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Comparison theorems between algebraic and

analytic De Rham cohomology

(with emphasis on the p-adic case)

par Yves ANDRÉ

Résumé. Nous présentons un panorama des théorèmes de com-
paraison entre les cohomologies de De Rham algébrique et analy-
tique à coefficients dans des connections algébriques. Ces théorè-
mes ont joué un rôle important dans le développement de la théorie
des D-modules, en particulier dans l’étude de leurs propriétés de
ramification (irrégularité...). Dans la partie I, nous nous concen-
trons sur le cas des coefficients réguliers et esquissons la nouvelle
preuve de ces théorèmes donnée par F. Baldassarri et l’auteur,
qui est de nature élémentaire et unifie les théories complexe et
p-adique. Dans le cas p-adique cependant, le théorème de com-
paraison était supposé s’étendre aux coefficients irréguliers et ceci
a été prouvé dans [AB]. La preuve de cette extension suit le même
modèle que pour le cas régulier, mais demande en supplément une
étude détaillée de l’irrégularité en plusieurs variables. Dans la
partie II, nous donnons un aperçu de cette preuve qui peut servir
de guide pour le livre [AB].

Abstract. We present a panorama of comparison theorems be-
tween algebraic and analytic De Rham cohomology with algebraic
connections as coefficients. These theorems have played an impor-
tant role in the development of D-module theory, in particular in
the study of their ramification properties (irregularity...). In part
I, we concentrate on the case of regular coefficients and sketch the
new proof of these theorems given by F. Baldassarri and the au-
thor, which is of elementary nature and unifies the complex and
p-adic theories. In the p-adic case, however, the comparison theo-
rem was expected to extend to irregular coefficients, and this has
recently been proved in [AB]. The proof of this extension follows
the same pattern as in the regular case, but involves in addition
a detailed study of irregularity in several variables. In part II, we
give an overview of this proof which can serve as a guide to the
book [AB]. 1

1added on proofs: a second (revised) edition of [AB] is in preparation.
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1. A new approach to the Grothendieck-Deligne comparison
theorems for De Rham cohomology (and its p-adic

counterpart)

1.1. Introduction.
The idea of computing the cohomology of a manifold, in particular its

Betti numbers, by means of differential forms goes back to E. Cartan and
G. De Rham. In the case of an algebraic manifold, there is the possibility
of using only algebraic differential forms, and the problem arises whether
this gives rise to the right cohomology groups. I. Petrovsky had already
encountered this problem in his studies of real algebraic geometry, and it
had been considered (and solved) independently by G. Hochschild and B.
Kostant in the case of affine homogeneous manifolds; the problem has been
solved in the general case in 1963 by A. Grothendieck.

The most concrete instance of Grothendieck’s theorem reads as follows:
let Y be a closed differentiable submanifold of Cn defined by polynomial
equations

P1(T1, . . . , Tn) = . . . = Ps(T1, . . . , Tn), Pj ∈ C[T1, . . . , Tn].

An algebraic differential form α on Y of degree p is the restriction to Y of a
rational differential form of degree p in the variables T1, . . . , Tn, which has
no pole on Y . It is closed if dα = 0 on Y .

Theorem (Grothendieck). Any closed C∞ differential form on Y is the
sum α + dη of a closed algebraic differential form α and an exact C∞

differential form dη. Moreover, If dη is algebraic, then dη = dβ for
some algebraic differential form β.

Thus transcendental and algebraic De Rham cohomology groups coin-
cide, and as a consequence, the Betti numbers of Y can be computed purely
algebraically. Grothendieck’s proof uses Hironaka’s resolution of singulari-
ties in an essential way [G].

In order to discuss this result and some generalization in more detail, let
us introduce some notation.

Let X be a smooth complex algebraic variety of dimension d. Let Ωp
X =

ΛpΩp
X be the sheaf of algebraic differential p-forms on X. These sheaves fit

into the (augmented) De Rham complex

(C→) Ω0
X → Ω1

X → Ω2
X → . . .

Similarly, one can build the (augmented) De Rham complex attached to
the analytic manifold Xan underlying X

(C→) Ω0
Xan → Ω1

Xan → Ω2
Xan → . . .
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and the (augmented) De Rham complex attached to the differentiable man-
ifold Xan underlying X

(C→) Ω0
X∞ → Ω1

X∞ → Ω2
X∞ → . . .

Note that the first two complexes stop at Ωd (i.e. Ωd+1
X = Ωd+1

Xan = 0) while
the third one stops only at Ω2d. On the other hand, the last two augmented
complexes (but not the first one) are exact by the Poincaré lemma.

According to the standard definition, the De Rham cohomology of X∞

is the cohomology of the complex of global sections

ΓΩ0
X∞ → ΓΩ1

X∞ → ΓΩ2
X∞ → . . .

However, because the Ωp
X∞ are fine sheaves, this is the same as the hyper-

cohomology of the C∞ De Rham complex

H∗
dR(X∞) = H∗(Ω0

X∞ → Ω1
X∞ → Ω2

X∞ → . . .)

In the analytic and algebraic cases, one defines De Rham cohomology by

H∗
dR(Xan) = H∗(Ω0

Xan → Ω1
Xan → . . .), H∗

dR(X) = H∗(Ω0
X → Ω1

X → . . .).

These various De Rham cohomology groups are related by natural maps

H∗
dR(X) −→ H∗

dR(Xan) −→ H∗
dR(X∞).

Due to the exactness of the analytic and C∞ augmented De Rham com-
plexes, the last map is an isomorphism and in fact

H∗
dR(Xan) ∼= H∗(X(C),C) ∼= H∗

dR(X∞).

Now, Grothendieck’s comparison theorem tells us that the first map
H∗

dR(X) −→ H∗
dR(Xan) is also an isomorphism.

Grothendieck has also raised the problem of generalizing this comparison
theorem in the case of non-constant coefficients. Let M be an algebraic
vector bundle on X endowed with an integrable connection

∇ : M−→ Ω1
X ⊗M

(a C-linear morphism of abelian sheaves satisfying Leibniz’ rule, and such
that the map D ∈ TX = (Ω1

X)∨ 7→ ∇D = (D ⊗ id) ◦ ∇ ∈ EndC−linM
commutes with the brackets on TX and EndC−linM).

By means of the connection, one constructs in the standard way a com-
plex with C-linear differential (the De Rham complex of (M,∇):

M→ Ω1
X ⊗M→ Ω2

X ⊗M→ . . .

The De Rham cohomology of X with coefficients in (M,∇) is defined to be
the hypercohomology of this complex.

Similarly, one can build the De Rham complex attached to the analytic
manifold Xan underlying X

Man → Ω1
Xan ⊗Man → Ω2

Xan ⊗Man → . . .
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and there is a natural map of hypercohomologies

H∗
dR(X, (M,∇)) −→ H∗

dR(Xan, (Man,∇an)).

This map is not an isomorphism in general, even in degree 0: indeed, let
for instance X be the affine line with coordinate x,M = OX , and let ∇ be
the connection given by ∇(1) = dx; then

H0
dR(X, (M,∇)) = Ker∇ = 0

H0
dR(Xan, (Man,∇an)) = Ker∇an = C.e−x.

In this counter-example, the connection has only one singularity at infinity,
which is irregular, i.e. not regular (cf. [M]). For De Rham cohomology
with regular coefficients, P. Deligne has proved the following generalization
of Grothendieck’s comparison theorem:

Theorem (Deligne). Assume that ∇ is regular (at every divisor at infin-
ity). Then the map H∗

dR(X, (M,∇)) → H∗
dR(Xan, (Man,∇an)) is an

isomorphism.

Deligne’s strategy of proof goes as follows [D]:
i) construct a Hironaka compactification of X: X̄ proper and smooth,
X̄ \X = divisor with normal crossings;
ii) extend M to a vector bundle M̄ on X̄ and ∇ to a connection ∇̄ with
logarithmic poles along X̄ \X (using the regularity assumption);
iii) by GAGA, the natural map

H∗
dR,log(X̄, (M̄, ∇̄))→ H∗

dR,log(X̄
an, (M̄an, ∇̄an))

is an isomorphism;
iv) by studying ramification, compare

H∗
dR(X, (M,∇)) and H∗

dR,log(X̄, (M̄, ∇̄))

(resp. H∗
dR(Xan, (Man,∇an)) and H∗

dR,log(X̄
an, (M̄an, ∇̄an)) ).

Point iv), comparison between a meromorphic De Rham complex and
a De Rham complex with essential singularities at infinity, is the crux of
the proof. The difference between those two De Rham complexes has been
analysed in a systematic way by Z. Mebkhout; in his geometric theory of
irregularity, it is measured by a certain perverse sheaf [Me1]. This has even-
tually led him to a new proof [Me2] of the Grothendieck-Deligne theorem
which bypasses point i); in other words, it is no longer necessary to invoke
resolution of singularities, as a deus ex machina, to investigate any serious
question of ramification arising in the theory of D-modules.

Non-archimedean analogues of the Grothendieck and Deligne compari-
son theorems have been proved by R. Kiehl [Ki] and F. Baldassarri [B3]
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respectively. In this context, X is smooth algebraic variety over
Cp = ˆ̄Qp. 2

Recently, F. Baldassarri and the present author have looked for a com-
mon proof of the complex and p-adic comparison theorems. Of course,
such a proof has to avoid the (typically transcendental complex) notion
of monodromy. This has led us to a new, elementary, and more algebraic
treatment of the Grothendieck-Deligne theorem (which does not use reso-
lution of singularities) [AB]. We present here a sketch of this proof.

1.2. Relative De Rham cohomology and dévissage.

1.2.1. We first need a relative version of De Rham cohomology (higher
direct images). Let f : X → S be a smooth morphism of smooth complex
algebraic varieties, of pure relative dimension d (S being connected for
convenience).

To any OX -module with integrable connection (M,∇), one attaches the
relative De Rham complex Ω∗(M) (usually,M will be a vector bundle, so
that Ω∗(M) is a complex of vector bundles with f−1(OS)-linear differen-
tial).

This complex only involves the relative connection∇rel :M→ Ω1
X/S⊗M

induced by ∇; the fact that ∇rel arises from an absolute integrable connec-
tion ∇ is reflected by the existence of a canonical integrable connection (the
Gauss-Manin connection [KO]) on the OS-modules of hypercohomology

Ri
dRf∗(M,∇) := Rif∗(Ω∗(M)).

It has been recently checked that this construction agrees, up to a co-
homological shift by d, with the construction of smooth direct images in
D-module theory [DMSS]1.4.

Examples. R0
dRf∗(M,∇) = Kerf∗∇rel. If f is affine and d = 1,

R1
dRf∗(M,∇) = Cokerf∗∇rel and Ri

dRf∗(M,∇) = 0 for i 6= 0, 1.

1.2.2. Our strategy of proof of the comparison theorem in De Rham
cohomology is reminiscent of M. Artin’s proof of the comparison theorem
in étale cohomology [Ar], using dévissage and reduction to the case of so-
called “elementary fibrations”. Instead of compactifying as in Deligne’s
proof, we “localize” X to the effect that the fibers of the morphism X → S
“become K(π, 1)’s”.

2there is an extra technical condition on the regular connection∇: the abelian group generated

by 1 and the exponents at infinity should contain no Liouville number, a condition which is
automatically satisfied if for instance X and (M,∇) are defined over Q̄.
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Definition (Artin). f is an elementary fibration if it can be embedded in
a commutative diagram

X
j

↪→ X̄ ←↩ Z = X̄ \X
f

↘ ↓ f
g

↙
S

where
(i) Z is a closed reduced subscheme of X̄ and j is the complementary open
immersion;
(ii) f is projective and smooth with geometric fibers irreducible of dimension
1;
(iii) g is an étale covering.

Definition. An elementary fibration f is called rational if X̄ = P1×S, f =
pr2, and Z is a disjoint union of images of sections σi, i = 1, . . . , r,∞ (s∞ :
S → Z∞ = {∞} × S ).

Remarks. An elementary fibration is a surjective affine morphism. Ra-
tional elementary fibrations are relative versions of “the affine line minus a
few points”.

Proposition 1.2.3 (Artin). Let f : X → S be a smooth morphism as
before. There is an étale dominant morphism ε : S′ → S and a finite open
cover (Uα) of X ×S S′ such that each Uα → S′ is a tower of elementary
fibrations.

We now consider certain properties P of modules with integrable con-
nection, which satisfy the following conditions:
• P is local for the étale topology,
• P is exact: if 0 → (M1,∇1) → (M,∇) → (M2,∇2) → 0 is exact,

(M,∇) satisfies P if (M1,∇1) and (M2,∇2) do,
• P implies coherence of the underlying module.

We are interested in the stability of P under direct image Ri
dRf∗.

Lemma (dévissage). Assume that for any rational elementary fibration
f : X −→ S with affine base, and for any OX-module with integrable
connection (M,∇) satisfying P, there is a dense open subset U ⊂ S such
that Ri

dRf∗(M,∇)|U also satisfies P in degree i = 0, 1.
Then the same is true for any smooth morphism f in any degree i.

Steps of the proof ([AB]III.3.3): i) Čech spectral sequence for De Rham
cohomology with respect to the cover (Uα) of X ×S S′;
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ii) The Leray spectral sequence for the tower Uα → S′ reduces the question
to the case when f is an elementary fibration (in which case Ri

dRf∗(M,∇) =
0 for i 6= 0, 1); 3

iii) Applying suitable finite mappings (using Lefschetz’ pencils), one further
reduces to the case when f is a rational elementary fibration.

Variants: • the assumption of the lemma can be weakened by restricting
to “cyclic” connections with respect to a vertical coordinate;
• if one can take U = S in the assumption, it is then possible to take U

independent of (M,∇) (but not = S) in the conclusion.

1.3. On the coherence of direct images.
As an illustration of the previous lemma, let us take P = coherence of

the underlying O-module. For O-modules with integrable connection, it is
well-known that coherence is equivalent to being a vector bundle (cf. [K1]).

Theorem 1.3.1. Let f : X → S be a smooth morphism, and (M,∇) be
a vector bundle with integrable connection. Then there is an open dense
subset U ⊂ S such that Ri

dRf∗(M,∇)|U is a vector bundle for every i.

The usual proof of this result uses the notion of holonomy and its stability
under direct image (cf. [Bn][Bo]).

1.3.2. Let us sketch a proof along the previous dévissage (with P =
coherence) cf. [AB]III.4.1. It suffices to prove the theorem when f is a
rational elementary fibration with affine S, ∇ is cyclic (with respect to a
vertical coordinate), and i = 0, 1

X
j

↪→ A1
S ←↩ Z =

∐
i (x = θi)

f

↘ ↓ pr
g

↙
S

with θi − θj ∈ O(S)∗, x being the “vertical” coordinate on A1. Decompo-
sition of rational functions into principal parts yields

O(X) = O(S)[x]⊕
⊕

i

1
x− θi

O(S)[
1

x− θi
].

Our connection ∇ is given by a differential operator

Λ =
µ∑
0

γk
dk

dxk
∈ O(X)[

d

dx
]

and we may assume that γµ ∈ O(X)∗ ∩ O(S)[x]. We have

R0
dRf∗(M,∇) = KerΛ, R1

dRf∗(M,∇) = CokerΛ

3some technical difficulties - solved in loc. cit. - arise along the induction process, due to the
fact that P is only assumed generically.
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and we have to show that these O(S)-modules are finitely generated. The
case of KerΛ being easy, we concentrate on CokerΛ.

1.3.3. In order to analyse CokerΛ, we need the notion of indicial poly-
nomial.

Definition. The indicial polynomial of Λ at θi is the unique polynomial
φi ∈ O(S)[t] in the variable t with the following property: there is an integer
ri such that for every m,

Λ
1

(x− θi)m
= φi(−m)

1
(x− θi)m+ri

+ lower order terms in
1

x− θi
.

The roots of the indicial polynomial are called the (Fuchs) exponents of Λ
at θi.

Lemma (Robba). Due to the integrability of ∇, the exponents of Λ at θi

are constant.

cf. [AB] app. A.
It follows from the lemma that φi may be written as

φi(t) = (τi ∈ O(S))× element of C[t].

For n >> 0, we thus have, by definition of the indicial polynomial:

τi

(x− θi)n
∈ Λ(something in O(X)) +

1
(x− θi)n−1

O(S)[x].

A similar statement holds for the section at infinity (instead of θi). Let U
denote the complement of the divisor (τ∞.

∏
τi = 0) in S.

Confronting this to the decomposition

O(X) = O(S)[x]⊕
⊕

i

1
x− θi

O(S)[
1

x− θi
],

we arrive at the desired conclusion that the localization of O(X)/Λ(O(X))
at (τ∞.

∏
τi = 0) is finitely generated over O(U).

Remark. If ∇ is regular, then the τi are units, and U = S in this case.
According to the variant of the lemma of dévissage, one can conclude that
Ri

dRf∗ of a regular connection, with respect to a general smooth morphism
f , is a vector bundle when restricted to some dense open subset U ⊂ S
which depends only on f , cf. [AB]III.6, 8.

By similar arguments of dévissage, one can prove:
• (generic) base change for Ri

dRf∗ [AB]III.5:
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Theorem 1.3.4. (Assumptions as in 1.3.1) There is a dense open subset
U ⊂ S with the following property. For any smooth complex variety S] and
any morphism u : S] −→ S, let us construct the fibered diagram

X] f]

−→ S] ←↩ U ]

u] ↓ ↓ u ↓
X

f−→ S ←↩ U

Then for any i, the restriction to U ] of the base change morphism

u∗Ri
DRf∗(M,∇) −→ Ri

DRf ]
∗u

]∗(M,∇)

is an isomorphism.

• stability of regularity under Ri
dRf∗ [AB]III.8:

Theorem 1.3.5. If ∇ is regular, then for any i, the Gauss-Manin connec-
tion on Ri

dRf∗(M,∇) is regular.

Here we apply the lemma of dévissage with P = regularity (cf. [K2] for a
“classical” proof which uses resolution of singularities).
• One can also take P = regularity + having exponents in a given rational
vector subspace of C containing 1 ...

1.4. Comparison theorem.
It is crucial for our proof to state the comparison theorem in the relative

setting [AB]IV.3:

Theorem 1.4.1. Let f : X → S be a smooth morphism, and (M,∇)
be a vector bundle with integrable regular connection. Then there is an
open dense subset U ⊂ S (independent of (M,∇)) such that for any i, the
canonical morphism

(Ri
DRf∗(M,∇))an −→ (Ri

DRfan
∗ (Man,∇an))

induces an isomorphism of analytic vector bundles with connection over
Uan.

By dévissage along the previous lines, it is possible to reduce the proof to
the case when f is a rational elementary fibration (in which case U = S).
Moreover, by base change in De Rham cohomology (cf. 1.3.4), one can
further reduce to the case when S is a point (this reduction is not necessary,
but simplifies the exposition, cf. [AB]IV.3.4, 3.5). The statement then
amounts to the following

Proposition 1.4.2. Let X = SpecC[x, 1∏r
i=1(x−θi)

], and let (E,∇) be a
projective O(X)-module of finite rank with a regular connection. Then
(Co)KerE∇( d

dx) ∼= (Co)KerE⊗O(Xan)∇( d
dx).
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LetMθi
be the field of germs of meromorphic functions at θi, and let Ai

denote the (differential) ring generated byMθi
, log(x−θi) and the (x−θi)a

for a ∈ C (or just for a running through the exponents at θi). For i = 0,
we take the variant at ∞.

The proof of 1.4.2. relies on the following classical

Lemma (Frobenius). (Assumptions as in 1.4.2) Due to the regularity of
∇, E is solvable in Ai, i.e. (E ⊗Ai)∇( d

dx
) ⊗C Ai

∼→E ⊗Ai.

The deduction of 1.4.2 from Frobenius’ lemma is formal and uses the
following abstract “comparison criteria” in differential algebra.

Let (C, ∂) be a differential Q-algebra, A, B be differential sub-algebras,
such that A∂ = C∂ (equality of rings of constants), A is faithfully flat over
A∂ , and ∂|A is surjective onto A.

Criterion 1.4.3. Let E be an (A ∩B)[∂]-module, projective of finite rank
µ as a module over A ∩ B. Assume that E is solvable in A, i.e. (E ⊗
A)∂ ⊗A∂ A

∼→E ⊗A.
Then KerE∂ ∼= KerE⊗B∂ and CokerE∂ ↪→ CokerE⊗B∂ is injective.

Criterion 1.4.4. Assume moreover that C (resp. A) is a product of differ-
ential Q-algebras without zero divisors Ci (resp. Ai ⊂ Ci), i = 0, 1, . . . , r
containing a differential subalgebra C ′

i (resp. A′i := Ai ∩ C ′
i) such that:

• ∂ : Ci → Ci is surjective and Ci is faithfully flat over C∂
i ;

• the composed homomorphism of differential algebras B → C
pri−→Ci factors

through an injection B ↪→ C ′
i;

• Ci = Ti ⊕
⊕

j≥0 C ′
i∂
−j
i 1 for some C ′

i[∂]-submodule Ti, with ∂i = ui∂ for
some unit ui in Ai ∩ C ′

i, ∂i(∂
−j
i 1) = ∂−j+1

i 1;
• C ′

0 ⊂ (C ′
0∩A0)+pr0B, and, for i > 0, C ′

i ⊂ (C ′
i∩Ai)+

⋂
j<i pri(B∩Aj).

Then CokerE∂ → CokerE⊗B∂ is surjective.

cf. [AB]IV.2.

Application of the criteria: we take
Ai as in Frobenius’lemma,
C ′

i =
⋂

ε>0O(D(θi, ε) \ {θi}) (germs of meromorphic functions in small
punctured disk around θi),

Ci = Ai.C
′
i,

C =
∏

Ci, A =
∏

Ai, ∂ = d
dx ,

B = O(Xan).
Then A∩B = O(X) = C[x, 1∏r

i=1(x−θi)
], diagonally embedded into A. One

has A∂
i = C∂

i = C and Ai ∩ C ′
i =Mθi

.

We also set ui = x− θi, ∂−j
i 1 = logj(x−θi)

j! , Ti =
∑

a/∈Z C ′
i(x− θi)a.

The fact that E is solvable in A is Frobenius’lemma (applied at various
singularities).
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1.5. Riemann’s existence theorem in higher dimension: an ele-
mentary approach.

Theorem (Grauert-Remmert). Let X be a smooth complex algebraic
variety. Then the natural functor

{algebraic étale coverings of X } −→
{topological unramified finite coverings of X(C)}

is an equivalence of categories.

The problem of essential surjectivity of this functor, sometimes called
Riemann’s existence problem, was settled by Grauert and Remmert [GR]
and subsequently by Grothendieck using Hironaka’s resolution of singular-
ities.

Using dévissage à la Artin, and special cases of the comparison theorem
for De Rham cohomology, it is in fact possible to give an elementary proof
of the Grauert-Remmert theorem by reduction to the one-dimensional case.

Recall that a topological unramified covering of X(C) admits a canonical
structure of an analytic variety Y, endowed with a holomorphic étale mor-
phism π : Y −→ Xan. In the finite case, we have equivalences of categories

{finite étale coverings π : Y −→ Xan} −→ {coherent OXan-modules

with integrable connection (M,∇), endowed with a horizontal

(commutative) OXan-algebra structure × :M⊗2 −→M}

−→ {étale OXan-algebras (M,×), coherent as OXan-modules}
given by

π 7−→ (R0
DRπ∗(OY , d),×) = (π∗OY ,∇,×) 7−→ (π∗OY ,×) ,

where × is deduced from the π−1OXan-algebra structure of OY . These
equivalences also take place in the algebraic categories:

{finite étale coverings π : Y −→ X} −→ {coherent OX -modules

with integrable regular connection (M,∇), endowed with a horizontal

(commutative) OX -algebra structure × :M⊗2 −→M }

−→ {finite étale OX -algebras M}
We refer to [AB] app. E for a proof of the Grauert-Remmert theorem along
these lines (which does not use resolution of singularities, nor any “hard
result” in complex analysis).
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1.6. Translation into the p-adic setting: the Kiehl-Baldassarri
comparison theorem.

The proof of the Grothendieck-Deligne comparison theorem which we
have sketched is so formal that it translates almost literally into the p-adic
setting. In this setting, X is a smooth algebraic variety over Cp, and Xan

denotes the associated rigid-analytic variety.
With the same notation and assumptions as in 1.4.2 (but interpreted in

the p-adic context), Frobenius’lemma has the following p-adic counterpart:

Lemma (Clark). Assume that the abelian group generated by 1 and the
exponents of ∇ does not contain any Liouville number. Then, due to the
regularity of ∇, E is solvable in Ai, i.e. (E ⊗Ai)∇( d

dx
) ⊗C Ai

∼→E ⊗Ai.

The diophantine condition on the exponents is specific to the p-adic case
and unavoidable: for instance the series∑ xn

a + n
= x−a

∫
xadx

1− x

(which satisfies a first order inhomogeneous linear differential equation)
may diverge p-adically if a is a Liouville number, i.e. very-well approxi-
mated by integers.

Building on Clark’s lemma, the same arguments as in §1.4 apply and
give a proof of the following generalization of Baldassarri’s theorem in the
relative setting:

Theorem 1.6.1. Let f : X → S be a smooth morphism, and (M,∇) be
a vector bundle with integrable regular connection. We assume that the
additive subgroup of Cp generated by 1 and the exponents of ∇ contains no
Liouville number. Then there is an open dense subset U ⊂ S (independent
of (M,∇)) such that for any i, the canonical morphism

(Ri
DRf∗(M,∇))an −→ (Ri

DRfan
∗ (Man,∇an))

induces an isomorphism of analytic vector bundles with connection over
Uan.

cf. [AB] IV 4.1.
One recovers Kiehl’s theorem as the following special case:

Corollary 1.6.2. H∗
dR(X) ∼= H∗

dR(Xan).

2. Comparison theorem between algebraic and analytic De
Rham cohomology with arbitrary p-adic coefficients

2.1. Introduction.
The Frobenius and Clark lemmata are not quite faithful reflections of

each other in the complex and p-adic worlds respectively. We have already
noticed the diophantine condition in Clark’s lemma. On the other hand,
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while the convergence property asserted by Frobenius’lemma is specific to
regular connections, the convergence property asserted by Clark’s lemma
extend to irregular connections in the following way.

Let K be an algebraically closed field of characteristic 0, complete under
a non-archimedean absolute value | | (e.g. K = Cp). Let K0 be an
algebraically closed subfield of K which does not contain Liouville numbers,
i.e. for every a ∈ K0, the series

∑
n∈N,n6=−a

xn

a+n converges (e.g. K0 = Q̄).
Let us consider a monic differential operator Λ ∈ K0[x, 1∏r

i=1(x−θi)
][ d

dx ],
with θi ∈ K0. LetMθi

be the field of germs of meromorphic functions at θi,
and let now Ai denote the (differential) ring generated byMθi

, log(x− θi),
the (x− θi)a and exp(b(x− θi)r) for a, b ∈ K0, r ∈ Q<0. For i = 0, we take
the variant at ∞.

Lemma (Clark-Baldassarri). Λ is solvable in Ai.

cf. [B1]. The lemma asserts in particular the convergence of any formal
power series which is a solution of Λ (in strong contrast with the complex
case).

This and similar peculiar features of non-archimedean differential equa-
tions led Baldassarri to conjecture in 1987 that the comparison theorem
between algebraic and analytic De Rham cohomology might hold for arbi-
trary, not necessary regular, coefficients [B2]. This conjecture has now been
proved [AB]IV.6.1:

Main theorem. Let X be a smooth algebraic K0-variety, and let (M,∇)
be a coherent OX-module with integrable connection. Then the natural map

H∗
dR(XK , (MK ,∇K)) → H∗

dR(Xan
K , (Man

K ,∇an
K ))

is an isomorphism.

In degree 0, this gives:

Corollary. The functor of analytification

(MK ,∇K) 7→ (Man
K ,∇an

K )

of modules with integrable connection defined over K0 is fully faithful.

However, it is not essentially surjective. This is again in strong contrast
with the complex case, where the functor of analytification is essentially
surjective but not fully faithful (unless one restricts to regular connections).

Apart from the case of regular coefficients, a special case of the main the-
orem had been previously proved by two different methods [B1][C], namely
the case when X is a curve.
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2.2. Strategy of proof; key lemma.

2.2.1. The overall strategy is the same as for theorem 1.6.1 (case of reg-
ular coefficients):

a) dévissage using towers of elementary fibrations,
b) study of the case of (rational) elementary fibrations.

Its core is the following

Key lemma. There is a finite open affine cover (Uα) of X and, for each
α, an elementary fibration fα : Uα → Sα

Uα ↪→ Ūα ←↩ Zα = Ūα \ Uα
fα

↘ ↓
gα

↙
Sα

such that for j = 0, 1:
(i) Rj

DRfα∗((M,∇)|Uα
) is a vector bundle on Sα,

(ii) (Rj
DRfα∗((M,∇)|Uα

))an ∼= (Rj
DRfan

α ∗((Man,∇an)|Uan
α

)).

2.2.2. Given point i) of the key lemma, point ii) is just a variant of theo-
rem 1.6.1 with irregular coefficients, in the case of an elementary fibration.
In is settled in the same way, reducing to the case of a rational elementary
fibration and using the Clark-Baldassarri lemma instead of Clark’s lemma,
cf. [AB]IV.5.2.

2.2.3. Let us now deduce the main theorem from the key lemma.
We consider a cover (Uα) as in the key lemma. For α = (α0, . . . , αp),

α0 < · · · < αp, we set Uα = Uα0 ∩ · · · ∩ Uαp . There is a natural morphism
of Čech spectral sequences,

⊕α0<···<αpH
i−p
DR (Uα, (M,∇))⊗K ⇒ H i

DR(X, (M,∇))⊗K
↓ ϕi−p ↓ ϕi

⊕α0<···<αpH
i−p
DR (Uan

αK , (Man,∇an)) ⇒ H i
DR(Xan

K , (Man,∇an)).

By induction on i, we are left with proving the theorem for X = Uα.
On the other hand, there is a natural morphism of Leray spectral se-

quences

⊕0≤j≤i H i−j
DR(Sα, Rj

DRfα∗((M,∇)|Uα
))⊗K ⇒ H i

DR(X, (M,∇))⊗K
↓ ϕ′i−j

⊕0≤j≤i H i−j
DR(San

αK , (Rj
DRfα∗((M,∇)|Uα

)an) ↓ ϕi

↓ ϕ′′j
⊕0≤j≤i H i−j

DR(San
αK , Rj

DRfan
α∗ ((Man,∇an)|Uan

α
) ⇒ H i

DR(Xan
K , (Man,∇an)).
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By point ii) of the key lemma, we know that ϕ′′j is an isomorphism. By
point i) of the key lemma and induction on the dimension, we may as-
sume that ϕ′i−j is an isomorphism. Hence the right vertical arrow ϕi is an
isomorphism.

2.2.4. The main difficulty in the key lemma is to find elementary
fibrations fα : Uα → Sα (the Uα covering all of X), such that
R1

DRfα∗((M,∇)|Uα
) is OSα-coherent. This difficulty will lead us to a de-

tailed study of the ramification properties of irregular connections.
In order to understand the (purely algebro-geometric) nature of the prob-

lem, let us recall our approach to the coherence of R1
DRf∗ in 1.3.2. We again

consider the case of a rational elementary fibration with affine base:

X
j

↪→ A1
S ←↩ Z =

∐
i (x = θi)

f

↘ ↓ pr
g

↙
S

with θi − θj ∈ O(S)∗, x being the “vertical” coordinate on A1.
We were assuming that the connection ∇ was cyclic with respect to the

x-coordinate, i.e. given by a differential operator

Λ =
µ∑
0

γk
dk

dxk
∈ O(X)[

d

dx
]

so that R1
dRf∗(M,∇) = CokerΛ.

The indicial polynomial φi of Λ at θi was written as

φi(t) = (τi ∈ O(S))× element of C[t].

Combining the decomposition

O(X) = O(S)[x]⊕
⊕

i

1
x− θi

O(S)[
1

x− θi
],

with the process of reduction of denominators
τi

(x− θi)n
∈ Λ(element of O(X)) +

1
(x− θi)n−1

O(S)[x], for n >> 0,

(and similarly at infinity), we arrived at the conclusion that CokerΛ is
finitely generated after localization on the complement of the divisor
(τ∞.

∏
τi = 0) in S.

If we try to copy this approach in the context of the key lemma, we are
faced with two questions:
Q.1. The existence of cyclic vector in the neighborhood of point which is
not a singularity is well-known [K3], but does there exist a cyclic vector in
the neighborhood of singularities?
Q.2. Assuming that we can reduce to the cyclic situation, can we achieve
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moreover that the leading coefficients τi of the indicial polynomials are units
in O(Sα)?

2.2.5. It turns out that the first question has a negative answer in general:
indeed, let X be the (x, y)-plane, Z= the y-axis, M = OX\Ze1 ⊕OX\Ze2,
where the first (resp. second) factor is endowed with the trivial connection
(resp. the connection with formal solution e−

y
x ). If v = ae1 + be2, ∂

∂xv =
∂a
∂xe1 +( ∂b

∂x−
by
x2 )e2; by looking at the term of lowest x-order, we see that for

any affine open neighborhood U of the origin, the determinant a ∂b
∂x − b∂a

∂x −
aby
x2 cannot be a unit in O(U \ (Z ∩ U)), hence there is no cyclic vector for
∇( ∂

∂x) in O(U \ (Z ∩ U)).
We are going to give criteria for the above questions in terms of Newton

polygons. The next three sections are purely algebraic in nature and de-
voted to the formal study of irregular connections. In these sections, K is
any algebraically closed field of characteristic 0.

2.3. Newton polygons.

2.3.1. Let us consider a differential operator Λ =
∑

γij
xjdi

dxi , monic, of
degree µ in d

dx (γij ∈ K).
We recall that the Newton polygon NP0(Λ) of Λ at x = 0 is the convex

hull of the quadrants {u ≤ i, v ≥ j− i+ µ | γij 6= 0} ⊂ R2. The vertices of
NP0(Λ) are among the points (i, ordx(γi)− i + µ), 0 ≤ i ≤ µ. The vertical
edge of NP0(Λ) is {u = µ, v ≥ 0}.

If we write xµΛ = ( x
dx)µ −

∑µ−1
i=0 βi(x)( x

dx)i, βµ(x) = 1, then NP0(Λ)
can also be described as the convex hull of the quadrants {u ≤ i, v ≥
ordx(βi)} , 0 ≤ i ≤ µ.

The height of NP0(Λ) (i.e. the maximal distance between the ordinates
of the vertices) is called the irregularity of Λ. All finite slopes of NP0(Λ)
are ≥ 0 and the maximal one is max(0,maxj=0,...,µ−1(−v(γj)

µ−j − 1)). The
Newton polygon is a quadrant if and only if 0 is a regular singularity.

It turns out that the Newton polygon is an invariant of the differen-
tial module K((x))[ d

dx ]/ΛK((x))[ d
dx ] (it does not depend on the particular

choice of a cyclic vector). This remark allows to define the Newton polygon
of any differential module over K((x)) at 0 (resp. over K(x) at any point,
including ∞).

2.3.2. Let us consider an elementary fibration (cf. 1.2.2)

X
j

↪→ X̄ ←↩ Z = X̄ \X
f

↘ ↓
g

↙
S
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and letM be a vector bundle on X endowed with a relative connection

∇rel :M→ Ω1
X/S ⊗M.

For each point Q of Z, we can form the Newton polygon at Q of the
fiber of (M,∇rel) above g(Q). This gives rise to a polygonal function
Nf = Nf (∇rel, .) on Z.

Proposition 2.3.3. Nf is lower semi-continuous, i.e. for any given poly-
gon N , {Q ∈ Z|Nf (Q) ⊂ N} is closed in Z (or else: Nf is constructible,
and for any specialization Q −→ P in Z, Nf (P ) ⊆ Nf (Q)).

cf. [AB]II.4.2.3.
We now assume that ∇rel comes from an absolute integrable connection

∇ on X. We also assume that Z is given by a disjoint union smooth
irreductible divisors Zi. Let ∂ be a vertical derivation (e.g. ∂

∂x for some
local vertical coordinate x). For question Q.1, we have the following

Criterion 2.3.4. Assume that:
i) Nf (∇(internal) End, .) is constant on Z,
ii) the Turrittin index (cf. next section) of ∇ at each Zi is 1 (this is slighly
stronger than requiring integrality of the slopes),
iii) M extends to a vector bundle on X̄.
Then there exists a flat morphism h : S′ → S, finite over its image, with
codim(S \h(S′)) ≥ 2 and such that every Q ∈ S′ has an open neighborhood
U(Q) in X̄ ×S S′ such that ∇U(Q)∩X×SS′ is cyclic with respect to ∇(∂).

For question Q.2, we have the following

Criterion 2.3.5. Assume that Nf (∇, .) is constant on Z. Then for any
cyclic vector of ∇(∂) (if any), with associated differential operator Λ, the
leading coefficient of the indicial polynomial of Λ at Z is a unit in O(Z).

cf. [AB]II.7.2.9 and 7.1.2. The proof of both criteria depends on a certain
relative version of the Turrittin-Levelt-Hukuhara decomposition theorem of
irregular formal connections.

2.4. Formal decomposition of an integrable connection along a
singular divisor.

2.4.1. Let Y be a smooth affine K-variety, and let Z ⊂ Y be smooth
divisor. We choose local coordinates t = x1, . . . xd such that t = 0 is a local
equation for Z.

There is a canonical decomposition of the formal completion ŶZ :

ŶZ
∼= Â1 × Z, O(ŶZ) ∼= O(Z)[[t]].

cf. [AB]I.1.4.5. In other words, the vector field ∂
∂t admits a canonical

system of formal integral curves ĈQ
∼= Â1, Q ∈ Z.



352 Yves André

Let E be a projective O(Z)((t))-module of rank µ endowed with an in-
tegrable connection ( ∂

∂t = ∂
∂x1

, . . . , ∂
∂xd

act on E).
Forgetting about the variables x2, . . . , xd, the Turrittin-Levelt-Hukuhara

theorem tells us that there exists: • a finite extension of K(Z)((t)) with
ramification index e | µ! (the so-called Turrittin index at t = 0) [we may
and shall write this extension in the form K(Z ′)((t′)), with t′ = t1/e, Z ′

normal and finite over Z ],
• polynomials P1, . . . , Pr ∈ K(Z ′)[ 1

t′ ], well-defined modulo Z,
such that the following decomposition of ∂

∂t′ -modules holds:

EK(Z′)((t′))
∼=

⊕
i

K(Z ′)((t′))⊗K(Z′) KerEK(Z′)((t′))(t
′ ∂

∂t′
− Pi)µ.

cf. [AB]II.3.1. The following result is an “integral” refinement of this
decomposition (K(Z ′) replaced by O(Z ′)).

Theorem 2.4.2. Assume that the horizontal side of the Newton polygon of
the internal End of ∇ restricted to the integral curve ĈQ does not depend
on Q ∈ Z. Then:
i) the polynomials Pi belong to O(Z ′)[ 1

t′ ],
ii) the Turrittin-Levelt-Hukuhara decomposition holds in integral form:

EO(Z′)((t′))
∼=

⊕
i

O(Z ′)((t′))⊗O(Z′) KerEO(Z′)((t′))(t
′ ∂

∂t′
− Pi)µ.

The proof is long and delicate ([AB]II.6), in the spirit of xi-adic analy-
sis. It is likely that the technical assumption of 2.4.2 is not necessary (cf.
[AB]II.6.13 for a discussion). Let us also note that there is a p-adic refine-
ment of 2.4.2, which can be viewed as a higher dimensional generalization
of the Clark-Baldassarri lemma [AB]IV.7.

It follows from 2.4.2 that the slope filtration of E is horizontal with
respect to ∂

∂t = ∂
∂x1

, . . . , ∂
∂xd

.

2.5. The NP-stratification of a singular divisor.

2.5.1. The main assumption in criteria 2.3.4 and 2.3.5. concerns the
(non-)variation of the Newton polygon in the fibers of an elementary fibra-
tion. The semi-continuity property 2.3.3. is not enough for our purpose,
and we sketch here a more precise study.

Let Y, Z, t = x1, . . . xd be as in 2.4.1. Instead of a formal module with
connection, we now consider an algebraic vector bundle M on Y \ Z with
integrable connection ∇. Working with an algebraic closure K(Z) instead
of K, the method of 2.3.1. allows to define the Newton polygon NPZ(∇)
at (the generic point of) Z. We wish to compare this Newton polygon with
the Newton polygon NPQ(∇|C\Q) at various point Q ∈ Z of the restriction
of ∇ to a curve C in Y meeting Z transversally at Q.
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Theorem 2.5.2. There is an open dense subset Z0 ⊂ Z such that for
any locally closed curve C which meets Z transversally at some point Q ∈
Z0, NPQ(∇|C\Q) = NPZ(∇).

(Again, the proof has some flavor of ultrametric analysis [AB]II.5.3.1.).
By iteration, blowing-up, and using 2.3.3, one obtains the following refine-
ment [AB]II.5.4.:

Theorem 2.5.3 (semi-continuity). There is a finite set N of polygons
⊂ R2 with integral vertices, and a constructible partition Z =

∐
N∈N ZN

such that for every Q ∈ ZN and almost every locally closed curve C which
meets Z transversally at Q, one has NPQ(∇|C\Q) = N . Moreover, Z̄N =⋃

N ′⊂N ZN ′.

(“almost every” is understood in the sense of Zariski topology on the
projective bundle of tangent directions). The relationship with stratifi-
cations introduced by Y. Laurent and Z. Mebkhout [LMe] would deserve
examination.

As a simple illustration of 2.5.3, let us take for Y the affine plane, Z =
the x2-axis, and let us consider the integrable connection ∇ of rank one
with formal solution exp(x2/(x1)2). The stratification is Z = (Z \0)

∐
{0};

the stratum Z \ 0 corresponds to slope 2, the stratum {0} corresponds to
slope 1 (the excluded curves are those tangent to the x1-axis).

2.6. Indications on the proof of the key lemma.
We now have all the ingredients to finish the sketch of proof of the

main theorem. From the comments in 2.2, it only remains to discuss point
i) of the key lemma. More precisely, given any point ξ ∈ X, we have
to find an affine open neighborhood U = U(ξ) of ξ and an elementary
fibration f : U → S such that R1

DRf∗((M,∇)|U ) is OS-coherent. We refer
to [AB]IV.6.6. for complete details.

Let us recall the principle of Artin’s construction of elementary fibrations.
We may assume that X is affine, of dimension d, and we choose a projective
completion X̄ of X. We embed X̄ into some PN using the tensor square
of any very ample line bundle. Let L ⊂ PN be a sufficiently general linear
space of codimension d − 1 passing through ξ, and let H ⊂ PN be a
sufficiently general hyperplane. The linear projection PN . . . → Pd−1 will
then induce, by restriction to a suitable neighborhood U of ξ in X, an
elementary fibration.

An important point is that for any sufficiently general L ⊂ PN will avoid
any fixed T ⊂ D = X̄ \X of codimension 1 given in advance. We may and
shall fix T in such a way that:
• D \ T is a union of smooth components Di,
• M extends to a vector bundle over X̄ \ T ,
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• (using 2.5.2) for each i, and for any locally closed curve C which meets
Di transversally at some point Q, the polygonal functions of Q ∈ Di given
by NPQ(∇|C\Q) and NPQ((∇internalEnd)|C\Q) are constant on Di.

After technical reductions to rational elementary fibrations, passing to
Kummer coverings etc..., we are left at last with a situation where criteria
2.3.4 and 2.3.5 apply (in particular, the assumptions of non-variation of the
Newton polygons are satisfied). We thus have cyclic vectors at disposal,
and the leading coefficients of the associated indicial polynomials are units.
As was explained in 2.2.4, this provides the coherence of R1

DRf∗((M,∇)|U )
asserted in the key lemma.
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Schémas. Tome 3. Lecture Notes in Math. 305, Springer-Verlag (1973).
[B1] F. Baldassarri, Differential modules and singular points of p-adic differential equa-

tions. Advances in Math. 44 (1982), 155–179.
[B2] F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie p-
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