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Abstract. It is proved that several usual methods of reduction for ordinary
differential equations, that do not come from the Lie theory, are derived from the
existence of C∞ -symmetries. This kind of symmetries is also applied to obtain
two successive reductions of an equation that lacks Lie point symmetries but is
a reduced equation of another one with a three dimensional Lie algebra of point
symmetries. Some relations between C∞ -symmetries and potential symmetries
are also studied.

1. Introduction

Let us consider the nth-order ordinary differential equation

∆(x, u(n)) = 0. (1)

In the literature there appear several methods of reduction for (1). One of the
most important is based on the existence of Lie point symmetries of the equation.
However, there are also equations that lack Lie point symmetries but can be
reduced. This is the case, for instance, when by means of

y = y(x, u), v = f(x, u, ux), (2)

equation (1) transforms into

∆1(y, v(n−1)) = 0, (3)

or when (1) can be written in the form

Dx(∆2(x, u(n−1))) = 0, (4)

where Dx denotes the total derivative with respect to the independent variable x.
There are also many examples of integrable equations that lack Lie point symme-
tries ([2, 8, 9, 10, 11, 17]). In this paper we extend the concept of C∞ -symmetry,
that appears in [17], and we prove that these classes of reductions are particular
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cases of the algorithm of reduction derived from the existence of extended C∞ -sy-
mmetries of the equation. These C∞ -symmetries can be found by a well-defined
algorithm, somewhat similar to the Lie algorithm.

It may also happen that (1) has no Lie point symmetries but, by means of
a Bäcklund transformation

u = f(x, v, vx), (5)

equation (1) is transformed into an equation of the form

∆̃(x, v(n+1)) = 0 (6)

that has a non-trivial Lie algebra of point symmetries G . This case can happen
when (1) is the reduced equation of (6) after using a generator of G : it may occur
that the unused generators are not inheritable to the reduced equation. In the
literature, these lost symmetries are called type I hidden symmetries (the term
type II hidden symmetries refers to the symmetries that are gained after an order
reduction). It may be said that the origin of the theory of hidden symmetries is
in the concept of exponential vector fields ([20]), that provides order reductions
but are not local vector fields. Many recent studies about lost symmetries have
been done (see [1]-[3],[10]-[12], [16] and references therein). In [13], the concept
of solvable structure ([6]) is applied to study hidden symmetries of type II. In
particular, the authors show how the hidden symmetries of type II appearing in
[12] are related to a solvable structure for the unreduced equations.

Let us observe that when (5) does not depend on v then X = ∂
∂v

is a Lie
point symmetry of (6), (1) is the corresponding reduced equation and, if n ≥ 3,
the order of the original equation can be reduced by two. By using some results
that appear in [18], in this paper we prove that if an equation of the form (6)
admits a three dimensional Lie algebra of point symmetries then the order of
(6) can successively be reduced by three: if any of the generators of G is used
to reduce the order then the remaining generators are inheritable, at some stage
of the reduction process, as C∞−symmetries of the reduced equations. We also
show, through an example, that these C∞−symmetries (derived from type I hidden
symmetries) can be used to construct a solvable structure of the reduced equations.

It may also happen that, for some function f , (6) can be written in the
conserved form

Dx(∆3(x, v(n))) = 0, (7)

for some function ∆3 . In this case we also have the trivial reduction

∆3(x, v(n)) = 0, (8)

which, as we prove in this paper, corresponds to a C∞ -symmetry of (6). Then, we
could use the symmetries of (8) to obtain solutions of the original equation (1).
This is the way followed by Bluman ([7]): these symmetries are called potential
symmetries of (1). Potential symmetries are not, in general, either contact or Lie-
Bäcklund symmetries of (1) because v, as defined by (5), cannot be expressed in
terms of x, u and derivatives of u with respect to x to some finite order. Since Lie
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point symmetries of (8) can be used to reduce its order, potential symmetries are
useful to find solutions of equation (1), because if v(x) = φ(x) solves equation (8)
then u(x) = f(x, φ(x), φx(x)) solves equation (1). Let us observe that Lie point
symmetries of any reduced equation

∆3(x, v(n)) = C, (9)

where C ∈ R is an arbitrary constant, lead to a similar process for equation (1).
Therefore, in this paper we will understand a potential symmetry of equation (1)
as a Lie point symmetry of equation (8), for some C ∈ R. In practice, Bäcklund
transformations (5) that let us write equation (1) in conserved form (7) are difficult
to find, if there is one, because this form is too restrictive. In this paper we
prove that some special potential symmetries of (1), that are here called super-
potential symmetries, can be considered as C∞ -symmetries of (1) and, therefore,
two procedures to obtain solutions of (1) are available. This is illustrated through
an example and both methods are compared.

2. Notations and preliminary results

Let us consider an nth-order ordinary differential equation

∆(x, u(n)) = 0, (10)

with (x, u) ∈ M, for some open subset M ⊂ X × U ' R2. We denote by M (k)

the corresponding k−jet space M (k) ⊂ X × U (k), for k ∈ N. Their elements are
(x, u(k)) = (x, u, u1, · · · , uk), where, for 1 ≤ i ≤ k , ui denotes the derivative of
order i of u with respect to x. We assume that the implicit function theorem can
be applied to equation (10), and, as a consequence, that this equation can locally
be written in the explicit form

un = Ψ(x, u(n−1)). (11)

The vector field

A(x,u) =
∂

∂x
+ u1

∂

∂u
+ · · ·+ Ψ(x, u(n−1))

∂

∂un−1

(12)

will be called the vector field associated with equation (11).

It is well-known ([23]) that a vector field X on M is a Lie point symmetry
of equation (11) if and only if there exists a function ρ ∈ C∞(M (1)) such that

[X(n−1), A(x,u)] = ρA(x,u), (13)

where X(n−1) denotes the usual (n− 1)th prolongation of the vector field X. The
generalized Lie symmetries ([22]) are vector fields Y defined on M (n−1) that satisfy
[Y,A(x,u)] = ρA(x,u), for some function ρ ∈ C∞(M (j)).

A Lie point symmetry X can be used to reduce the order of the equation
by one: we introduce a change of variables {y = y(x, u), α = α(x, u)} such that
the vector field X can be written as X = ∂

∂α
, in some open set of variables (y, α),
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that will also be denoted by M. Since X is a Lie point symmetry of the equation,
(11) can be written in terms of variables (y, α(n)) of M (n) in the form

αn = Φ(y, α1, α2, · · · , αn−1). (14)

If we set w = α1 in (14) we obtain a reduced equation

wn−1 = Φ(y, w, w1, · · · , wn−2), (15)

where (y, w) are in some open set M1 ⊂ R2.

It can easily be checked that the vector field associated with equation (14),
written in the new variables, is

A(y,α) =
1

Dx(y(x, u))
A(x,u). (16)

The vector field associated with the reduced equation (15) can be constructed

as follows. Let π
(k)
X : M (k) → M

(k−1)
1 be the projection (y, α, α1, · · · , αk) 7→

(y, w, · · · , wk−1) = (y, α1, · · · , αk), for k ∈ N. A vector field V on M (k) will be

called π
(k)
X −projectable if

[X(k), V ] = fX(k), (17)

for some function f ∈ C∞(M (k)). This implies that V , in the variables (y, α(k)),
must take the following form

V = ξ(y, α1, · · · , αk)
∂

∂y
+ η(y, α, α1, · · · , αk)

∂

∂α
+

k∑
i=1

ηi(y, α1, · · · , αk)
∂

∂αi
. (18)

The π
(k)
X −projection of V on M

(k−1)
1 is the vector field

(π
(k)
X )∗(V ) = ξ(y, w, · · · , wk−1)

∂

∂y
+

k∑
i=1

ηi(y, w, · · · , wk−1)
∂

∂wi−1

. (19)

With this definition, it can be checked that the vector field A(y,α) is

π
(n−1)
X −projectable and its projection is the vector field A(y,w) associated with

the reduced equation (15).

The concept of Lie point symmetry for an ordinary differential equation can
be generalized in several ways: conditional symmetries, Lie-Bäcklund symmetries,
etc. ([5],[4],[20], [21]). In [17], we have introduced the concept of C∞−symmetry.
This concept is somewhat similar to the concept of Lie point symmetry, but it
is based on a different way to prolong vector fields. The following prolongation
method generalizes the method that appears in [17].

Definition 2.1. Generalized prolongation formula

Let X = ξ(x, u) ∂
∂x

+ η(x, u) ∂
∂u

be a vector field defined on M , and let
λ ∈ C∞(M (k)) be an arbitrary function. The λ−prolongation of order n of X ,
denoted by X [λ,(n)], is the vector field defined on M (n+k−1) by

X [λ,(n)] = ξ(x, u)
∂

∂x
+

n∑
i=0

η[λ,(i)](x, u(i+k−1))
∂

∂ui
(20)
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where η[λ,(0)](x, u) = η(x, u) and

η[λ,(i)](x, u(i+k−1)) = Dx

(
η[λ,(i−1)](x, u(i+k−2))

)
−Dx(ξ(x, u))ui

+λ
(
η[λ,(i−1)](x, u(i+k−2))− ξ(x, u)ui

)
,

(21)

for 1 ≤ i ≤ n.

Let us observe that, if λ = 0, the λ−prolongation of order n of X is the
usual nth prolongation of X. If Q = η(x, u) − ξ(x, u)u1 is the characteristic of
X = ξ(x, u) ∂

∂x
+ η(x, u) ∂

∂u
then

X [λ,(n)] = X
[λ,(n)]
Q + ξ(x, u)Dx, (22)

where

X
[λ,(n)]
Q =

n∑
i=1

(Dx + λ)i(Q)
∂

∂ui
. (23)

Definition 2.2. Let ∆(x, u(n)) = 0 be an nth-order ordinary differential equa-
tion. We will say that a vector field X, defined on M, is a C∞(M (k))−symmetry
of the equation, 1 ≤ k < n , if there exists a function λ ∈ C∞(M (k)) such that

X [λ,(n)](∆(x, u(n))) = 0, when ∆(x, u(n)) = 0. (24)

In this case we will also say that X is a λ−symmetry or a C∞ -symmetry, if there
is no place for confusion.

By a straightforward generalization of a result that appears in [17], it can
be checked that a vector field X on M is a C∞(M (k))−symmetry of the equation
(11) if and only if there exist two functions, λ, ρ ∈ C∞(M (k)), such that

[X [λ,(n−1)], A(x,u)] = λX [λ,(n−1)] + ρA(x,u). (25)

Let us observe that if X is a Lie point symmetry then, [X(n−1), A(x,u)] =
ρA(x,u) for some ρ ∈ C∞(M (1)), and for any function f ∈ C∞(M), fX(n−1)

satisfies

[fX(n−1), A(x,u)] = −A(x,u)(f)X(n−1) + fρA(x,u). (26)

Therefore, fX is a C∞(M (1))−symmetry for λ = −A(x,u)(f)

f
.

Conversely, if X is a λ−symmetry, for λ ∈ C∞(M (k)), and f ∈ C∞(M (j)),
then, by using (25), we have

[fX [λ,(n−1)], A(x,u)] = (fλ− A(x,u)(f))X [λ,(n−1)] + fρA(x,u). (27)

If we choose f such that A(x,u)(f) = fλ then fX [λ,(n−1)] becomes a Lie symmetry
in the generalized sense.
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Example 2.3. It can be proved ([17]) that the second order equation:

uxx +
x2

4u3
+ u+

1

2u
= 0 (28)

has no Lie point symmetries. The vector field X = u ∂
∂u

is a λ−symmetry, for

λ = x
u2 , of equation (28). In this case, A(x,u) = ∂

∂x
+ ux

∂
∂u
−
(
x2

4u3 + u+ 1
2u

)
∂
∂ux

and, by (21), X [λ,(1)] = u ∂
∂u

+ (ux + x
u
) ∂
∂ux

. The vector field Y = X [λ,(1)] verifies
formula (25), because

[Y,A(x,u)] = [X [λ,(1)], A(x,u)] =
x

u

∂

∂u
+

(
xux
u2

+
x2

u3

)
∂

∂ux
= λY. (29)

However, there is no function ρ such that (13) is satisfied. Therefore, [Y,A(x,u)] 6=
ρA(x,u) for any function ρ; i.e. Y is not a Lie symmetry, in the generalized sense,
of equation (28). In order to find a function f such that fY is a generalized Lie
symmetry, we must solve the following partial differential equation:

fx + fuux − fux
(
x2

4u3
+ u+

1

2u

)
=

x

u2
f. (30)

Therefore, it seems that it is easier to calculate C∞−symmetries than the associ-
ated generalized Lie symmetries.

An algorithm to determine the C∞−symmetries of an equation follows from
(24): this equation generates a system of equations for the infinitesimals of the
C∞−symmetry X , in which λ is also an unknown function. This gives, with
respect to Lie method, a higher level of freedom in the resolution of these deter-
mining equations. In particular, it may happen that the determining equations
for Lie point symmetries only admit the trivial solution but the corresponding
equations for C∞−symmetries have non-trivial solutions, as in Example 2.3.

The C∞(M (k))-symmetries can be used to obtain reduction processes. The
corresponding method is described in Theorem 2.5. In order to prove this theorem,
we need a preliminary result.

Theorem 2.4. Let X be a vector field defined on M ⊂ X × U and let λ ∈
C∞(M (k)). If α = α(x, u(j)), β = β(x, u(j)) are functions in C∞(M (j)) such that

X [λ,(j)](α(x, u(j))) = X [λ,(j)](β(x, u(j))) = 0, (31)

then

X [λ,(j+1)]

(
Dxα(x, u(j))

Dxβ(x, u(j))

)
= 0. (32)

Proof. It is clear that

[X [λ,(j+1)], Dx] = λX [λ,(j+1)] + µDx, (33)

where µ = −Dx(X(x))− λX(x) ∈ C∞(M (k)). Therefore,
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X [λ,(j+1)]
(
Dxα
Dxβ

)
= 1

(Dxβ)2

(
Dxβ ·X [λ,(j+1)](Dxα)−Dxα ·X [λ,(j+1)](Dxβ)

)
= 1

(Dxβ)2

(
Dxβ · [X [λ,(j+1)], Dx](α)−Dxα · [X [λ,(j+1)], Dx](β)

)
= 1

(Dxβ)2 (Dxβ · (µ ·Dxα)−Dxα · (µ ·Dxβ)) = 0.

(34)

This proves the theorem.

The following theorem, and its proof, gives a method to reduce an equation that
admits a C∞ -symmetry.

Theorem 2.5. Let X be a λ-symmetry, with λ ∈ C∞(M (k)), of the equation
∆(x, u(n)) = 0. Let y = y(x, u) and w = w(x, u, u1, · · · , uk) be two functionally
independent invariants of X [λ,(n)] . The general solution of the equation can be
obtained by solving a reduced equation of the form ∆r(y, w

(n−k)) = 0 and an
auxiliary k th-order equation w = w(x, u, u1, · · · , uk).

Proof. Let y = y(x, u) and w = w(x, u, u1, · · · , uk) be two functionally inde-
pendent invariants of X [λ,(k)] such that w depends on uk . By Theorem 2.4,

w1 =
Dxw(x, u, u1, · · · , uk)

Dxy(x, u)
(35)

is an invariant for X [λ,(k+1)] . The set {y, w, w1} is functionally independent,
because w1 depends on uk+1. From w1 and y we can obtain, by derivation, a
(k + 2)th-order invariant for X [λ,(n)] and so on. Therefore, the set

{y, w, w1(x, u, u1, · · · , uk+1), · · · , wn−k((x, u, u1, · · · , un)} (36)

is a set of functionally independent invariants of X [λ,(n)]. Since X is, by hypothesis,
a C∞(M (k))-symmetry of ∆(x, u(n)) = 0, it can be checked, by Definition 2.1, that
this equation can be written in terms of (36). The resulting equation is a (n−k)th-
order equation of the form

∆r(y, w
(n−k)) = 0. (37)

We can recover the general solution of ∆(x, u(n)) = 0 from the general solution of
(37) and the corresponding k th-order auxiliary equation:

w = w(x, u, u1, · · · , uk). (38)

3. C∞−Symmetries and order reductions

In this section we show that many of the known reduction processes for ordinary di-
fferential equations can be obtained, through the former method, as a consequence
of the existence of C∞−symmetries of the given equations.
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Theorem 3.1. Let

∆1(x, u(n)) = 0 (39)

be an nth-order ordinary differential equation. Let us suppose that there exists a
transformation

y = y(x, u),
w = w(x, u, u1),

}
(40)

where wu1 6= 0, such that (39) can be written, in terms of variables (y, w), in the
form

∆2(y, w(n−1)) = 0. (41)

There exists a C∞−symmetry X of equation (39) such that (41) is the correspond-
ing reduced equation.

Proof. Let α ∈ C∞(M) be such that the functions y, α are functionally

independent. We denote α1 = dα
dy

= Dx(α(x,u))
Dx(y(x,u))

∈ C∞(M (1)). We consider on

M (1) the local coordinates (y, α, α1). We determine a vector field of the form
X = ξ(y, α) ∂

∂y
+ η(y, α) ∂

∂α
and a function λ(y, α, α1) ∈ C∞(M (1)) such that X

is a λ−symmetry of the equation and the functions y, w in (40) are invariants of
X [λ,(1)].

We set ξ = 0 and η = 1; by Definition 2.1, X [λ,(1)] = ∂
∂α

+ λ ∂
∂α1

. We

determine λ with the condition X [λ,(1)](w) = 0 and we find that λ = − wα
wα1

.

1. Let us prove that the vector field X = ∂
∂α

is a λ−symmetry of the equation

for the function λ = − wα
wα1

. We denote wi = di)w
dyi)

, for 1 ≤ i ≤ n−1. It is clear

that the set {y, α, w, · · · , wn−1} is a system of coordinates in M (n). By the
construction of X and λ, we have that {y, w, · · · , wn−1} are invariants for
the vector field X [λ,(n)]. Therefore, in the new local coordinates, X [λ,(n)] = ∂

∂α
.

Since, by hypothesis, equation (39) can be written in these local coordinates
as equation (41), we obtain

X [λ,(n)](∆2(y, w(n−1))) =
∂

∂α
(∆2(y, w(n−1))) = 0. (42)

This proves that X is a λ−symmetry of the equation.

2. In order to check that (41) is the reduced equation that, by Theorem 2.5,
corresponds to the λ-symmetry, it is sufficient to observe that the reduced
equation can be obtained by writing the equation in terms of the complete
system {y, w, · · · , wn−1} of invariants of X [λ,(n)].

This proves the theorem.
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Theorem 3.2. Let

Dx(∆(x, u(n−1))) = 0, (43)

be an nth-order ordinary differential equation such that ∆ is an analytical function
of its arguments. There exists a function λ ∈ C∞(M (k)), k ≤ n− 1, such that the
vector field X = ∂

∂u
is a λ−symmetry of the equation. The trivial order reduction

∆(x, u(n−1)) = C, C ∈ R, (44)

admitted by the equation, can be obtained as the auxiliary equation that corresponds
to the reduction process, by means of X , that appears in Theorem 2.5.

Proof. 1. We try to find λ ∈ C∞(M (k)), k ≤ n− 1, with the condition

X [λ,(n−1)](∆(x, u(n−1))) = 0 when Dx(∆(x, u(n−1))) = 0. (45)

In terms of the characteristic Q ≡ 1 of X , we have

X [λ,(n−1)] =
n−1∑
i=0

(Dx + λ)i(1)
∂

∂ui
. (46)

Hence, the equation X [λ,(n−1)](∆(x, u(n−1))) = 0 can be written as

(Dx + λ)n−1(1)
∂∆

∂un−1

= −
n−2∑
i=0

(Dx + λ)i(1)
∂∆

∂ui
. (47)

Let us observe that, since the set of analytical functions is closed under
differentiation, if λ is an analytical function in M (k) then, for 1 ≤ i ≤ n − 1,
the function defined by (Dx + λ)i(1) is analytical in M (k+i−1) and in the partial
derivatives of λ with respect to all its arguments up to the order i− 1.

Since the order of (43) is n , we have ∆un−1(x, u(n−1)) 6= 0, in some open set
of M (n−1) . Therefore, the implicit function theorem for analytical functions ([15])
let us, locally, write (43) in the form un = F (x, u(n−1)), where F is an analytical
function on its arguments.

In (47), we must replace un by F and un+h, h ≥ 1, by the corresponding
derivatives. The resulting equation is defined by functions that depend analytically
on their arguments. It is easy to see that, in (47), the derivative

∂n−2)λ

∂xn−2)
(48)

does only appear in the first member and its coefficient is ∆un−1 6= 0. Equation

(47) can be solved for ∂n−2)λ
∂xn−2) and the resulting partial differential equation for λ

can be written in the form

∂n−2)λ

∂xn−2)
= G(x, u(n−1), λ(n−2)), (49)
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where λ(n−2) denotes the partial derivatives of λ with respect to its arguments, of
orders ≤ n − 2, and the function G is analytical on its arguments and does not
depend on ∂n−2)λ

∂xn−2) .

With these conditions, Cauchy-Kovalevsky Theorem ([15]) ensures the exis-
tence of analytical solutions, λ(x, u(n−1)), to equation (49).

Next, we prove that, if λ is a solution of (49), the vector field X = ∂
∂u

is a
λ-symmetry of the equation.

By Definition 2.2, it can be checked, that

[X [λ,(n−1)], Dx] = λX [λ,(n−1)]. (50)

By applying both members of this expression to ∆(x, u(n−1)) we get

X [λ,(n−1)](Dx(∆(x, u(n−1))))−Dx(X
[λ,(n−1)](∆(x, u(n−1))))

= λX [λ,(n−1)](∆(x, u(n−1))).
(51)

Since λ is such that X [λ,(n−1)](∆(x, u(n−1))) = 0 when Dx(∆(x, u(n−1))) = 0, we
get

X [λ,(n−1)](Dx(∆(x, u(n−1)))) = 0, when Dx(∆(x, u(n−1))) = 0, (52)

i.e. X is a λ-symmetry of the equation.

2. The algorithm to reduce the order of the equation, by using the λ-sy-
mmetry X , leads to the first order ordinary differential equation

wy = 0, (53)

where y = x and w = ∆(x, u(n−1)) are two functionally independent invariants
of the vector field X [λ,(n−1)]. The general solution of equation wy = 0 is w = C ,
C ∈ R. Therefore, the general solution the original equation is obtained by solving
the ordinary differential equation (44).

4. Reduction of equations without Lie point symmetries.

Let us suppose that the ordinary differential equation

∆(x, u(n)) = 0 (54)

has no Lie point symmetries. We will also suppose that by means of u = f(x, vx)
equation (54) is transformed into the (n+ 1)th-order equation

∆̃(x, v(n+1)) = 0, (55)

and that this equation has a three dimensional Lie algebra of point symmetries
G. By Theorem 3.1, the order reduction of equation (55) to equation (54) co-
rresponds to the use of the Lie point symmetry ∂

∂v
. By the classification of three

dimensional Lie algebras that appears in [14], the structure of the Lie algebra G
generated by X1, X2 and X3 corresponds, by means of some linear combination
of the generators, to some of the types enumerated in the following table:

Let us analyze the reduction of (54) by using the three dimensional symme-
try algebra G of (55). We denote X = ∂

∂v
, the vector field that lets reduce (55) to

(54). Here X may be any of the generators Xi , 1 ≤ i ≤ 3 and, depending on i ,
several ways of step by step reduction of (54) can be followed.
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Table 1: Three-dimensional solvable algebras
I II III IV

[X1, X2] = 0 [X1, X2] = 0 [X1, X2] = X3 [X1, X2] = 0
[X1, X3] = 0 [X1, X3] = X3 [X1, X3] = 0 [X1, X3] = aX1 + bX2

[X2, X3] = 0 [X2, X3] = 0 [X2, X3] = 0 [X2, X3] = cX1 + dX2

Table 2: Three-dimensional non-solvable algebras
V VI

[X1, X2] = 2X3 [X1, X2] = X3

[X1, X3] = X1 [X1, X3] = −X2

[X2, X3] = −X2 [X2, X3] = X1

1. In cases I to III, the kernel Z(G) = {X ∈ G : [X,Y ] = 0, Y ∈ G} is not
trivial. If we use any of the generators to perform a first reduction then the
corresponding reduced equation conserves at least one Lie point symmetry.
Since, by hypothesis, (54) has no Lie point symmetries, X = ∂

∂v
cannot be

in G . This contradiction proves that, with our hypotheses, these three cases
cannot happen.

2. In case IV, the following chains of normal subalgebras in G hold:

< X1 > . < X1, X2 > . < X1, X2, X3 >,
< X2 > . < X1, X2 > . < X1, X2, X3 > .

If we first reduce with Xi , 1 ≤ i ≤ 2, the reduced equation always inherits
a Lie point symmetry. Since (54) has no Lie point symmetries, necessarily
the first reduction is performed by using X = X3 = ∂

∂v
. Let us study how

the symmetries X1 and X2 can be used to reduce, successively, the order of
(54) by two.

(a) We may assume that b = 0: if this is not the case, we can use a linear
change of coordinates (possibly with complex coefficients) to get b = 0.
Let f1 ∈ C∞(M) be a function such that X3(f1) = af1. Then

[f1X
(k)
1 , X

(k)
3 ] = f1(aX

(k)
1 )−X3(f1)X

(k)
1 = 0 (k ∈ N). (56)

By (17), f1X
(k)
1 is a π

(k)
X3
−projectable vector field. Since [X

(k)
1 , Dx] =

−Dx(X1(x))Dx, we get

[f1X
(k)
1 , Dx] = −Dx(f1)

f1

f1X
(k)
1 − f1Dx(X1(x))Dx, (57)

and, by taking (33) into account, it follows that

f1 ·X(k)
1 = (f1X1)[λ1,(k)], for λ1 = −Dx(f1)

f1

. (58)

Let us denote Y1 = (π
(1)
X3

)∗(f1X
(1)
1 ). The vector field Y1 is a C∞−sy-

mmetry of equation (54), for the function λ1 given, in coordinates (x, v),
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by:

λ1 = −Dx(f1)

f1

. (59)

(b) By Theorem 2.5, we use the λ1−symmetry Y1 to reduce the order of
equation (54). Let {y = y(x, u), w = w(x, u, u1)} be two functionally

independent invariants of Y
[λ1,(1)]

1 . We denote by

∆̂(y, w(n−1)) = 0 (60)

the corresponding reduced equation. Let β = β(x, u) be such that

Y1(β) = 1. We denote π(k) = π
(k−1)
Y1

◦ ϕ ◦ π(k)
X3
, where ϕ stands for the

change of variables {x, u(k)} ↔ {y, β, w(k−1)}. Let f2 be a function such
that X3(f2) = df2 and X1(f2) = 0. Since, for 2 ≤ k ≤ n− 1,

(i) [f1X
(k)
1 , f2X

(k)
2 ] = f1X

(k)
1 (f2)X

(k)
2 − f2X

(k)
2 (f1)X

(k)
1 = f 1

12f1X
(k)
1 ,

where f 1
12 = −f2

f1
X

(k)
2 (f1),

(ii) [f2X
(k)
2 , X

(k)
3 ] = f2(cX

(k)
1 + dX

(k)
2 )−X(k)

3 (f2)X
(k)
2 = f 2

23f1X
(k)
1 ,

where f 2
13 = f1

f2
c,

the vector field f2X
(k)
2 is π(k)−projectable.

Since, by hypothesis, the vector field X2 is a Lie point symmetry of the
equation (55), we can write

[f2X
(n−1)
2 , A(x,v)] = λ2f2X

(n−1)
2 + µA(x,v)

for some functions λ2, µ ∈ C∞(M (1)). By (i) and (ii), the Jacobi
identity for the vector fields

{f1X
(n−1)
1 , f2X

(n−1)
2 , µA(x,v)} and {f2X

(n−1)
2 , X

(n−1)
3 , µA(x,v)}

let us prove that the functions λ2 and µ are both f1X
(n−1)
1 -invariant

and X
(n−1)
3 -invariant. Hence,

[(π(n−2))∗(f2X
(n−1)
2 ), A(y,w)] = λ̃2(π(n−2))∗(f2X

(n−1)
2 ) + µ̃A(y,w), (61)

where (π(n−2))∗(λ2) = λ̃2 and (π(n−2))∗(µ) = µ̃. Let us denote Z2 =

(π(2))∗(f2X
(2)
2 ). Clearly, (61) shows that Z2 is a C∞ -symmetry of the

reduced equation, and Z2 can be used to reduce again the order.

3. In case V we have

< X1 > . < X1, X3 >, < X2 > . < X2, X3 > . (62)

It can be assumed, as before, that vector field X is X3. By proceeding as
for Case IV, it can be checked ([18]) that if f1, f2 ∈ C∞(M) are such that

X3(f1) = f1, X3(f2) = −f2, (63)

then the vector field f1X
(1)
1 and f2X

(1)
2 are π

(1)
X3
−projectable. The projec-

tions Y1 = (π
(1)
X3

)∗(f1X
(1)
1 ) and Y2 = (π

(1)
X3

)∗(f2X
(1)
2 ), are C∞−symmetries of

equation (54). Any of these two C∞−symmetries can be used to reduce the
order of equation (54). The unused C∞−symmetry can also be recovered as
a C∞−symmetry of the corresponding reduced equation ([18]).
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4. In case VI the vector field ∂
∂v

can be any of the generators and the main
results are also valid. We have developed an procedure that allows us
to recover the unused generators for the algebra as C∞−symmetries for
the reduced equations. Theoretical results about this situation have been
developed in [19].

The former results prove that if (54) has no Lie point symmetries but (55)
has a three dimensional Lie algebra of point symmetries G such that ∂

∂v
∈ G then,

by using the generators of G , the order of (54) can successively be reduced by two.

In order to illustrate these ideas, let us consider the following second order
differential equation:

8(ux+ 1)uxx − 24xu2
x − 2(u2x2 + 2ux+ 24u+ 1)ux

+x3u5 + (5x2 + 8x)u4 + (7x+ 32)u3 + 3u2 = 0.
(64)

In Appendix A we prove that this equation has no Lie point symmetries. We are
going to transform (64) into a third order equation that admits a (non-solvable)
three-dimensional algebra of symmetry. We show how this algebra allows us to
recover two of its point symmetries as C∞−symmetries of equation (64). As a
consequence, equation (64) can be solved through two first order equations: one
of them is a Ricatti equation, and the other one can be solved by a quadrature,
because it is a linear equation.

By means of the transformation u = vx , equation (64) becomes the third
order equation

8(vxx+ 1)vxxx − 24xv2
xx − 2(v2

xx
2 + 2vxx+ 24vx + 1)vxx

+x3v5
x + (5x2 + 8x)v4

x + (7x+ 32)v3
x + 3v2

x = 0.
(65)

It can be checked that this equation admits a three-dimensional Lie algebra gen-
erated by

X1 = e−v
∂

∂x
, X2 = −evx2 ∂

∂x
+ 2evx

∂

∂v
, X3 =

∂

∂v
. (66)

Since

[X1, X2] = 2X3, [X1, X3] = X1, [X2, X3] = −X2, (67)

the symmetry algebra of equation (65) is the non-solvable Lie algebra sl(2,R)
associated to the unimodular group, and corresponds to case V. Equation (64) can
be considered as the reduced equation that corresponds to the reduction derived
from the use of the Lie point symmetry X3. Symmetries X1 and X2 are not
inheritable, as Lie point symmetries, to the reduced equation (64). However, these
lost symmetries (hidden symmetries of type I) can be recovered ([18]) as C∞−sy-
mmetries of equation (64). Let us choose f1 = ev and f2 = e−v. The vector fields

f1X
(1)
1 and f2X

(1)
2 are π

(1)
X3
−projectable and the projections

Y1 = ∂
∂x

+ u2 ∂
∂u
, Y2 = −x2 ∂

∂x
+ (2 + 4xu+ x2u2) ∂

∂u
(68)
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are C∞−symmetries of equation (64), for λ1 = −u and λ2 = u, respectively (see
(59)). Let us observe that the C∞−symmetries Y1 and Y2 could also be found by
solving the determining equations for the C∞−symmetries of equation (64).

In terms of variables{
z =

1

u
+ x, β = x, µ =

βz
β − z

=
u3

ux − u2

}
, (69)

the vector field Y
[λ1,(1)]

1 is simply expressed as Y
[λ1,(1)]

1 = ∂
∂β
. The corresponding

reduced equation is

24µ+ 8µzz + µ3z3 − 2µ2z(4 + z) = 0. (70)

This first order equation inherits Y2 as the C∞−symmetry

Z2 = −2z2 ∂
∂z
− 2µz(−3 + µz) ∂

∂µ
, λ̃2 = −µ. (71)

In the system of coordinates {s = µz−2
z3µ

, r = 1
2z
} the vector field Z2 can be written

as Z2 = ∂
∂r
. Therefore, in these coordinates, equation (70) takes the form of the

Ricatti equation

rs =
4r2

s
− 1. (72)

When the general solution of equation (72) is expressed, in terms of {z, µ} , as
µ = H(z, C1), the auxiliary first order equation that let us recover the solution of
equation (70) is the linear equation βz = H(z, C1)(β − z), which can be solved by
quadrature.

Next we show how the C∞−symmetries (68) can be used to construct
a solvable structure for equation (64). The C∞−symmetries Y1 and Y2 are in

involution because [Y
[λ1,(1)]

1 , Y
[λ2,(1)]

2 ] = −2xY
[λ1,(1)]

1 . Let g1 be any function such

that A(x,u)(g1) = λ1g1. Then g1Y
[λ1,(1)]

1 is a generalized Lie symmetry of equation
(64), that is

[g1Y
[λ1,(1)]

1 , A(x,u)] = ρ1A(x,u), (73)

for some function ρ1. Let g2 be a function such that

A(x,u)(g2) = λ2g2 and Y
[λ1,(1)]

1 (g2) = 0. (74)

A function g2 can be found as follows: since {z, µ} in (69) are invariants of

Y
[λ1,(1)]

1 = ∂
∂β
, we can choose any function g2 = g2(z(x, u), µ(x, u, ux)) such that

A(z,µ)(g2) = λ̃2g2 = −µg2 , where A(z,µ) is the vector field associated to equation
(70). If g2 verifies (74), then

[g2Y
[λ2,(1)]

2 , A(x,u)] = ρ2A(x,u), and [g2Y
[λ2,(1)]

2 , g1Y
[λ1,(1)]

1 ] = gY
[λ1,(1)]

1 , (75)

for some function ρ2 and g = 2xg1g2 + g2Y
[λ2,(1)]

2 (g1). By (73) and (75), we deduce

that {A(x,u), g1Y
[λ1,(1)]

1 , g2Y
[λ2,(1)]

2 } constitutes a solvable structure of equation (64).

The same construction can be done for any equation with symmetry algebra
of case V, because the C∞−symmetries Y1 and Y2 are always in involution (see
Theorem 4 in [18]).
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5. C∞ -symmetries and potential symmetries.

In this section we study some relationships between potential symmetries, intro-
duced by Bluman ([7]), and C∞ -symmetries. Although we only consider 2nd-order
equations, the ideas included in this section may directly be generalized to equa-
tions of greater order.

Let us assume that equation

∆(x, u(2)) = 0 (76)

has no Lie point symmetries and that by means of the Bäcklund transformation
u = f(x, vx) equation (76) can be written in conserved form

Dx(∆̃(x, v(2))) = 0. (77)

Equation (77) can be reduced to (76) by means of the Lie point symmetry ∂
∂v

. By
other hand, (77) can trivially be reduced to equation

∆̃(x, v(2)) = C, (78)

where C is an arbitrary constant. By Theorem 3.2, this reduction is also associated
to the existence of a C∞ -symmetry of (77); in general, this reduction does not come
from the existence of a Lie point symmetry.

If, for some C ∈ R , X is a Lie point symmetry of (78) then X is not
necessarily a point symmetry of equation ∆̃(x, v(2)) = C ′, for C ′ 6= C , and is not
a point symmetry of (77). In this paper, any point symmetry of equation (78), for
some C ∈ R , will be called potential symmetry of equation (76). Let us recall that
Bluman ([7]) considered the concept of potential symmetry only for C = 0 and, in
this case, it may happen that the general solution of (76) cannot be obtain from
one of the equations of type (78). This occurs in some trivial cases. For instance,
if equation (76) is uxx = 0 then, by writing u = vx , equation (77) is vxxx = 0
and equation (78) is vxx = 0. The general solution of this equation takes the form
v = ax + b , with a, b ∈ R . Clearly u = vx = a does not give the general solution
of uxx = 0.

If X is a vector field, in variables (x, v), that is a point symmetry of every
equation of the form (78) (and does not depend on C ) then X will be called a
super-potential symmetry of equation (76). We prove in this section that super-
potential symmetries can be recovered as C∞ -symmetries of (76).

Let us assume that the vector field X is a Lie point symmetry of equation
(78), for every C ∈ R ; i.e. X is a super-potential symmetry of equation (76).
In this case ∆̃(x, v(2)) is a X(2) -invariant function. If φ = φ(x) is an arbitrary
solution of (77) then Dx(∆̃(x, φ(2)(x))) = 0 and there exists a constant C ∈ R such
that ∆̃(x, φ(2)(x)) = C . Hence φ is a solution of equation (78) and X transforms φ
into another solution of the same equation (78). This proves that the transformed
solution is also a solution of (77). Therefore X is also a Lie point symmetry of (77).
This fact can also be proved by another procedure: since [X(3), Dx] = µDx , for
some function µ , it follows that µDx∆̃ = X(3)(Dx∆̃) −Dx(X

(3)∆̃) = X(3)(Dx∆̃)
and X(3)(Dx∆̃) = 0 when Dx∆̃ = 0.

If X1, X2 are super-potential symmetries of (76) and X1, X2, X3 , with
X3 = ∂

∂v
, are the generators of a Lie algebra, then we have proved, in section
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4., that X1, and X2, can be recovered as C∞−symmetries of equation (76). Since
C∞−symmetries can be calculated by a well-defined algorithm, and can be used
to reduce the order, we could solve the original equation without knowing the
associated conserved form (77), which is needed to calculate potential symmetries.
In this case two methods of reduction can be used, that are illustrated through
the following example.

Let us consider the following second order differential equation:

u5 + e2 ( 1
u

+x) (u4 + u5 − 3u1
2 + uu2

)
= 0. (79)

It can be checked (see Appendix B) that this equation has no Lie point symmetries.

Method A. By means of the transformation u = vx = v1 equation (79)
becomes the third order differential equation:

v1
5 + e

2
(

1
v1

+x
) (
v1

4 + v1
5 − 3 v2

2 + v1 v3

)
= 0. (80)

Equation (80) can be expressed in conserved form as

Dx

(
e−2 v

(
e
−2
(

1
v1

+x
)

+

(
1 +

1

v1

− v2

v1
3

)2
))

= 0. (81)

Let us consider any second order equation associated to equation (81) or (80):

e
−2
(

1
v1

+x
)

+

(
1 +

1

v1

− v2

v1
3

)2

= Ce2 v, (82)

where C is an arbitrary constant. It can be checked that equation (82) admits

X1 = e−v ∂
∂x
, X2 = −e−v(v + x+ 1) ∂

∂x
+ e−v ∂

∂v
(83)

as Lie point symmetries. Hence, X1 and X2 are super-potential symmetries of
equation (79). Since [X1, X2] = 0, any of these two Lie point symmetries can be
used to reduce the order of equation (82), in such a way that the reduced equation
inherits the unused symmetry as a Lie point symmetry. As a consequence, equation
(82) can be solved by quadratures.

Next, we use the Lie point symmetry X1 to reduce the order of equation
(82). Let us introduce coordinates {y = v, α = evx} in some open set M ⊂ R2.
In variables {y, α}, the vector field X1 can be written as ∂

∂α
. We consider the

corresponding system of coordinates {y, α(2)} in M (2), and the map π
(2)
X1

: M (2) →
M

(1)
1 defined by (y, α(2)) 7→ (y, w, w1), where w = α1. In terms of {y, w(1)}

equation (82) takes the form of the first order reduced equation:

e−2 (we−y−y) + (w1 + ey − w)2 = e4 y C. (84)

It can be checked that the vector field (π
(1)
X1

)∗X
(1)
2 , that will be denoted by X̃2 ,

can be written in terms of {y, w} as

X̃2 = e−y
∂

∂y
+ (−1 + e−yw)

∂

∂w
. (85)
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The vector field X̃2 is a Lie point symmetry of equation (84), and therefore,
it can be used to integrate the equation. By means of the change of variables
{z = e−yw + y, β = ey}, for which X̃2 = ∂

∂β
, equation (84) takes the form

βz = ± ez√
−1 + e2 z C

. (86)

The general solution of (86) can be obtained by a quadrature:

C1β = ± ln(C1 e
z +

√
−1 + C2

1 e
2 z) + C2, (87)

where C2
1 = C and C2 is an arbitrary constant. This solution can be written in

the simple form C1e
z = cosh(C1β − C2). Since z = e−yw + y and β = ey, the

general solution of equation (84) can be expressed as

w = −ey
(
C2 + ln(2C1)− C1 e

y + y − ln(1 + e2 (C2−C1 ey))
)
. (88)

By integration with respect to y we get :

α = ey
(
C1

2
ey − (−1 + C2 + ln(2C1) + y)

)
− 1

2C1

∫
ln(1 + t)

t
dt+ C3, (89)

where t = e2 (C2−C1 ey) and C3 is an arbitrary constant. The solution of equation
(81) can be expressed as

x =

(
C1

2
ev − (−1 + C2 + ln(2C1) + v)

)
− e−v 1

2C1

∫
ln(1 + t)

t
dt+ C3e

−v, (90)

where t = e2 (C2−C1 ev). Since u = vx = ey

w−α , the general solution of equation (79)
is given by

u−1 = ln(1 + e2 (C2−C1 ev))− 1 +
C1 e

v

2
+
e−v

2C1

∫
ln(1 + t)

t
dt− C3e

−v. (91)

Method B. Let us observe that the Lie point symmetries X1 and X2 of
equation (82), that are super-potential symmetries of equation (79), are also Lie
point symmetries of equation (80). Equation (80) does also admit the vector field
X3 = ∂

∂v
as Lie point symmetry. It can be checked that the following relations

hold:

[X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X1 +X2. (92)

Therefore, equation (80) admits a three-dimensional solvable algebra, G generated
by {X1, X2, X3}, that corresponds to case IV (with a = 1, b = 0, c = d = 1), and
equation (79) is the X3−reduced equation.

In what sequel, we show that the point symmetries X1, and X2, used above
as super-potential symmetries, can be recovered as C∞−symmetries of equation
(79). Since C∞−symmetries can be calculated by an algorithm, and can be used
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to reduce the order, we could solve the original equation without knowing the
associated conserved form (81) needed to calculate potential symmetries.

A function f1 such that X3(f1) = f1 is given by f1 = ev. Clearly, the vector

field f1X
(1)
1 is π

(1)
X3
−projectable and the vector field

Y1 = (π
(1)
X3

)∗(f1X
(1)
1 ) =

∂

∂x
+ u2 ∂

∂u
(93)

is a C∞−symmetry of equation (79), for the function

λ1 = −Dx(e
v)

ev
= −vx = −u. (94)

By Theorem 2.5, the order of equation (79) can be reduced by using the
λ1−symmetry Y1 . It can be checked that in terms of variables{

z =
1

u
+ x, β = x, µ =

β − z
βz

=
ux
u3
− 1

u

}
(95)

the vector field Y
[λ1,(1)]

1 is simply expressed as Y
[λ1,(1)]

1 = ∂
∂β

and the corresponding
reduced equation is

1− e2 z (−1 + µ+ µµz) = 0. (96)

The unused Lie point symmetry X2 can also be recovered as a C∞−sy-
mmetry of equation (96). By taking f2 = ev, the vector field f2X2 is projectable
to the space of variables {z, µ} ; its projection is given by

Y2 = − ∂

∂z
+ (−1 + µ)

∂

∂µ
. (97)

The vector field Y2 is a C∞−symmetry of equation (96) for the function

λ2 = −Dz(ev)
ev

= −Dx(v)
Dx(z)

= 1
µ
.

A function g such that gY2 is a Lie point symmetry of (96) is given by

g =
ez√

1 + e2z (1− µ)2
. (98)

In coordinates {s = (1 − µ)ez, r =
√

1 + e2 z (−1 + µ)2e−z} the vector field gY2

can be written as ∂
∂r

and equation (96) can be integrated by a quadrature:

rs =
1√

1 + s2
. (99)

Let us compare the two methods of reduction we have used. When method
A is applied to equation (79), we have to construct the conserved form (81). The
order of the integrated equation (82) is reduced by means of the potential symme-
tries (83). The solution (90) of equation (82) is obtained by quadratures. To
recover solutions of equation (79), we must solve equation (90) for v and then u
can be obtained by derivation (u = vx ).
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When method B (C∞−symmetries) is applied, we construct directly the
reduced equation (99). The solutions of equation (79) can be obtained as follows.
We first solve equation (99) in the form r = H(s, C1) and obtain µ in the form µ =
G(z, C1). Since µ = β−z

βz
, we must solve the linear equation β = z + βzG(z, C1).

From the solution β = J(z, C1, C2) of this equation we directly obtain the solution
of (79) in the implicit form x = J(x+ 1

u
, C1, C2, C3).

6. Conclusions

The introduction of the concept of C∞(M (1))−symmetry ([17]) was motivated by
the existence of ordinary differential equations that can be reduced or integrated
but lack Lie point symmetries. In this paper, that concept is extended to define
the C∞(M (k))−symmetries and it is proved that several classes of order reduction
methods come from of the existence of C∞(M (k))−symmetries but not from the
existence of Lie point symmetries.

We have also studied another equations, without Lie point symmetries, that
can be obtained by reduction of equations with a three-dimensional Lie algebra of
point symmetries G , that may be solvable or not. The elements of G are hidden
symmetries of the original equation, can be recovered as C∞−symmetries of the
reduced equation and can be used to get new order reductions. This is illustrated
through an example, that corresponds to a non-solvable algebra. We have also
shown how these C∞−symmetries can be used to construct a solvable structure of
the reduced equation.

We have also proved that a class of potential symmetries, that are here
called super-potential symmetries, can be recovered as C∞−symmetries of the
original equation. Since these C∞−symmetries can be calculated by a well-defined
algorithm, we do not have to determine the Bäcklund transformations needed to
write the equation in conserved form, that in practice are difficult to find.

7. Appendix A: Equation (64) has no Lie point symmetries.

If a vector field X = p(x, u) ∂
∂x

+ r(x, u) ∂
∂u

is a Lie point symmetry of equation

(64), the infinitesimal p(x, u) must satisfy the equation (ux + 1) ∂
2p
∂u2 + 3x ∂p

∂u
= 0.

Therefore,

p(x, u) =
p1(x)u(ux+ 2) + 2p2(x)

(u x+ 1)2 , (100)

where p1 and p2 depend only on x . The infinitesimal r(x, u) must satisfy

(ux+ 1)4 ∂2r
∂u2 − 3x(ux+ 1)3 ∂r

∂u
+ 3x2(ux+ 1)2r + 2 p2 u

2 x3

−p1 u
2 x2 + 8 p′2 u x

2 + 4 p2 u x
2 − 3 p1 u

2 x+ 32 p2 u x

−4 p′1 u x− 2 p1 u x+ 8 p′2 x+ 2 p2 x− 18 p1 u+ 2 p2 − 4 p′1 − p1 = 0.

(101)
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It can be checked that the general solution of equation (101) is given by

r(x, u) = 1
6x3(ux+1)2 (6r1u

5x5 + 30r1u
4x4 + 6x3(r2x

2 + 10r1)u3

−2x2(2p2x
2 − 9r2x

2 − p1x− 3p1 − 30r1)u2 − (6p′2x
2

+8p2x
2 − 18r2x

2 + 24xp2 − 3p′1x− 4p1x− 21p1 − 30r1)xu

+6r2x
2 − 6p′2x

2 − 4p2x
2 − 12p2x+ 3p′1x+ 2p1x+ 9p1 + 6r1) ,

(102)

where r1 and r2 are arbitrary functions depending on x. If, in the determining
equations, we cancel out the coefficients of powers of u then r1(x) = 0, r2(x) =
−2p′1(x)

3x
, p2(x) =

2p′1(x)

x2 + (x2−12)p1(x)
2x3 and p1(x) must satisfy:

(x2 + 36)xp′1(x)− 108p1(x) = 0. (103)

By solving this equation, we get p1(x) = a x3

(x2+36)3/2 , for a ∈ R, and hence p2(x) =

a x4+24 a x2

2(x2+36)5/2 .

With these values, we evaluate again the determining equations and we find
a = 0. Therefore p1 = p2 = 0. By (100), p = 0 and, by (102), r = 0. Equation
(64) has no Lie point symmetries.

8. Appendix B: Equation (79) has no Lie point symmetries

Next, we prove that equation (79) has no Lie point symmetries. If a vector
field X = p(x, u) ∂

∂x
+ r(x, u) ∂

∂u
is a Lie point symmetry of equation (79) the

infinitesimals p and r must satisfy the following determining equations:

e1 : ∂2p
∂u2 u+ 3 ∂p

∂u
= 0,

e2 :
(
∂2r
∂u2 − 2 ∂2p

∂u∂x

)
u2 − 3 ∂r

∂u
u+ 3 r = 0,

e3 : 3 ∂p
∂u
u5 e−2x− 2

u + 3 ∂p
∂u
u5 + 3 ∂p

∂u
u4 + 2 ∂2r

∂u∂x
u− ∂2p

∂x2 u− 6 ∂r
∂x

= 0,

e4 :
(
− ∂r
∂u
u4 + 2 ∂p

∂x
u4 − 2 p u4 + 4 r u3 + 2 r u2

)
e−2x− 2

u

− ∂r
∂u
u4 + 2 ∂p

∂x
u4 − ∂r

∂u
u3 + 4 r u3 + 2 ∂p

∂x
u3 + 3 r u2 + ∂2r

∂x2 = 0.

(104)

From equation e1, we get

p =
p2

u2
+
p1

2
(105)

where p1, p2 are arbitrary functions on x. By substituting this value into equation
e2 we obtain:

∂2r

∂u2
u3 − 3

∂r

∂u
u2 + 3 r u+ 4

dp2

dx
= 0. (106)
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Therefore

r = r1 u
3 + r2 u− 1

2u
dp2

dx
, (107)

where r1, r2 are functions depending on x. Since equation e3 becomes

−12 p2 u
2(ue−2x− 2

u + u+ 1)− 8 dr2
dx
u2 − d2p1

dx2 u
2 + 6 d2p2

dx2 = 0, (108)

it follows that p2 = 0. Therefore, equation e4 can be written as

(
r1 u

6 + 2 r1 u
5 + 3 r2 u

4 + dp1

dx
u4 − p1 u

4 + 2 r2 u
3
)
e−2x− 2

u

+r1 u
6 + 3 r2 u

4 + dp1

dx
u4 + 2 r2 u

3 + d2r1
dx2 u

3 + dp1

dx
u3 + d2r2

dx2 u = 0.
(109)

We finally deduce that r1 = 0, r2 = 0 and p1 = 0. By (107), r = 0 and by
(105), p = 0. Therefore, equation (79) has no Lie point symmetries.
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