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Abstract. Let G be a reductive linear algebraic group defined over an
algebraically closed base field k of characteristic zero. A G -variety is an algebraic
variety with a regular action of G , defined over k . An affine G -variety is called
stable if its points in general position have closed G -orbits. We give a simple
necessary and sufficient condition for a G -variety to have a stable affine birational
model.
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1. Introduction

Let G be a linear algebraic group, defined over an algebraically closed base field k
of characteristic zero. We shall refer to a reduced but not necessarily irreducible
algebraic variety X (defined over k ), with a regular action of G (also defined
over k ) as a G-variety. By a morphism X −→ Y of G-varieties, we shall mean
a G-equivariant morphism. The notions of isomorphism, rational map, birational
isomorphism, etc. of G-varieties are defined in a similar manner. As usual, given
a G-action on X , we shall denote the orbit of x ∈ X by Gx and the stabilizer
subgroup of x by Gx ⊆ G . Finally, we shall say that a property holds for x ∈ X
in general position if it holds for every point x of some dense open subset of X .

In this note we will be interested in studying G-varieties up to birational
isomorphism. In this context it is natural to ask whether or not a given G-variety
X has an affine model. Indeed, there are numerous results and constructions
in invariant theory that are available for affine G-varieties but not in general,
especially if G is reductive; cf. [5].

Recall that an affine G-variety X is called stable, if the orbit Gx is closed
for x ∈ X in general position. If G is reductive, these varieties have many nice
properties; for a summary, see, e.g., [10, Section 8]. The question we will address
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in this note is: Which G-varieties have a stable affine birational model? Our main
result is the following:

Theorem 1.1. Let G be a reductive linear algebraic group and X be a G-
variety. Then the following are equivalent:

(a) X is birationally equivalent to a stable affine G-variety.

(b) The stabilizer Gx is reductive for x in general position in X .

In the case where X = G/H is a homogeneous space, Theorem 1.1 reduces
to a theorem of Matsushima [3] which says that G/H is affine if and only if H is
reductive. Moreover, the implication (a) =⇒ (b) of Theorem 1.1 is an immediate
consequence of Matsushima’s theorem. Indeed, after replacing X by a stable affine
model, we see that for x ∈ X in general position the orbit Gx ' G/Gx is affine,
so that Gx is reductive.

Our proof of the implication (b) =⇒ (a) will be based on the following
more general result:

Theorem 1.2. Let G be a linear algebraic group and X a G-variety. Denote
by Gx the stabilizer of x ∈ X in G. Assume that one of the following two
conditions is satisfied:

(i) Gx = {1} for x ∈ X in general position (i.e., the G-action on X is
generically free), or

(ii) the normalizer NG(Gx) is reductive for x ∈ X in general position.

Then X is birationally isomorphic to a stable affine G-variety.

Note that if G and Gx are both reductive then so is the normalizer NG(Gx);
see [2, Lemma 1.1]. Thus Theorem 1.2(ii) proves the implication (b) =⇒ (a) of
Theorem 1.1.

The rest of this note will be devoted to proving Theorem 1.2. Our proof of
part (ii) will be based on part (i) and a theorem of Richardson [7, Theorem 9.3.1]
about the existence of stabilizers in general position.

We remark that the theorems of Matsushima and Richardson mentioned
above were originally proved only for k = C (by analytic methods). An algebraic
proof of Matsushima’s theorem over an algebraically closed field k of characteristic
zero can be found in [1, Section 2]. Richardson’s theorem is also valid over
such k by the Lefschetz principle; it is stated in this form in [5, Theorem 7.1].
Nevertheless, it would be interesting to find a direct algebraic proof.
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2. Proof of Theorem 1.2(i)

We begin with a simple lemma.
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Lemma 2.1. Every linear algebraic group G has a stable generically free linear
representation.

Proof. We first embed G as a closed subgroup in SLn for some n ≥ 1. The
linear action of SLn on V = Mn(k) by left multiplication is easily seen to be
stable and generically free. So for v ∈ V in general position, the stabilizer of v
in SLn is trivial, and SLnv is closed in V . For such a v , the map h 7→ hv gives
an isomorphism of SLn onto SLnv . Hence, Gv is closed in SLnv and thus in V .
Consequently, the induced linear action of G on V is stable and generically free.

We are now ready to proceed with the proof of Theorem 1.2(i). Recall that a
G-variety is called primitive if G transitively permutes the irreducible components
of X . It is easy to see that every X is birationally isomorphic to a disjoint union
of primitive G-varieties; cf. [6, Lemma 2.2]. Hence, we may assume that X is
primitive.

By a theorem of Rosenlicht there exists a rational quotient map

πrat : X 99K Z ,

separating the G-orbits in general position in X ; see [8] (for the case where X
is irreducible) and [9] (for general X ). Here Z is only defined up to birational
isomorphism, so we may assume without loss of generality that Z is affine. After
replacing X by a dense open G-invariant subset, we may assume that Gx = {1}
for every x ∈ X , and that πrat is regular and separates the G-orbits in X . Since
X is primitive, Z is irreducible.

By Lemma 2.1 there exists a stable generically free linear representation V
of G . Let V0 be a G-stable dense open subset of V such that every point v ∈ V0

has a closed orbit (in V ) and trivial stabilizer. By [6, Proposition 7.1] there is a
G-equivariant rational map f : X 99K V whose image contains a point v ∈ V0 .
Let Y be the closure of the image of f × πrat : X 99K V × Z . Note that Y is
G-primitive and affine. Moreover, U = Y ∩ (V0 × Z) is a G-invariant non-empty
(and hence, dense) open subset of Y , and every point of U has a trivial stabilizer
in G and a closed G-orbit in V × Z . Thus Y is a stable affine generically free
G-variety.

It remains to show that f × πrat is a birational isomorphism between X
and Y . Since we are working in characteristic zero, since X is primitive, and
since f × πrat : X 99K Y is dominant, it suffices to check that f × πrat is injective
on a dense open subset of X . Indeed, let W = (f × πrat)

−1(U). Then W is
a G-stable nonempty (and thus dense) open subset of X . Now assume that
y = (f × πrat)(x1) = (f × πrat)(x2) for some x1, x2 ∈ W . Since πrat separates the
orbits in X , x2 = g(x1) for some g ∈ G . But then g ∈ Gy = {1} . We conclude
that x1 = x2 .

3. Homogeneous Fiber Spaces

Let N be a closed subgroup of a linear algebraic group G , and let W be an
N -variety. We first recall the definition of the G-variety G ∗N W . Consider the
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action of G×N on the variety G×W given by

(g, n) · (h,w) = (ghn−1, nw) . (1)

The variety G ∗N W is, by definition, the rational quotient of G × W for the
N -action given by the above formula (where we identify N with the subgroup
{1}×N of G×N ). Moreover, one can choose a particular model for G∗N W such
that the G-action on G×N descends to a regular G-action on G ∗N W making
the rational quotient map G×W 99K G∗N W G-equivariant. The variety G∗N W
is often referred to as a homogeneous fiber space. (If W is a point with trivial N -
action, then G ∗N W is the homogeneous space G/N .) Note that above definition
of G ∗N W , taken from [6, 2.12], is somewhat different from the one given in [5,
4.8], where the categorical, rather than the rational quotient is considered. As a
result, our G ∗N W is only defined up to birational isomorphism (of G-varieties);
however, there is no restriction on W (compare with [5, Theorem 4.19]).

For lack of a reference, we include the following easy lemma.

Lemma 3.1. Let N be a closed subgroup of a linear algebraic group G. If W1

and W2 are birationally isomorphic N -varieties, then G ∗N W1 and G ∗N W2 are
birationally isomorphic G-varieties.

Proof. Say ϕ : W1 99K W2 is a birational isomorphism of N -varieties. Then
idG×ϕ : G ×W1 99K G ×W2 is a birational isomorphism of G × N -varieties, so
induces a birational isomorphism of the rational quotients by N . One easily checks
that this birational isomorphism G ∗N W1 99K G ∗N W2 is G-equivariant.

We now recall that a subgroup S ⊆ G is called a stabilizer in general
position for a G-variety X if Gx is conjugate to S for x ∈ X in general position.
Note that if a G-variety X has a stabilizer in general position, it is unique up to
conjugacy.

Lemma 3.2. Let G be a linear algebraic group, and let X be a primitive
G-variety. Assume that X has a stabilizer S ⊆ G in general position. Set
N = NG(S), and denote by XS the set of S -fixed points in X . Let Y be the
union of the irreducible components of XS of maximal dimension. Then X is
birationally isomorphic to G ∗N Y as a G-variety.

Our proof is closely related to arguments in [4, Section 1.7]; however, for
the sake of completeness, and because we are assuming that X is primitive but
not necessarily irreducible, our proof will be self-contained.

Proof. After replacing X by a G-invariant dense open subset, we may assume
that Gx is conjugate to S for every x ∈ X . By comparing stabilizers, we see that

GXS = X (2)

and
if gx1 = x2 for some x1, x2 ∈ XS and g ∈ G , then g ∈ N . (3)

We first show that GY is dense in X . Consider the map Ψ: G×XS −→ X
given by (g, x) 7→ gx . By (2), Ψ is surjective. By (3), the fibers of Ψ are precisely
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the N -orbits in G × XS , where N acts by n · (g, x) = (gn−1, nx). Since this
action is free (i.e., the stabilizer of every point is trivial), every fiber has the same
dimension dim(N). Since X is G-primitive, the fiber dimension theorem implies
that GY is dense in X .

Since Ψ sends N -orbits in G × Y to points in X , the universal property
of rational quotients of N -varieties (see, e.g., [6, Remark 2.4]) says that Ψ|G×Y

descends to a rational map ψ : G ∗N Y 99K X of G-varieties. Since GY is dense
in X , ψ is dominant. We claim that ψ is a birational isomorphism.

Since the irreducible components of Y have the same dimension, and since
the dimension of the fibers of Ψ is constant, we conclude that the irreducible
components of G ∗N Y are also of the same dimension (namely, of dimension,
dim(G) + dim(Y ) − dim(N)). Thus in order to show that ψ is a birational
isomorphism, we only need to check that ψ is generically one-to-one. More
precisely, we will show that if Ψ(g1, y1) = Ψ(g2, y2), then (g1, y1) and (g2, y2)
lie in the same N -orbit in G× Y .

Indeed, Ψ(g1, y1) = Ψ(g2, y2) can, by definition, be rewritten as y1 =
g−1
1 g2y2 . By (3), g−1

1 g2 ∈ N . Setting n = g−1
1 g2 , we see that (g1, y1) =

(g2n
−1, ny2), so that (g1, y1) and (g2, y2) are, indeed, in the same N -orbit. This

completes the proof of Lemma 3.2.

4. Proof of Theorem 1.2(ii)

We begin with several preliminary reductions. First note that if NG(Gx) is reduc-
tive then Gx itself must be reductive. Indeed, the unipotent radical Ru(Gx) is
trivial, because it is a normal unipotent subgroup of NG(Gx).

Secondly, we may assume, as we did in the previous section, that X is
primitive, i.e., G transitively permutes the irreducible components of X .

Thirdly, by a theorem of Richardson (see [7, Theorem 9.3.1] or [5, Theorem
7.1]), X has a stabilizer S ⊆ G in general position. (If X0 is an irreducible
component of X , and if G0 = {g ∈ G | g(X0) = X0} , Richardson’s theorem
immediately implies that the G0 action on X0 has a stabilizer in general position;
one easily checks that this stabilizer is also a stabilizer in general position for the
G-action on the primitive G-variety X .) Now, after replacing X by a G-invariant
dense open subset, we may assume that Gx is conjugate to S for every x ∈ X .
By assumption, N = NG(S) is reductive. Denote by XS the set of S -fixed points
in X . Let Y be the union of the irreducible components of XS of maximal
dimension. By Lemma 3.2, X is birationally isomorphic to G ∗N Y as G-variety.

Since S acts trivially on Y , we can think of Y as an N/S -variety. By
our assumption, Gx is conjugate to S for every x ∈ X . In particular, Gx = S
for every x ∈ XS . Hence, the N/S -action on Y is generically free and, by
Theorem 1.2(i), there is a stable affine N/S -variety Z , birationally equivalent to
Y . By Lemma 3.1, X ' G∗N Y is birationally isomorphic to G∗N Z as G-variety.
So it suffices to show that G∗N Z has a stable affine model, namely the categorical
quotient X ′ = (G × Z) //N . Here we identify, as before, N with the subgroup
{1} ×N of G×N , and the N -action on G× Z is given by (1).

Since G× Z is affine and N is reductive, X ′ is affine. Since the N -action
on G× Z is free, it is stable. Since N is reductive, the categorical quotient map
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πcat : G × Z −→ X ′ separates closed orbits, so all orbits, see, e.g., [5, p. 189,
Corollary]. This implies that X ′ is birationally isomorphic to G∗N Z , the rational
quotient of G× Z by N , see, e.g., [6, Remark 2.5].

It remains to show that the G-action on X ′ is stable. We first note that
the G × N -action on G × Z , given by (1) is stable. Indeed, the G × N -orbit of
(g, z) ∈ G×Z is G× (Nz). Since the N -action on Z is stable, this orbit is closed
for z in general position in Z .

Finally, the G-orbits in X ′ are images, under πcat , of G × N -orbits in
G × Z . Since πcat maps N -invariant closed sets in G × Z to closed sets in X ′

(cf. [5, p. 188, Corollary]), it follows that the G-action on X ′ is stable. This
completes the proof of Theorem 1.2(ii).
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