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Abstract. The paper studies weak Paley-Wiener properties for group exten-
sions by use of Mackey’s theory. The main theorem establishes sufficient con-
ditions on the dual action to ensure that the group has the weak Paley-Wiener
property. The theorem applies to yield the weak Paley-Wiener property for large
classes of simply connected, connected solvable Lie groups (including exponential
Lie groups), but also criteria for non-unimodular groups or motion groups.
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0. Introduction

The weak Paley-Wiener property (wPW) can be formulated as follows: Let G be
a second countable, type I locally compact group, and define

L∞c (G) = {f : G → C : f measurable, bounded and compactly supported}.

Then G has wPW if

∀f ∈ L∞c (G) ∀Γ ⊂ Ĝ :
(
f̂ |Γ = 0 and νG(Γ) > 0 ⇒ f = 0

)
(1)

where f̂ denotes the operator-valued Fourier transform on L1(G), and the measure

νG on Ĝ is the Plancherel measure of G .

Remark 0.1. In principle the weak Paley-Wiener property may be formulated
for other spaces than L∞c (G), in particular for the larger space L2

c(G) of compactly
supported L2 -functions, or for the smaller space Cc(G). It turns out however that
wPW for Cc(G) implies wPW for the larger space, by the following convolution

argument: Let f ∈ L2
c(G) be such that f̂ vanishes on a set A of positive Plancherel

measure. Then for all g ∈ L2
c(G) we have f ∗ g ∈ Cc(G), and f̂ ∗ g vanishes on A

by the convolution theorem. Hence wPW on Cc(G) implies f ∗ g = 0. Since this
holds for all g ∈ L2

c(G), f = 0 follows.
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The same argument establishes for a Lie group G that wPW for C∞
c (G)

implies wPW for compactly supported distributions.

For our purposes L∞c (G) seems the most convenient space to deal with.
Imposing additional smoothness assumptions on f does not really help shorten
the proofs, as we need to lift functions onto quotients by use of a cross-section.
Since usually no smooth cross-section is available, this procedure destroys any
smoothness.

The statement originated from real Fourier analysis. The fact that R has
wPW follows easily from the observation that the Fourier transform of a compactly
supported function is analytic. An even simpler argument works for Z ; Fourier
transforms of elements of L∞c (Z) are trigonometric polynomials. On the other
hand, the circle group T does not have wPW, for obvious reasons. wPW has been
proved for various (unimodular, type I) groups, in particular connected, simply
connected nilpotent Lie groups [17, 18, 9, 15, 1]; with generalisations to completey
solvable groups [10].

The property can be viewed as an uncertainty principle: If f is compactly
supported, f̂ is spread over all of Ĝ . It is interesting to compare wPW to the so-
called qualitative uncertainty property (Q.U.P.) studied in [11, 7, 1], stating
for all f ∈ L1(G) that

µG(supp(f)) + νG(supp(f̂)) < ∞⇒ f = 0, (2)

where µG is left Haar measure, νG is Plancherel measure and supp denotes the
measure-theoretic support (unique up to a null set). By contrast to wPW, this
property is obviously not invariant under choice of equivalent Plancherel measures,
but rather rests on a canonical choice (which is available for unimodular groups).

Throughout this paper G denotes a type I locally compact group and N
a closed normal subgroup of type I, which is in addition regularly embedded. All
groups are assumed to be second countable. The aim is to give sufficient criteria
that G has wPW, in terms of analogous properties of N and the little fixed groups.

The paper is structured as follows: We first give a review of the Mackey
machine and its uses for the computation of Plancherel measure via techniques
due to Kleppner and Lipsman. We then present explicit formulas for the induced
representations arising in the construction of Ĝ , and for the associated represen-
tations of L1(G), which act via certain operator-valued integral kernels. These
formulas will allow to prove the main result of this paper, Theorem 1.2, essentially
by repeated application of Fubini’s theorem. In the final section we apply Theo-
rem 1.2 to prove wPW for a large class of simply connected, connected solvable Lie
groups (Theorem 3.8), thereby considerably generalising the previously published
results for nilpotent and completely solvable groups given in [17, 18, 9, 15, 1, 10].
Further consequences are criteria for nonunimodular groups (Corollary 3.2), and
a characterisation of wPW for motion groups (Theorem 3.3).

1. Plancherel measure of group extensions

We follow the exposition in [14]. For further details and notation not explained
here, the reader is referred to this monograph. Throughout the paper we assume
that G is a type I group, and that N C G is a regularly embedded, type I normal
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subgroup. Left Haar measure on a locally compact group is denoted by | · | , and

integration against left Haar measure by
∫

G
· dx . Given a multiplier ω on G , Ĝω

denotes the (equivalence classes of) irreducible unitary ω -representations; ω is
omitted when it is trivial. ω is the multiplier obtained by complex conjugation. A
multiplier ω is called type I if all ω -representations generate type I von Neumann
algebras.

Since we are also dealing with nontrivial Mackey-obstructions, we need to
recall a multiplier version of the Plancherel theorem. Given a multiplier ω on G ,
we denote by λG,ω the ω -representation of G , acting on L2(G) via

λG,ω(x)f(y) = ω(y−1, x)f(x−1y).

If ω is type I, there exists a Plancherel measure (unique up to equivalence) νG,ω

on Ĝω decomposing λG,ω ,

λG,ω '
∫ ⊕

Ĝω

dim(π) · π dνG,ω(π)

The associated Fourier transform is given by

Fω : L1(G) 3 f 7→ (ρ(f))ρ∈Ĝω .

ω is omitted whenever it is trivial.

For completeness, we mention the construction of the Plancherel transform
associated to the Plancherel measure. In the unimodular case, the measure νG

can be chosen so that for f ∈ L1(G) ∩ L2(G) the operator field Fω(f) is in fact a
field of Hilbert-Schmidt operators satisfying∫

Ĝ

‖Fω(f)(σ)‖2
HSdνG(σ) = ‖f‖2

2,

and the Fourier transform extends by density to a unitary equivalence between
L2(G) and the direct integral of Hilbert-Schmidt spaces. The nonunimodular
setting requires right multiplication of Fω(f) with a field of unbounded, densely
defined selfadjoint operators with densely defined inverse. In particular, it does
not matter whether we formulate wPW with reference to operator-valued Fourier-
or Plancherel transform, though the first one is obviously simpler.

Mackey’s theory rests on the dual action of G on N̂ . We assume that
N is regularly embedded, i.e., the orbit space N̂/G is countably separated. For

γ ∈ N̂ let Gγ denote the fixed group under the dual action. Now Mackey’s theory

provides Ĝ as the disjoint union⋃
G.γ∈N̂/G

{IndG
Gγ

γ′ ⊗ ρ : ρ ∈ Ĝγ/N
ωγ

}.

Here ωγ denotes the multiplier associated to γ , and γ′ denotes a fixed choice of

an ωγ -representation of Gγ on Hγ extending γ . Finally, ρ ∈ Ĝγ/N
ωγ

is identified
with its “lift” to Gγ . In the following, we use the notation

πG.γ,ρ = IndG
Gγ

(γ′ ⊗ ρ)
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Note that under our assumptions, it follows from a theorem due to Mackey that
all (Gγ/N, ωγ) are type I (see e.g. [14, Chapter III, Theorem 4]). Thus we have

description of Ĝ as a “fibred set”, with base space N̂/G and fibre

{IndG
Gγ

γ′ ⊗ ρ : ρ ∈ Ĝγ/N
ωγ

} ' Ĝγ/N
ωγ

associated to G.γ . Moreover, there exist Plancherel measures on N̂ as well as

on Ĝγ/N
ωγ

. Now νG is obtained by taking the projective Plancherel measures

in the fibres, and “glueing” them together using a pseudo-image ν of νN on N̂ ,
i.e. the quotient measure of a finite measure equivalent to νN . In formulas, up to
equivalence νG is given according to [13, I, 10.2] by

dνG(πG.γ,ρ) = dν
Ĝγ/N

ωγ (ρ)dν(G.γ). (3)

But ν also enters in a measure decomposition of νN : There exists quasi-invariant
measures µG.γ on the orbits G.γ ∈ N̂/G such that

dνN(π) = dµG.γ(π)dν(G.γ). (4)

In view of the “fibrewise” description of Ĝ it is useful to generalise the wPW
notion to multipliers:

Definition 1.1. Let G be a locally compact group and ω a type I multiplier
on G . Then G has ω -wPW, if for every nonzero f ∈ L∞c (G), Fω(f) does not
vanish on a set of positive ω -Plancherel measure.

Now we have collected enough terminology to formulate the main result of
this paper.

Theorem 1.2. Let G be type I, N C G a type I regularly embedded normal
subgroup, with the additional property that for almost γ ∈ N̂ , G/Gγ carries an
invariant measure.

(a) Assume that, for almost all γ ∈ Ĝ, Gγ/N has ωγ -wPW. Moreover assume
that the following condition holds:

∀ϕ ∈ L∞c (G)

∀ G - invariant Γ ⊂ N̂

} (
f̂ |Γ = 0 and νN(Γ) > 0 ⇒ f = 0

)
. (5)

Then G has wPW.

(b) Conversely, if G has wPW, then (5) holds.

The existence of invariant measures on G/Gγ is ensured if G/N is abelian or
compact. The fibrewise description of Plancherel measure that we used above can
be employed to convenient label the different assumptions: Condition (5) clearly
constitutes a kind of ”base space wPW”, whereas the requirement that Gγ/N
has ωγ -wPW may be called ”fibre wPW”. Note that base space wPW holds in
particular when N has wPW.
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2. Proof of Theorem 1.2

The proof uses ideas and techniques very similar to those in [13]. It rests on the
interplay of several measure decompositions: Of Haar measure on G along shifts of
subgroups on the group side, and of the Plancherel measures νG and νN according
to (3) and (4).

For explicit calculations it is convenient to realize induced representations
IndG

Hσ on L2(G/H;Hσ). Then the integrated representation acts on this space
via operator-valued kernels. The proof of Theorem 1.2 uses explicit formulas for
these kernels, and their relationship to Fourier transforms of restrictions of ϕ to
cosets mod N . In the following, the restriction of a map f to a subset Y of its
domain is denoted by f |Y . f |Y = 0 is to be understood in the sense of vanishing
almost everywhere (with respect to a measure that is clear from the context).

First let us recall a few basic results concerning cross-sections, quasi-
invariant measures and measure decompositions. If H < G , then a cross-section
α : G/H → G is a measurable mapping fulfilling α(ξ)H = ξ , for all ξ = gH ∈
G/H . A cross-section G/H → G is called regular if images of compact subsets
are relatively compact. All cross-sections in this paper are assumed to be regular,
which is justified by the following lemma.

Lemma 2.1. If G is second countable and H < G closed, there exists a regular
cross-section.

Proof. Denote by q : G → G/H the quotient map. By [16, Lemma 1.1] there
exists a Borel set C of representatives mod H , such that in addition for all K ⊂ G
compact the set C ∩ q−1(q(K)) is relatively compact.

The associated cross-section is constructed by observing that q|C : C →
G/H is bijective. Then q|C is a measurable bijection between standard Borel
spaces, hence the inverse map α is also Borel, and it is a cross-section. Moreover,
given any compact K ⊂ G/H , there exists a compact K0 ⊂ K with q(K0) = K
[8, Lemma 2.46]. Then α(K) = C ∩ q−1(q(K0)) is relatively compact.

Given a cross-section, we may parametrise G by the map

H ×G/H 3 (h, ξ) 7→ hα(ξ)−1. (6)

This particular choice of parametrisation seems a bit peculiar, since it refers to
right cosets rather than left ones. Its benefit will become apparent in the proof of
Lemma 2.4.

Let us first take a closer look at the form that left Haar measure on G takes
in the parametrisation (6). We assume that G/H carries an invariant measure,
denoted in the following by dξ .

Lemma 2.2. For all f ∈ L∞c (G),∫
G

f(x)dx =

∫
G/H

∫
H

f(hα(ξ)−1)∆G(α(ξ))−1dhdξ.
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Proof. ∫
G

f(x)dx =

∫
G

f(x−1)∆G(x−1)dx

=

∫
G/H

∫
H

f(h−1x−1)∆G(h−1x−1)dhd(xH)

=

∫
G/H

∫
H

f(h−1α(ξ)−1)∆G(h−1α(ξ)−1)dxdξ

=

∫
G/H

∫
H

f(hα(ξ)−1)∆G(hα(ξ)−1)∆H(h−1)dhdξ

=

∫
G/H

∫
H

f(hα(ξ)−1)∆G(α(ξ))−1dhdξ,

where we used Weil’s integral formula and ∆H = ∆G|H .

Next we note a few technical details concerning the behaviour of restrictions
of an L∞c -function to shifts of subgroups. For this purpose one further piece of
notation is necessary: The left- and right translation operators on G , denoted by
Rx, Ly , act via

(LyRxf)(g) = f(ygx).

Lemma 2.3. Let ϕ ∈ L∞c (G) and H < G; let α : G/H → G be a cross-section
mapping compact sets to relatively compact sets. Consider the mapping

C : G/H ×G/H → R, (ξ, ξ′) 7→ ‖
(
Lα(ξ)Rα(ξ′)−1ϕ

)
|H‖1

where ‖ · ‖1 denotes the L1 -norm on H .

(a) Given a compact set K ⊂ G/H , the set

{ξ′ ∈ G/H : C(ξ, ξ′) 6= 0 for some ξ ∈ K}

is relatively compact.

(b) C is bounded on compact subsets of G/H ×G/H .

Proof. For part (a) note that
(
Lα(ξ)Rα(ξ′)−1ϕ

)
|H is not identically zero iff

H∩α(ξ)−1(supp(ϕ))α(ξ′) 6= Ø. Solving for α(ξ′) we obtain the necessary condition

α(ξ′) ∈ (supp(ϕ))−1α(K)H

or, equivalently
ξ′ ∈

(
(supp(ϕ))−1α(K)H

)
/H.

By assumption on α , α(K) is relatively compact, hence (a) is shown.

For part (b), it is enough to obtain an upper estimate for the Haar measure
of supp(

(
Lα(ξ)Rα(ξ′)−1ϕ

)
|H), and to consider compact sets of the form K1 ×K2 .

Here we see that

supp(
(
Lα(ξ)Rα(ξ′)−1ϕ

)
|H)) ⊂ H ∩ α(ξ)−1supp(ϕ)α(ξ′)

⊂ α(K−1
1 )supp(ϕ)α(K2)

and the latter set is relatively compact.

Now we can compute the action of the induced representation.
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Lemma 2.4. Let G be a locally compact group, H < G closed and σ a rep-
resentation of H acting on a separable Hilbert space Hσ . Let α : G/H → G be
a Borel cross-section and assume that there exists an invariant measure on G/H .
We realise π = IndG

Hσ on the corresponding vector-valued space L2(G/H;Hσ)
using α. Then π acts via

π(x)f(ξ) = σ
(
α(ξ)−1xα(x−1ξ)

)
f(x−1ξ). (7)

For ϕ ∈ L∞c (G), π(ϕ) acts via

[π(ϕ)f ] (ξ) =

∫
G/H

Φ(ξ, ξ′)f(ξ′)dξ′ (8)

where the right hand side converges in the weak sense for all ξ ∈ G/H , and Φ is
an operator-valued integral kernel given by

Φ(ξ, ξ′) = σ
((

Lα(ξ)Rα(ξ′)−1ϕ
)
|H

)
·∆G(α(ξ′))−1. (9)

Moreover, we have the equivalence

π(ϕ) = 0 ⇔ Φ(ξ, ξ′) = 0(a.e.) (10)

Proof. Formula (7) is well-known. For weak convergence of the right-hand side
of (8) let η ∈ Hσ , and compute∫

G/H

∣∣〈σ ((
Lα(ξ)Rα(ξ′)−1ϕ

)
|H

)
∆G(α(ξ′))−1f(ξ′), η〉

∣∣ dξ′ ≤

≤
∫

G/H

∥∥σ
((

Lα(ξ)Rα(ξ′)−1ϕ
)
|H

)∥∥
∞ ∆G(α(ξ′))−1 ‖f(ξ′)‖ ‖η‖ dξ′

≤
∫

G/H

∥∥(
Lα(ξ)Rα(ξ′)−1ϕ

)
|H

∥∥
1
∆G(α(ξ′))−1 ‖f(ξ′)‖dξ′ ‖η‖.

By Lemma 2.3 (a) the map

ξ′ 7→
∥∥(

Lα(ξ)Rα(ξ′)−1ϕ
)
|H

∥∥
1
∆G(α(ξ′))−1

is compactly supported, and also bounded, by Lemma 2.3 (b) and boundedness of
∆−1

G ◦ α on the support. Hence the map is square-integrable, and an application
of the Cauchy-Schwarz inequality finishes the proof of weak convergence.

For the integrated transform, let f, g ∈ L2(G/H;Hσ). Then, by (7), the
weak definition of π(ϕ) yields

〈π(ϕ)f, g〉 =

=

∫
G/H

∫
G

ϕ(x)
〈
σ

(
α(ξ)−1xα(x−1ξ)

)
f(x−1ξ), g(ξ)

〉
dxdξ

=

∫
G/H

∫
G

ϕ(x)
〈
σ

(
α(ξ)−1xα(x−1ξ)

)
f(x−1α(ξ)H), g(ξ)

〉
dxdξ

=

∫
G/H

∫
G

ϕ(α(ξ)x)
〈
σ

(
xα((α(ξ)x)−1ξ)

)
f(x−1H), g(ξ)

〉
dxdξ (11)

=

∫
G/H

∫
G/H

∫
H

ϕ(α(ξ)hα(ξ′)−1)∆G(α(ξ′))−1

〈σ(h)f(ξ′), g(ξ)〉 dhdξ′dξ. (12)
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Here (11) was obtained by a left translation in the integration variable x . (12)
used Lemma 2.2, as well as the calculations

α(ξ′)h−1H = ξ′

and

hα(ξ′)−1α((α(ξ)hα(ξ′)−1)−1ξ) = hα(ξ′)−1α(α(ξ′)h−1α(ξ)−1ξ)

= hα(ξ′)−1α(α(ξ′)h−1H)

= hα(ξ′)−1α(α(ξ′)H)

= h.

Using the definition of weak integrals, we may continue from (12) to obtain

〈π(ϕ)f, g〉 =

=

∫
G/H

∫
G/H

〈∆G(α(ξ′))−1σ
((

Lα(ξ)Rα(ξ′)−1ϕ
)
|H

)
f(ξ′), g(ξ)〉dξ′dξ

=

∫
G/H

〈∫
G/H

Φ(ξ, ξ′)f(ξ′)dξ′, g(ξ)

〉
dξ,

hence the pointwise definition (8) indeed coincides with π(ϕ).

Now the direction “⇐” of (10) is immediate. For the other direction assume
that Φ does not vanish almost everywhere. Pick an ONB (ηi)i∈I of Hσ ; since Hσ

is separable, I is countable. Since

Φ(ξ, ξ′) = 0 ⇔ ∀i, j ∈ I : 〈Φ(ξ, ξ′)ηi, ηj〉 = 0

there exists a pair (i, j) and a set A ⊂ G/H ×G/H of positive measure such that

〈Φ(ξ, ξ′)ηi, ηj〉 6= 0

for all (ξ, ξ′) ∈ A . By passing to a smaller set we may assume that in addition
A ⊂ G/H ×K for a compact K ⊂ G/H (observing that G/H is σ -compact).

Now define the auxiliary operator T : L2(X) → L2(X) by

(Tf)(ξ) = χK(ξ)〈σ(ϕ)(f · ηi)(ξ), ηj〉.

Then T is an integral operator with kernel

(ξ, ξ′) 7→ χK(ξ)〈Φ(ξ, ξ′)ηi, ηj〉,

which by construction is nonzero. By Lemma 2.3 this kernel is bounded and
compactly supported, hence in L2(G/H×G/H). But for this space the map from
kernel to integral operator is a unitary operator onto the space of Hilbert-Schmidt
operators on L2(G/H); in particular the map is one-to-one. Hence T 6= 0, which
implies σ(ϕ) 6= 0.

Proof of Theorem 1.2. Let ϕ ∈ L∞c (G) be given with π(ϕ) = 0 for π in a set
of positive Plancherel measure. Then, by (3), there exists a G-invariant subset

Γ ⊂ N̂ of positive Plancherel measure and subsets BG.γ ⊂ Ĝγ/N
ωγ

(γ ∈ Γ) with

νGγ/N,ωγ (BG.γ) > 0 and πG.γ,σ(ϕ) = 0, for all σ ∈ BG.γ.
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Now fix γ ∈ Γ. Our aim is to relate the equation πG.γ,σ(ϕ) = 0 for σ

in a set of positive projective Plancherel measure in Ĝγ/N
ωγ

to certain Fourier
transforms, using the integral kernel calculus. For this purpose we use Borel cross-
sections α : G/Gγ → G and ϑ : Gγ/N → Gγ . In the following calculations, all
quotients carry invariant measures. We also need the continuous homomorphism
δ : G → (R+, ·) defined by picking B ⊂ N of positive finite measure and letting

δ(x) = |B|
|xBx−1| .

By Lemma 2.4, πG.γ,σ(ϕ) has the operator-valued kernel

Φ(ξ, ξ′) =

=

∫
Gγ

(γ′(y)⊗ σ(y)) ϕ(α(ξ)yα(ξ′)−1)dy ∆G(α(ξ′))−1

=

∫
Gγ/N

∫
N

(
γ′

(
nϑ(h)−1

)
⊗ σ(h)−1

)
ϕ(α(ξ)nϑ(h)−1α(ξ′)−1)

∆Gγ (ϑ(h))−1dndh ∆G(α(ξ′))−1

=

∫
Gγ/N

(∫
N

γ(n)ϕ(α(ξ)nϑ(h)−1α(ξ′)−1)dn ◦ γ′(ϑ(h)−1)∆Gγ (ϑ(h))−1

)
⊗σ(h−1)dh ∆G(α(ξ′))−1

=

∫
Gγ/N

Fξ,ξ′(h)⊗ σ(h−1)dh ∆G(α(ξ′))−1,

where

Fξ,ξ′(h) =

=

∫
N

γ(n)ϕ(α(ξ)nϑ(h)−1α(ξ′)−1)dn ◦ γ′(ϑ(h)−1)∆Gγ (ϑ(h))−1

= δ(α(ξ))

∫
N

γ
(
α(ξ)−1nα(ξ)

)
ϕ(nα(ξ)ϑ(h)−1α(ξ′)−1)dn ◦ γ′(ϑ(h)−1)

·∆Gγ (ϑ(h))−1

= δ(α(ξ))
[
(α(ξ).γ)

((
Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ

)
|N

)]
◦ γ′(ϑ(h)−1)∆Gγ (ϑ(h))−1.(13)

Here it is important to note that for fixed (ξ, ξ′), the operator-valued function
Fξ,ξ′ has compact support: A short calculation establishes that(

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N 6= 0

only if h ∈ α(ξ′)−1(supp(ϕ))−1α(ξ)−1N =: K0 , and K0 is a compact subset of
G/N ⊃ Gγ/N . Moreover, for h ∈ K0∥∥δ(α(ξ)) (α(ξ).γ)

((
Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ

)
|N

)
◦ γ′(ϑ(h)−1)∆Gγ (ϑ(h))−1

∥∥
∞

≤ δ(α(ξ))
∥∥(

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

∥∥
1
∆Gγ (ϑ(h))−1

≤ δ(α(ξ))‖ϕ‖∞
∣∣N ∩ supp(ϕ)α(ξ′)ϑ(K0)α(ξ)−1

∣∣ ∆Gγ (ϑ(h))−1.

The middle term is the measure of a fixed relatively compact subset of N , by
regularity of ϑ , and the last term is bounded on the compact support. Hence the
map h 7→ ‖Fξ,ξ′(h)‖∞ is in L∞c (Gγ/N).
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Now, for fixed γ ∈ Γ and σ ∈ BG.γ , relation (10) and ∆G > 0 imply that∫
Gγ/N

Fξ,ξ′(h)⊗ σ(h−1)dh = 0 (14)

for almost every (ξ, ξ′), where the set of these (ξ, ξ′) may depend on σ . However,
an application of Fubini’s Theorem provides a conull subset C ⊂ G/Gγ × G/Gγ ,
such that (14) holds for all (ξ, ξ′) ∈ C and all σ in a conull subset of BG.γ ,
possibly depending on (ξ, ξ′). Now fix (ξ, ξ′) ∈ C , as well as ONB’s (ηi)i∈I ⊂ Hγ ,
(βj)j∈J ⊂ Hσ . It follows that

0 = 〈Φξ,ξ′(ηi ⊗ βj), (ηk ⊗ β`)〉

=

∫
Gγ/N

〈Fξ,ξ′(h)ηi, ηk〉〈βj, σ(h)−1β`〉dh

= 〈σ(Ψi,k)βj, β`〉,

where we used that dh is left Haar measure on Gγ/N , and the scalar-valued
function Ψi,k given by

Ψi,k(h) = 〈ηi, Fξ,ξ′(h)ηk〉, satisfying |Ψi,k(h)| ≤ ‖Fξ,ξ′(h)‖∞‖η‖ ‖η′‖.

In particular Ψi,k ∈ L∞c (Gγ/N). Thus we are finally in a position to use the
assumption that Gγ/N has ωγ -wPW, yielding for all i, k that Ψi,k = 0 on a joint
conull subset. But this clearly entails Fξ,ξ′(h) = 0 almost everywhere.

Since obviously

Fξ,ξ′(h) = 0 ⇔ (α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
= 0

our considerations so far have established for fixed γ ∈ Γ, that for almost all
(ξ, ξ′, h) ∈ G/Gγ ×G/Gγ ×Gγ/N

(α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
= 0 (15)

Now choose a measurable cross-section Λ : G/N → G . By definition of the

Borel structure on N̂ , the map

N̂ ×G/N 3 (γ, s) 7→
∥∥γ

((
RΛ(s)−1ϕ

)
|N

)∥∥
∞

is Borel. Moreover, for a fixed ξ ∈ G/Gγ , the set

{α(ξ)ϑ(h)−1α(ξ′)−1 : h ∈ Gγ/N, ξ′ ∈ G/Gγ}

is a set of representatives of G/N , since N is normal. In particular, for every s ∈
G/N there exists (ξ′, h) ∈ G/Gγ×Gγ/N such that NΛ(s)−1=Nα(ξ)ϑ(h)−1α(ξ′)−1

. Hence Λ(s)−1 = nα(ξ)ϑ(h)−1α(ξ′)−1 , for suitable n ∈ N . Thus (15) implies that
for fixed γ ∈ Γ and almost all ξ ∈ G/Gγ the set

{s ∈ G/N :
∥∥(α(ξ).γ)

((
RΛ(s)−1ϕ

)
|N

)∥∥
∞ = 0}

has a complement of measure zero.
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On the other hand, ξ 7→ α(ξ).γ yields a bijection between G/Gγ and G.γ ,
and the image of the invariant measure on G/Gγ is equivalent to the measure µG.γ

appearing in (4). Summarising, we obtain that

0 =

∫
Γ/N

∫
G.γ

∫
G/N

‖γ
((

RΛ(s)−1ϕ
)
|N

)
‖∞ ds dµG.γ(γ) dν(G.γ)

=

∫
G/N

∫
Γ

‖γ
((

RΛ(s)−1ϕ
)
|N

)
‖∞dνN(γ)ds.

Here the second equation uses the measure decomposition (4) and Fubini’s Theo-
rem. But the latter integral implies for almost all s ∈ G/N , that ((RΛ(s)−1ϕ)|N)∧

=0 on the G-invariant subset Γ ⊂ N̂ . Since
(
RΛ(s)−1ϕ

)
|N ∈ L∞c (N), an appeal to

assumption (5) yields
(
RΛ(s)−1ϕ

)
|N = 0 for almost every coset s . Hence ϕ = 0,

which finishes the proof of (a).

For the proof of (b), assume that ϕ0 ∈ L∞c (N) \ {0} is a counterexample

to (5), i.e. there exists a G-invariant Γ̃ ⊂ N̂ of positive measure such that ϕ̂0

vanishes on Γ. Let K ⊂ G/N be some compact set of positive measure, and let
Λ : G/N → G be a cross-section. Then

ϕ(nΛ(s)−1) = ϕ0(n)χK(s)

defines a nonzero ϕ ∈ L∞c (G). Let Σ = {π ∈ Ĝ : ϕ̂(π) = 0} . We intend to show

πG.γ,σ ∈ Σ for all γ ∈ Γ̃ and all σ ∈ Ĝ.γ
ωγ

. By equation (13) this amounts to
proving

0 = (α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
,

where α, ϑ are cross-sections associated to Gγ/N and G/Gγ . Now for n ∈ N ,(
Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ

)
|N(n) = ϕ(nα(ξ)ϑ(h)−1α(ξ′)−1)

= ϕ(nn′Λ(s)−1)

= ϕ0(nn′)χK(s)

where s = α(ξ′)ϑ(h)α(ξ)−1N and n′ ∈ N is suitably chosen, and independent of
n . Since α(ξ).γ ∈ Σ, it follows that

(α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
= χK(s) (α(ξ).γ) (ϕ0) ◦ (α(ξ).γ) (n′) = 0

Hence we can compute

νG(Σ) =

∫
N̂/G

∫
Ĝγ/N

ωγ
χΣ(πG.γ,σ) dνGγ/N,ωγ (σ) dν(G.γ)

≥
∫

Γ̃/G

νGγ/N,ωγ (Ĝγ/N
ωγ

) dν(G.γ)

> 0,

therefore ϕ is the desired counterexample to wPW on G .
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3. Applications and Examples

In this section we apply Theorem 1.2 to a variety of cases, and discuss the necessity
of its assumptions. Unless otherwise stated, our standing assumptions are: G is
second countable, G and N C G are of type I, with N regularly embedded.

Corollary 3.1. Assume that the dual action of G/N is free νN -almost every-
where. Then G has wPW iff condition (5) holds.

Corollary 3.2. Let G be nonunimodular, and N = Ker(∆G). Then G has
wPW iff (5) holds; in particular, if N has wPW.

Proof. This is an immediate consequence of Corollary 3.1, which applies to
this setting by [6, Section 5].

For split compact extensions the freeness of the operation turns out to be
necessary also. Since a compact group has wPW iff it is trivial, the next theorem
provides a class of extensions for which the conditions of Theorem 1.2 are necessary
and sufficient.

Theorem 3.3. Assume that G = N oK , with K compact. Then G has wPW
iff condition (5) holds and the dual action of G/N is free νN -almost everywhere.

Proof. The “if”-part is Corollary 3.1. For the “only-if”-part, necessity of (5)
was noted in Theorem 1.2. We denote elements of G by pairs (n, k) ∈ N × K ,
and the conjugation action of K on N by K×N 3 (k, n) 7→ k.n . Define the little
fixed groups as Kγ = Gγ ∩K ; since G is a semidirect product, Gγ = N o Kγ .

We define

Σ̃ = {γ ∈ N̂ : Kγ 6= {1}}.

Let us first show that Σ̃ is a Borel subset of N̂ . For this purpose consider the space
X of closed subgroups of K , endowed with the compact open topology. By [2,

Proposition II.2.3], the stabilizer map N̂ → X is Borel. Moreover, the complement

of Σ̃ is nothing but the inverse image of the trivial subgroup under the stabiliser
map, hence Borel. Thus Σ̃ is Borel also. Assuming that νN(Σ̃) > 0, we need to
construct a ϕ ∈ L∞c (G) such that ϕ̂ vanishes on a set of positive measure.

Let ϕ0 ∈ L∞c (N) \ {0} with ϕ0 ≥ 0 be given, and let

ϕ(n, k) = ϕ1(n) =

∫
K

ϕ0(k
′.n)dk′

which yields a nonzero element ϕ ∈ L∞c (G). Next we show

∀γ ∈ Σ̃ , ∀σ ∈ K̂γ \ {1Kγ} : πG.γ,σ(ϕ) = 0 (16)

where 1Kγ denotes the trivial representation of Kγ .

Since G is a semidirect product, all Mackey obstructions are trivial. In
addition, we can assume that all cross-sections arising below in fact map into
K < G , i.e. ϑ(h) = (eN , ϑ̃(h)) etc. Moreover, since K is compact all involved
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measures can be chosen invariant. In this setting the calculations from the proof
of Theorem 1.2 yield that πG.γ,σ(ϕ) acts on L2(K/Kγ;Hγ ⊗Hσ) via

Φ(ξ, ξ′) =

∫
Kγ

(α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
⊗ σ(h−1)dh.

In order to prove that Φ vanishes, it is enough to show for all ξ, ξ′ that the map

Fξ,ξ′ : h 7→ (α(ξ).γ)
((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
.

is constant on Kγ . Note first that by construction of ϕ , and the fact that ϑ, α
map into K that ((

Rα(ξ)ϑ(h)−1α(ξ′)−1ϕ
)
|N

)
(n) = ϕ1(n)

is independent of ξ, h, ξ′ and invariant under the action of K . Hence we obtain

Fξ,ξ′(h) = (α(ξ).γ) (ϕ1) = γ (ϕ1) .

Hence Fξ,ξ′ is constant, and thus πG.γ,σ(ϕ) = 0.

Hence, defining the Borel subset

Σ = {π ∈ Ĝ : ϕ̂(π) 6= 0},

we can use (3) and (16) to estimate

νG(Σ) =

∫
N̂/G

∫
K̂γ

χΣ(πG.γ,σ)dνKγ (σ)dν(G.γ)

≥
∫

Σ̃/G

∫
K̂γ

χΣ(πG.γ,σ)dνKγ (σ)dν(G.γ)

≥
∫

Σ̃/G

νKγ

(
K̂γ \ {1Kγ}

)
dν(G.γ)

> 0.

Here the last inequality is due to the fact that the integrand is strictly positive on
Σ̃/N , and we assumed νN(Σ̃) > 0.

Applying the theorem to motion groups yields that G = Rn o SO(n) has
wPW iff n ≤ 2.

Another extreme case is given by an almost everywhere trivial action of
G/N on Ĝ . The following corollary also covers direct product groups.

Corollary 3.4. Assume that G/N acts trivially νN -almost everywhere. If G
has wPW, then N has wPW. Conversely, if both N and G/N have wPW, then
so does G.

Note that G/N need not have wPW, even if G does: Simply take G = R and
N = Z .

A result similar to the following is formulated for the so-called topological
Paley-Wiener condition in [12, Theorem 2.2].

Corollary 3.5. Suppose that G/N is abelian and compact-free. Assume in ad-
dition that either almost all Mackey obstructions vanish, or that G/N is compactly
generated. Then, if condition 5 holds, G has wPW.
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Proof. Let us first deal with the case of vanishing Mackey obstructions. Recall
that G/N is compact-free iff it has no nontrivial compact subgroups. For abelian
groups, this is equivalent to wPW by [12, Theorem 3.2]. Moreover, if G/N is
compact-free, so are all its closed subgroups; in particular, the little fixed groups
also have wPW. Hence Theorem 1.2 implies wPW for G .

If G/N is compact-free and compactly generated, the structure theorem
for LCA groups yields G/N ∼= Rk × Z` , and the little fixed groups have a similar
structure. Hence Theorem 1.2 together with the next lemma yield that G has
wPW.

Lemma 3.6. Let G = Rk × Z` , and ω a type I multiplier on G. Then G has
ω -wPW.

Proof. We use the description of Ĝω given in [3]. We may assume that ω is
normalised. Then the map

hω : G → Ĝ, hω(x)(y) = ω(x, y)ω(y, x)

defines a continuous homomorphism. Denote the kernel of this homomorphism
by Sω . ω is called totally skew if Sω is trivial. By [3, Theorem 3.1], we may
then assume that ω is lifted from a totally skew cocycle ω1 of G/Sω . Moreover,

Ĝ/Sω

ω1

= {π} , and the mapping Ĝ 3 γ 7→ γπ ∈ Ĝω is continuous and onto (also
by [3, Theorem 3.1]). This map is constant on S⊥ω , giving rise to a homeomorphism

between Ĝω and Ĝ/S⊥ω ' Ŝω . Moreover, the projective Plancherel measure can

be chosen as the Haar measure on Ĝ/S⊥ω . To see this consider the unitary action

of Ĝ on L2(G) defined by pointwise multiplication, (Mγf)(x) = γ(x)f(x). Then
it is straightforward to compute that on the (projective) Fourier transform side,

Ĝ acts via shifts,
(γ1π)(Mγ2f) = (γ1γ2π)(f).

On the other hand, since G is unimodular, there exists a choice of νG,ω

such that Fω extends to a unitary equivalence

L2(G) →
∫ ⊕

Ĝω

HS(Hρ)dνG,ω(ρ) ' L2(Ĝ/S⊥ω , dνG,ω)⊗ HS(Hπ).

Since we already know that the shifts on Ĝ/S⊥ω yield unitary operators on

L2(Ĝ/S⊥ω , dνG,ω), it follows that νG,ω is shiftinvariant.

Now assume that f ∈ L∞c (G) is such that ρ(f) = 0 on a set of projective

Plancherel measure zero. Then the map Ĝ 3 γ 7→ (γπ)(f) also vanishes on a set
of positive Plancherel measure. Pick an ONB (ηi)i∈I of Hπ . Then for all i, j ∈ I

0 = 〈(γπ)(f)ηi, ηj〉

=

∫
G

γ(x)f(x)〈π(x)ηi, ηj〉dx,

for all γ in a set of positive measure. Hence wPW for G implies that

0 = f(x)〈π(x)ηi, ηj〉

for all i, j ∈ I and almost all x ∈ G . On the other hand, the fact that π(x) is
unitary implies for all x ∈ G that 〈π(x)ηi, ηj〉 6= 0 for some pair (i, j). Thus we
obtain f = 0 almost everywhere.
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We will next show that iterated application of Corollary 3.5 allows to
establish wPW for a large class of solvable Lie groups, thus extending the results
from [15, 9, 1, 10]. In the following, the term “Lie group” is shorthand for simply
connected, connected Lie group. We first start with an observation that is probably
folklore, and which ensures that Corollary 3.5 can be used iteratively. We include
a proof since we could not obtain a reference.

Lemma 3.7. Let G be an exponential Lie group and N CG a closed connected
nilpotent normal subgroup. Then N is regularly embedded.

Proof. Denote the Lie algebras of G ,N by g, n , and by Ad∗G and Ad∗N the
coadjoint actions of G and N respectively.

G being exponential implies that g is a g-module of exponential type under
the adjoint action, which means that all roots of the g-module g have the form

Ψ(X) = (1 + iα)λ(X)

with λ a real linear functional and α ∈ R [4, Chap. I]. It follows that the
submodule n is also of exponential type. Passing to the dual yields that n∗ is
a g- module of exponential type under the coadjoint action. Hence we obtain
for the canonically induced coadjoint action Ad∗G of G on n∗ ∼= g∗/n⊥ that all
G-orbits in n∗ are locally closed [4, Chap. I, Theoréme 3.8]. But then the orbit
space n∗/Ad∗G(G) is countably separated, by Glimm’s Theorem (e.g., [4, Chap. I,
Remarque 3.9]).

On the other hand, let

κ : n∗/Ad∗N(N) → N̂

denote the Kirillov map, which is a homeomorphism. Then it is straightforward
to check that κ intertwines the action of Ad∗G with the dual action, thus inducing
a homeomorphism of orbit spaces

n∗/Ad∗G(G) → N̂/G.

Hence the right-hand side is countably separated, and N is regularly embedded.

For the formulation of the next theorem recall that the nilradical N of
a solvable Lie group G is defined as the maximal connected nilpotent normal
subgroup of G . Hence N C G is simply connected, with G/N ∼= Rn [2, Chapter
III]. Recall also that nilpotent, or more generally, exponential Lie groups are of
type I [19]. A class R solvable Lie group is defined by the requirement that for all
x ∈ G and for all eigenvalues λ of Ad(x), |x| = 1 [2]. By contrast, exponential
Lie groups are characterised by the property that no eigenvalue of any Ad(x) is
purely imaginary [4, Théorème 2.1].

Theorem 3.8. Let G be a solvable Lie group, and let N C G denote the
nilradical. Assume that G is type I and that N is regularly embedded. Then
G has wPW. In particular, G has wPW if it is exponential, or if it is of class R
and type I.
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Proof. wPW for N is established by straightforward iterated application of
Corollary 3.5 to a Jordan-Hölder series of N , observing that normal subgroups in
nilpotent Lie groups are regularly embedded by Lemma 3.7. Moreover, G/N ∼= Rn ,
and N is type I. Hence Corollary 3.5 once again applies to yield wPW for G .

Now if G is exponential, it is type I by [19], and N is regularly embedded
by Lemma 3.7. If G is of type I and class R, N is regularly embedded by [2,
Chapter III, Theorem 1].

Corollary 3.9. If G is a solvable CCR Lie group, it has wPW.

Proof. CCR groups are of type I, and solvable CCR Lie groups are in addition
of class R [2, Chapter V, Theorem 1]. Hence the previous theorem applies.

Let us next give a class of group extensions that fail to have wPW, namely
those where the normal subgroup is (nontrivial and) compact. For this purpose, an
alternative formulation of wPW, which has the additional advantage of applying
also to the non-type I setting, is observed:

Remark 3.10. If G is type I, then the following conditions are equivalent:

(i) G has wPW.

(ii) Every nonzero f ∈ L∞c (G) is cyclic for the two-sided representation of G
acting on L2(G).

(iii) For all nonzero f ∈ L∞c (G) and nonzero every two-sided invariant operator
T on L2(G), Tf 6= 0.

(ii) ⇔ (iii) is [5, I.I.4]. For (i) ⇒ (iii) let f ∈ L∞c (G) and let T denote a two-sided
invariant operator. Under the Plancherel transform,

T '
∫ ⊕

Ĝ

m(σ) · IdHσ⊗Hσ
dνG(σ)

for a certain Borel mapping m ∈ L∞(Ĝ). If T 6= 0, m does not vanish identically.
But then (i) implies that

(Tf)∧(σ) = m(σ)f̂(σ)

does not vanish identically, thus Tf 6= 0. For (iii) ⇒ (i) assume that f̂ vanishes

on a set Σ ⊂ N̂ of positive Plancherel measure. Let P denote the projection
defined by

P '
∫

Ĝ

χΣ(σ) · IdHσ⊗Hσ
.

Then P is two-sided invariant, nontrivial, but Pf = 0.

Similar arguments apply to show that the following conditions are equiva-
lent, for regularly embedded N C G :

(i) Condition (5) holds.
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(ii) Every nonzero f ∈ L∞c (N) is cyclic for the von-Neumann algebra generated
by the two-sided representation of N and the representation of G acting on
L2(N) by conjugation.

(iii) For all nonzero f ∈ L∞c (N) and nonzero two-sided invariant operator T on
L2(N) commuting with the conjugation action of G , Tf 6= 0.

Proposition 3.11. If G has wPW, it has no nontrivial compact normal sub-
groups.

Proof. Assume that K C G is compact, and consider the subspace

L2
K(G) = {f ∈ L2(G) : ∀k ∈ K : f(xk) = f(x)}

= {f ∈ L2(G) : ∀k ∈ K : f(kx) = f(x)}.

It is easy to see that L2
K(G) is closed and two-sided invariant. Moreover clearly

L2
K(G) 6= L2(G) and L2

K(G) ∩ L∞c 6= {0} . Hence G does not have wPW, by the
previous remark.

Proposition 3.11 has a parallel in [12, Lemma 1.1], where it is stated for the
topological Paley-Wiener condition. [12, Theorem 1.4] shows that for SIN groups,
topological wPW coincides with the necessary condition derived in the previous
proposition.

Example 3.12. An example where condition (5) holds, but N does not have
wPW is constructed as follows: Consider G = QpoQ×

p , where Qp denotes the field
of p-adic numbers, and its unit group Q×

p acts by multiplication. Qp is self-dual,

and the dual action of Q×
p is again by multiplication. In particular, Q̂p consists of

the two dual orbits {0} (which has measure zero) and Q×
p . Moreover, the action

of Q×
p on the large orbit is free. Hence Kleppner and Lipsman’s theorem yields

that the Plancherel measure is supported on a single point, and the wPW property
is an immediate consequence of the Plancherel theorem. (Of course, Theorem 1.2
also applies, with both conditions trivially fulfilled.)

On the other hand, Qp has the nontrivial compact subgroup Zp , hence Qp

does not have wPW.
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