), then θv,η is a so-called holomorphic automorphic form (cf.
[2, §6]).

From now on Γ < G denotes a lattice, i.e, Γ is a discrete subgroup with
12(Γ\G) < ∞ . We call an element η ∈ (H−∞λ )Γ cuspidal if for all v ∈ Vλ the
automorphic form θv,η |Γ\G is a cusp form (cf. [5, Ch. I, §4] for the definition of
cusp forms).

Remark 3.2. The definition of cusp forms is technical and we restrained to
give it here and refered to [5] instead. However, some remarks are appropriate.
(a) In [5] automorphic forms are defined for arithmetic lattices Γ < G only.
In view of more recent results, this is no major constraint anymore: Margulis’
“arithmeticity theorem” (cf. [21, Th. 6.1.2]) implies that every lattice is arith-
metic if rankR(G) ≥ 2; if rankR(G) = 1, then the difficulties (in particular the
existence of a Siegel set) can be overcome by the work of Garland and Raghu-
nathan (cf. [4]).
(b) If η ∈ (H−∞λ )Γ such that θv,η |Γ\G belongs to L2(Γ\G) for all v ∈ Vλ , then η
is cuspidal. This is a special feature related to holomorphic automorphic forms;
a conceptual proof of this fact for the group G = Sl(2,R) is for example given
in [3, Cor. 7.10].
(c) In [1, Th. 3.11] it is shown that the Poincaré series P (vλ) of vλ

P (vλ) =
∑
γ∈Γ

πλ(γ).vλ



418 Krötz and Otto

converges for almost all parameters λ in the module of hyperfunction vectors
H−ωλ to a non-zero Γ-fixed element. Since convergent Poincaré series define
cuspidal elements (cf. [3, Th. 8.9]), the existence of sufficiently many non-trivial
cuspidal elements is hence guaranteed.

Theorem 3.3. (Vanishing at infinity of analytically continued automorphic
forms) Let Γ < G be a lattice and η ∈ (H−ωλ )Γ a cuspidal element for a non-
trivial unitary highest weight representation of the hermitian Lie group G . Then
for all K -finite vectors v ∈ Vλ the analytically continued automorphic forms θv,η
vanish at infinity:

lim
Γs→∞

Γs∈Γ\ clS

θv,η(Γs) = 0.

Remark 3.4. (a) For Γ < G cocompact Theorem 3.2 was proved in [1] with
different methods coming from representation theory.
(b) Theorem 3.2 together with [1, Th. 4.7] implies in particular that the bounded
holomorphic functions on Γ\S separate the points. Here it might by interesting
to observe that the surrounding complex manifold Γ\GC admits no holomorphic
functions except the constants: Hol(Γ\GC) = C1 . For more information we refer
to [1].

Proof of Theorem 3.3. First we reduce the assertion of the theorem to the
case where v = vλ is a highest weight vector. Assume that θvλ,η vanishes
at infinity on Γ\ clS . Then it follows that θv,η vanishes at infinity for all
v ∈ Eλ: = span

C
{πλ(G).vλ} . Note that Eλ is dense in Hλ since (πλ,Hλ) is

irreducible.
If (χ,Uχ) is an irreducible representation of K , then we write V

[χ]
λ for

the χ-isotypical part of the K -module Vλ . By the density of Eλ ⊆ Hλ we
conclude that the orthogonal projection

Pχ:Eλ → V
[χ]
λ , v 7→ 1

dimUχ

∫
K

trχ(k)π(k).v dk

is onto. In particular, if v ∈ V [χ]
λ with v = Pχ(w) for some w ∈ Eλ , then we

have
θv,η(Γs) =

1
dimUλ

∫
K

trχ(k)θπ(k).w,η(s) dk.

Hence the compactness of K implies that θv,η vanishes at infinity, completing
the proof of our reduction.

We now show that θvλ,η vanishes at infinity. First we need some notation.
Write

pF (λ):H−∞λ → F (λ)

for the projection onto the highest K -type along the other K -types. Define the
function

f :G→ F (λ), g 7→ pF (λ)(πλ(g−1).η).

Note that f is smooth, left Γ-invariant and that

θvλ,η(Γg) = 〈vλ, f(g)〉 (g ∈ G).
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Further we define

µλ(s): = σλ(κ(s)) |F (λ) ∈ Gl(F (λ)) (s ∈ clS).

Then on D ∼= G/K the prescription

(3.1) F (gK): = µλ(g−1)−1f(g) (g ∈ G)

defines an anti-holomorphic function on D (cf. [2, §6]).
We claim that F is bounded. Let ‖ · ‖ be a norm on GC . Denote by

S ⊆ G a Siegel set for Γ. Recall that a Siegel set has the properties that ΓS = G
and |ΓS∩S| <∞ . Then the fact that θv,η is a cusp form for all v ∈ F (λ) implies
that there exists for all N ∈ N a constant C = CN > 0 such that

(3.2) (∀g ∈ S) |θv,η(Γg)| ≤ CN‖v‖ · ‖g‖−N

(cf. [3, Th. 7.5] for G = Sl(2,R) and [5, Ch. I, Lemma 10] for the general case). By
Lemma 1.1 there exists constants C1, C2 > 0 such that C1‖g‖ ≤ ‖κ(g−1)−1‖ ≤
C2‖g‖ for all g ∈ G . Hence there exists an M ∈ N and a constant C > 0 such
that ‖µλ(g−1)−1‖ ≤ C‖g‖M . In view of (3.1) and (3.2), our claim now follows.

From (3.1) we get that

f(g) = µλ(g−1)F (gK)

and so

(3.3) θvλ,η(Γg) = 〈vλ, µλ(g−1)F (gK)〉.

Write F̃ : clS → F (λ), s 7→ F (s.K) and note that F̃ is anti-holomorphic on S
(Recall that clS.D ⊆ D ). Thus analytic continuation of (3.3) yields

(3.4) θvλ,η(Γs) = 〈vλ, µλ(s∗).F̃ (s)〉

Since F is bounded, F̃ is bounded. By (3.4) it hence suffices to show µλ(s∗)→ 0
for s→∞ in clS . But since s 7→ s∗ is a homeomorphism of clS this now follows
from Proposition 1.2 and Proposition 2.3.
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