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A monogenic Hasse-Arf theorem

par James BORGER

Résumé. On étend le théorème de Hasse–Arf de la classe des
extensions résiduellement séparables des anneaux de valuation
discrète complets à la classe des extensions monogènes.

Abstract. I extend the Hasse–Arf theorem from residually sepa-
rable extensions of complete discrete valuation rings to monogenic
extensions.

Let B/A be a finite extension of henselian discrete valuation rings which
is generically Galois with group G, that is, for which the corresponding
extension of fraction fields is Galois with group G. For σ ∈ G − {1}, let
IB(σ) be the ideal of B generated by (σ − 1)B and let iB(σ) be the length
of the B-module B/IB(σ).

For any finite dimensional complex representation ρ : G → AutC(V ), we
define the naive Artin conductor exactly as we do when B/A is residually
separable, i.e., when the extension of residue fields is separable:

arn(ρ) = e−1
B/A

∑
σ 6=1

[dim(V )− trace(ρ(σ))]iB(σ).

By looking at real parts, it is immediate that this is a non-negative rational
number, and when B/A is residually separable, the Hasse-Arf theorem [3,
VI §2] tells us that it is also an integer.

In [4], De Smit shows that most of the classical ramification-theoretic
properties of residually separable extensions B/A hold in the slightly more
general, “monogenic” case where we require only that B is generated as an
A-algebra by one element. The purpose of this note is to show that the
Hasse–Arf theorem also holds in this context.

Partial results in this direction were obtained by Spriano [5]. A proof
of the Hasse-Arf theorem in equal characteristic that is strong enough to
cover monogenic extensions was outlined at the 1999 Luminy conference on
ramification theory. It was based on a technical analysis of a refinement [2,
3.2.2] of Kato’s refined Swan conductor [1], but since then, an elementary
reduction to the classical Hasse-Arf theorem has been found.

The contents of this paper are contained in my dissertation (U.C. Berke-
ley, 2000), which was written under the direction of Hendrik Lenstra.



374 James Borger

Proposition 1. Let B/A be a finite generically separable extension of
henselian discrete valuation rings. Then the following are equivalent.

(i) There exists an x ∈ B such that B = A[x].
(ii) The second exterior power Ω2

B/A of the module of relative Kähler
differentials is zero.

(iii) There is a henselian discrete valuation ring A′ that is finite over
the maximal unramified subextension Anr of B/A such that eA′/Anr = 1 and
B′/A′ is a residually separable extension of discrete valuation rings, where
B′ = A′ ⊗Anr B.

Proof. De Smit [4, 4.2] shows that (i) follows from (ii). For any A′ as in
(iii), we have B′ ⊗B Ω2

B/A
∼= B′ ⊗B Ω2

B/Anr
∼= Ω2

B′/A′ = 0, so (iii) implies
(ii). Now we show (i) implies (iii).

Assume, as we may, that A = Anr, and let l/k denote the residue exten-
sion of B/A. Take some x ∈ B such that B = A[x] and let x̄ denote the
image of x in l. Let g(X) ∈ A[X] be a monic lift of the minimal polynomial
Xq − a of x̄ over k. Since the maximal ideal of B is generated by that of A
and g(x), we may assume that g(x) generates the maximal ideal of B. Then
modulo the maximal ideal of B, we have g(X + x) ≡ Xq + xq − a ≡ Xq, so
g(X + x) is an Eisenstein polynomial with coefficients in B. Now let A′ be
the discrete valuation ring A[X]/(g(X)). Then

B′ = A′ ⊗A B ∼= B[X]/(g(X)) ∼= B[X]/(g(X + x))

is a discrete valuation ring which has the same residue field as B and, hence,
A′. �

Proposition 2. Let B/A be a finite extension of henselian discrete valua-
tion rings that is generically Galois with group G, and let ρ : G → AutC(V )
be a finite dimensional representation of G. If A′/A is a finite extension
of henselian discrete valuation rings such that B′ = A′ ⊗A B is a discrete
valuation ring, then we have arn(ρ′) = eA′/Aarn(ρ), where ρ′ is ρ viewed as
a representation of the generic Galois group of the extension B′/A′.

Proof. For σ ∈ G− {1}, we have IB′(σ) = A′ ⊗A IB(σ) = B′ ⊗B IB(σ), so

iB′(σ) = lengthB′(B′/IB′(σ)) = lengthB′(B′ ⊗B B/IB(σ))

= eB′/BlengthB(B/IB(σ)) = eB′/BiB(σ).

Thus

arn(ρ′) = eB′/B

eB/A

eB′/A′
arn(ρ) = eA′/Aarn(ρ).

�
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Corollary 3. Let B/A be a finite monogenic extension of henselian discrete
valuation rings that is generically Galois with group G, and let ρ : G →
AutC(V ) be a finite dimensional representation of G. Then arn(ρ) is an
integer.

Proof. Restricting to the maximal unramified subextension of B/A does
not change the naive Artin conductor or the monogeneity of the extension.
So assume B/A is residually purely inseparable. Now just apply the previ-
ous proposition with A′ taken as in the first proposition and then use the
classical Hasse-Arf theorem. �

Remark. One can define a naive Swan conductor [1, 6.7] as well. It also
is an integer in the monogenic case but simply because it agrees with the
naive Artin conductor whenever B/A is monogenic and not residually sep-
arable. It is not, however, a good invariant even in the monogenic case: it
is a consequence of results outlined at the Luminy conference that in the
(monogenic) equal-characteristic case, the naive Swan conductor of a faith-
ful, one-dimensional representation agrees with Kato’s Swan conductor if
and only if either B/A is residually separable or eB/A = 1, whereas for
general monogenic extensions in equal-characteristic, the naive Artin con-
ductor of a one-dimensional representation is equal to a non-logarithmic,
“Artin-type” variant of Kato’s Swan conductor.
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