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Abelian varieties over finite fields with a specified

characteristic polynomial modulo `

par Joshua HOLDEN

Résumé. Nous estimons la fraction des classes d’isogénie des
variétés abeliennes sur un corps fini qui possèdent un polynôme
caractéristique donné P (T ) modulo `. Comme application nous
trouvons la proportion des classes d’isogénie des variétés
abeliennes qui possèdent un point rationnel d’ordre `.

Abstract. We estimate the fraction of isogeny classes of abelian
varieties over a finite field which have a given characteristic
polynomial P (T ) modulo `. As an application we find the
proportion of isogeny classes of abelian varieties with a rational
point of order `.

1. Introduction

Let F be a finite field of characteristic p and order q, and ` a prime not
equal to p. Let

P (T ) =

(T 2g + qg) + a1(T 2g−1 + qg−1T ) + · · ·+ ag−1(T g+1 + qT g−1) + agT
g

be a polynomial. The goal of this paper is to estimate the number of isogeny
classes of abelian varieties over F of dimension g for which the characteristic
polynomial for the action of Frobenius is congruent to P (T ) modulo `.

The initial motivation for this problem came from the following question,
posed in [4] and related to the Fontaine-Mazur Conjecture for number fields:

Question 1. Let k be a function field over a finite field F of characteristic
p and order q, and ` a prime not equal to p. Let K = kF`∞ be obtained
from k by taking the maximal `-extension of the constant field. If M is
an unramified `-adic analytic `-extension of k, and M does not contain K,
must M be a finite extension of k?

In general the answer to Question 1 is no, with examples due to Ihara
([5]) and to Frey, Kani, and Völklein ([3]). However, the following theorems
were proved in [4]:
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Theorem 1 (Theorem 2 of [4]). Let k0 be a function field over a finite field
of characteristic p, and let k be a constant field extension. Let ` be a prime
not equal to p. If ` does not divide the class number P (1) of k0, then any
everywhere unramified powerful ( a fortiori uniform) pro-` extension of k,
Galois over k0, with no constant field extension, is finite.

Theorem 2 (See Corollary 4.11 of [4]). Let k0 be a function field over a
finite field of characteristic p, and let k be a constant field extension. Let
` be a prime not equal to p. Let P (T ) be the characteristic polynomial of
Frobenius for the Jacobian of the curve associated with k0. Suppose that
the distinct roots of P (T ) modulo ` (possibly in some extension of Z/`Z)
consist of λ0, λ1, . . . , λn such that for all i 6= j, λiλj 6= 1. Suppose further
that if any λi = 1, λi is at most a double root of P (T ) modulo `, and if
any λi = −1, λi is only a simple root of P (T ) modulo `. Then there are no
unramified infinite powerful pro-` extensions of kn, Galois over k0, with no
constant field extension.

In the paper [1], Jeffrey Achter and the author address the question of
how many function fields are associated with a given P (T ) modulo `, and
thus how many fall under the purview of Theorem 1 and Theorem 2. In
this paper we will address the different but related question of how many
isogeny classes of abelian varieties have a given characteristic polynomial
P (T ) modulo `. As an application we find the proportion of isogeny classes
of abelian varieties with a rational point of order `.

We have chosen the following way to address these questions, starting
with the application to rational points. Fix distinct primes p and `. For
each r, let Fpr be the finite field with pr elements. By the work of Tate
and Honda, two abelian varieties are isogenous if and only if they have the
same zeta function. Thus to each isogeny class of abelian varieties defined
over Fpr we associate the unique polynomial P (T ) (the Weil polynomial or
Weil q-polynomial) which is the characteristic polynomial for the action of
Frobenius and the reciprocal of the numerator of the zeta function of any
variety in the isogeny class. Then ` divides P (1) if and only if each abelian
variety in the class has an Fpr -rational point of order `. For each g, there
are finitely many isogeny classes of abelian varieties with dimension g. Let
dr,g be the fraction of isogeny classes of dimension g over Fpr for which `
divides P (1). Then

Theorem 3. For fixed g,

lim
r→∞

dr,g =
1
`
.

This result and the other major result of this paper could also be ob-
tained using the techniques of [1]. The proofs given here are perhaps more
elementary, and also give some access to the number of isogeny classes and
not merely the proportion satisfying each condition.
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2. Lattices

The proof of Theorem 3 relies on the method of counting abelian varieties
introduced by DiPippo and Howe in [2]. Let q = pr and I(q, g) be the num-
ber of isogeny classes of g-dimensional abelian varieties over Fq. Let P (T )
be as before. If P (T ) is associated to the isogeny class of a g-dimensional
abelian variety then P (T ) has degree 2g. Write

P (T ) =
2g∏

j=1

(T − αj).

Then P (T ) has the property that |αj | = q1/2, and the real roots, if any,
have even multiplicity. Note that since the possible Weil polynomials P (T )
for a given g are monic integral polynomials of fixed degree and have roots
(and therefore coefficients) of bounded size, there are only finitely many of
them. Thus I(q, g) is finite.

If we write

P (T ) =

(T 2g + qg) + a1(T 2g−1 + qg−1T ) + · · ·+ ag−1(T g+1 + qT g−1) + agT
g

and let Q(T ) = P (q1/2T )/qg, then P (T ) is associated with another poly-
nomial

Q(T ) = (T 2g + 1) + b1(T 2g−1 + T ) + · · ·+ bg−1(T g+1 + T g−1) + bgT
g.

Let Vg be the set of vectors b = (b1, . . . , bg) in Rg such that all of the
complex roots of Q(T ) lie on the unit circle and all real roots occur with
even multiplicity. Let e1, . . . , eg be the standard basis vectors of Rg and
let Λq be the lattice generated by the vectors q−i/2ei. DiPippo and Howe
explain that if P (T ) is the Weil polynomial of an isogeny class then the
coefficients ai are such that (a1q

−1/2, . . . , agq
−g/2) ∈ Λq ∩ Vg. Further, let

Λ′q be the lattice generated by the vectors q−1/2e1, . . . , q
−(g−1)/2eg−1 and

pq−g/2eg. Then all of the polynomials P (T ) with coefficients ai such that
(a1q

−1/2, . . . , agq
−g/2) ∈ (Λq \Λ′q)∩ Vg are exactly the Weil polynomials of

isogeny classes of ordinary varieties. Finally, let Λ′′q be the lattice gener-
ated by the vectors q−1/2e1, . . . , q

−(g−1)/2eg−1 and sq−g/2eg, where s is the
smallest power of p such that q divides s2. Then the set of polynomials
P (T ) with coefficients ai such that (a1q

−1/2, . . . , agq
−g/2) ∈ Λ′′q ∩ Vg con-

tains (perhaps properly) the set of Weil polynomials of isogeny classes of
non-ordinary varieties.

These facts are relevant because of Proposition 2.3.1 of [2]. In a slightly
generalized form, the proposition says:
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Proposition 2.1 (see 2.3.1 of [2]). Let n > 0 be an integer and let Λ ⊆ Rn

be a rectilinear lattice (possibly shifted) with mesh d at most D. Then we
have ∣∣∣∣#(Λ ∩ Vg)−

volume Vn

covolume Λ

∣∣∣∣ ≤ c(n, D)
d

covolume Λ

for some constant c(n, D) depending only on n and D which can be explicitly
computed. (We will not need the explicit computation in this paper.)

Let vn be the volume of Vn; Proposition 2.2.1 of [2] calculates it ex-
plicitly but we will not need that here. Let r(q) = 1 − 1/p. The lattice
Λq has covolume q−g(g+1)/4 and mesh q−1/2. The lattice Λ′q has covolume
pq−g(g+1)/4, and it has mesh q−1/2 unless g = 2 and q = p, in which case it
has mesh 1. Lastly, the lattice Λ′′q has covolume sq−g(g+1)/4 and its mesh
is at most 1. It is then an easy consequence of the proposition that

vgr(q)qg(g+1)/4 − 2c(g, 1)qg(g+1)/4−1/2

≤ I(q, g)

≤ vgr(q)qg(g+1)/4 + (vg + 3c(g, 1)) qg(g+1)/4−1/2.

(See [2] for details.)
Now let I`(q, g) be the number of isogeny classes of g-dimensional abelian

varieties over Fq such that ` divides P (1). Using the above notation we
have

P (1) = (1 + qg) + a1(1 + qg−1) + · · ·+ ag−1(1 + q) + ag.

Then

I`(q, g) =
∑

(1+qg)+m1(1+qg−1)+···+mg−1(1+q)+mg≡0 (mod `)
0≤mi<`

Im1,...,mg(q, g)

where Im1,...,mg(q, g) is the number of isogeny classes of g-dimensional
abelian varieties over Fq such that ai ≡ mi modulo `. There are exactly
`g−1 terms on the right hand side of this expression.

Now let Λm1,...,mg be the lattice generated by the vectors `q−i/2ei and
then shifted by

∑
i miq

−i/2ei, and let Λ′m1,...,mg
= Λm1,...,mg ∩ Λ′q and

Λ′′m1,...,mg
= Λm1,...,mg ∩ Λ′′q . Then Λm1,...,mg has covolume `gq−g(g+1)/4 and

mesh `q−1/2; Λ′m1,...,mg
has covolume `gpq−g(g+1)/4, and it has mesh `q−1/2

unless g = 2 and q = p, in which case it has mesh `; and Λ′′m1,...,mg
has

covolume `gsq−g(g+1)/4 and mesh at most `.
We can then prove:
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Proposition 2.2.

vgr(q)qg(g+1)/4`−g − 2c(g, `)qg(g+1)/4−1/2`1−g

≤ Im1,...,mg(q, g)

≤ vgr(q)qg(g+1)/4`−g + (vg + 3c(g, `)) qg(g+1)/4−1/2`1−g,

and thus:

Proposition 2.3.

vgr(q)qg(g+1)/4`−1 − 2c(g, `)qg(g+1)/4−1/2

≤ I`(q, g)

≤ vgr(q)qg(g+1)/4`−1 + (vg + 3c(g, `)) qg(g+1)/4−1/2.

Combining this with our earlier result, we get

vgr(q)qg(g+1)/4`−1 − 2c(g, `)qg(g+1)/4−1/2

vgr(q)qg(g+1)/4 + (vg + 3c(g, 1)) qg(g+1)/4−1/2

≤ I`(q, g)
I(q, g)

≤ vgr(q)qg(g+1)/4`−1 + (vg + 3c(g, `)) qg(g+1)/4−1/2

vgr(q)qg(g+1)/4 − 2c(g, 1)qg(g+1)/4−1/2
.

Thus we have:

Theorem 4. For fixed g,

lim
r→∞

I`(pr, g)
I(pr, g)

=
1
`
.

from which Theorem 3 follows immediately.

3. The general case

Obviously, an identical argument could be used to establish the fraction
of isogeny classes of dimension g for which P (x) ≡ y modulo ` for any x
and y in Z. More generally, we can establish the fraction of isogeny classes
of dimension g for which P (T ) ≡ f(T ) modulo ` for any given polynomial
f(T ) of the correct form. Fix

f(T ) = (T 2g +qg)+m1(T 2g−1+qg−1T )+ · · ·+mg−1(T g+1+qT g−1)+mgT
g.

For fixed p and `, let er,g be the fraction of isogeny classes of g-dimensional
abelian varieties over Fpr such that P (T ) ≡ f(T ) modulo `.

Theorem 5. For fixed g,

lim
r→∞

er,g =
1
`g

.
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Proof. We can follow the same argument as we did for Theorem 3. Let
J`(q, g) = er,gI(q, g) be the number of isogeny classes of g-dimensional
abelian varieties over Fpr = Fq such that P (T ) ≡ f(T ) modulo `. Then
our bounds on J`(q, g) = Im1,...,mg(q, g) and I(q, g) give us

vgr(q)qg(g+1)/4`−g − 2c(g, `)qg(g+1)/4−1/2`1−g

vgr(q)qg(g+1)/4 + (vg + 3c(g, 1)) qg(g+1)/4−1/2

≤ J`(q, g)
I(q, g)

≤ vgr(q)qg(g+1)/4`−g + (vg + 3c(g, `)) qg(g+1)/4−1/2`1−g

vgr(q)qg(g+1)/4 − 2c(g, 1)qg(g+1)/4−1/2
.

On taking the limit, the theorem follows. �
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