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On the structure of Milnor K-groups of certain

complete discrete valuation fields
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Résumé. Pour un exemple typique de corps de valuation discrète
complet K de type II au sens de [12], nous déterminons les quo-
tients gradués griK2(K) pour tout i > 0. Dans l’appendice, nous
décrivons les K-groupes de Milnor d’un certain anneau local à
l’aide de modules de différentielles, qui sont liés à la théorie de la
cohomologie syntomique.

Abstract. For a typical example of a complete discrete valuation
field K of type II in the sense of [12], we determine the graded
quotients griK2(K) for all i > 0. In the Appendix, we describe
the Milnor K-groups of a certain local ring by using differential
modules, which are related to the theory of syntomic cohomology.

0. Introduction

In the arithmetic of higher dimensional local fields, the Milnor K-theory
plays an important role. For example, in local class field theory of Kato
and Parshin, the Galois group of the maximal abelian extension is described
by the Milnor K-group, and the information on the ramification is in the
Milnor K-group, at least for abelian extensions. So it is very important to
know the structure of the Milnor K-groups.

Let K be a complete discrete valuation field, vK the normalized additive
valuation of K, OK the ring of integers, mK the maximal ideal of OK ,
and F the residue field. For q > 0, the Milnor K-group KM

q (K) has a
natural filtration U iKM

q (K) which is by definition the subgroup generated
by {1 + mi

K ,K
×, ...,K×} for all i ≥ 0 (cf. §1). We are interested in the

graded quotients griKM
q (K) = U iKM

q (K)/U i+1KM
q (K). The structures

of gri were determined in Bloch [1] and Graham [5] in the case that K is
of equal characteristic. But in the case that K is of mixed characteristics,
much less is known on the structures of griKM

q (K). They are determined by
Bloch and Kato [2] in the range that 0 ≤ i ≤ eKp/(p−1) where eK = vK(p)
is the absolute ramification index. They are also determined in the case
eK = vK(p) = 1 (and p > 2), in [14] for all i > 0. This result was
generalized in J. Nakamura [17] to the case that K is absolutely tamely
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ramified (cf. also [16] where some special totally ramified case was dealt).
We also remark that I. Zhukov calculated the Milnor K-groups of some
higher dimensional local fields from a different point of view ([24]).

On the other hand, we encountered strange phenomena in [12] for certain
K (if K is of type II in the terminology of [12]). Namely, if K is of type
II, for some q we have griKM

q (K) = 0 for some i (even in the case [F :
F p] = pq−1), which never happens in the equal characteristic case. A typical
example of a complete discrete valuation field of type II is K = K0( p

√
pT )

whereK0 is the fraction field of the completion of the localization of Zp[T ] at
the prime ideal (p). The aim of this article is to determine all griKM

2 (K)
for this typical example of type II (Theorem 1.1), and to give a direct
consequence of the theorem on the abelian extensions (Corollary 1.3). (For
the structure of the p-adic completion of KM

2 (K), see also Corollary 1.4).
I would like to thank K.Kato and Jinya Nakamura. The main result

of this article is an answer to their question. I would also like to thank
I.B.Fesenko for his interest in my old results on the MilnorK-groups of com-
plete discrete valuation fields. This paper was prepared during my stay at
University of Nottingham in 1996. I would like to express my sincere grat-
itude to their hospitality, and to the support from EPSRC(GR/L06560).
Finally, I would like to thank B. Erez for his constant efforts to edit the
papers gathered on the occasion of the Luminy conference (*).

Notation

For an abelian group A and an integer n, the cokernel (resp. kernel) of
the multiplication by n is denoted by A/n (resp. A[n]), and the torsion
subgroup of A is denoted by Ators. For a commutative ring R, R× denotes
the group of the units in R. For a discrete valuation field K, the ring of
integers is denoted by OK , and the unit group of OK is denoted by UK .
For a Galois module M and an integer r ∈ Z, M(r) means the Tate twist.
We fix an odd prime number p throughout this paper.

1. Statement of the result

Let K0 be a complete discrete valuation field with residue field F . We
assume that K0 is of characteristic 0 and F is of characteristic p > 0, and
that p is a prime element of the integer ring OK0 of K0. We further assume
that [F : F p] = p and p is odd.

We denote by Ω1
F the module of absolute Kähler differentials Ω1

F/Z. For
a positive integer n, we define the subgroups BnΩ1

F by B1Ω1
F = dF ⊂ Ω1

F

and C−1BnΩ1
F = Bn+1Ω1

F /B1Ω1
F for n > 0 where C−1 is the inverse Cartier

operator (cf. [6] 0.2). Then BnΩ1
F gives an increasing filtration on Ω1

F .
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We fix a p-base t of F , namely F = F p(t). (Recall that we are assuming
[F : F p] = p.) We take a lifting T ∈ UK0 of the p-base t of F , and define
K = K0( p

√
pT ). This is a discrete valuation field of type II in the sense of

[12].
In this article, we study the structure of K2(K) = KM

2 (K). As usual,
we denote the symbol by {a, b} (which is the class of a ⊗ b in K2(K) =
K× ⊗ K×/J where J is the subgroup generated by a ⊗ (1 − a) for a ∈
K× \ {1}). We write the composition of K2(K) additively. For i > 0,
we define U iK2(K) to be the subgroup of K2(K) generated by {U iK ,K×}
where U iK = 1 +mi

K . We are interested in the graded quotients

griK2(K) = U iK2(K)/U i+1K2(K). (1)

We also use a slightly different subgroup U iK2(K) which is, by definition,
the subgroup generated by {U iK , UK}. We have

U1K2(K) = U1K2(K) ⊃ U2K2(K) ⊃ U2K2(K) ⊃ U3K2(K) ⊃ ...

It is known that K2(K)/U1K2(K) ' F× ⊕ K2(F ). Further, by Bloch
and Kato [2] (cf. Remark 1.2), griK2(K) is determined in the range 1 ≤
i ≤ p+ 1 in our case (note that eK = vK(p) = p). In this article, we prove

Theorem 1.1. We put π = p
√
pT which is a prime element of OK .

(1) If i > p+ 1 and i is prime to p, we have griK2(K) = 0.
(2) For i = 2p, we have U2pK2(K) ⊂ U2p+1K2(K), and the homomorphism
x 7→ the class of {1 + pπpx̃, π}

F −→ gr2pK2(K)

(x̃ is a lifting of x to OK) induces an isomorphism

F/F p
'−→ gr2pK2(K).

(3) For i = np such that n ≥ 3, we have UnpK2(K) ⊂ Unp+1K2(K), and
the homomorphism x 7→ the class of {1+pnx̃, π} (x̃ is a lifting of x to OK)
gives an isomorphism

F p
n−2 '−→ grnpK2(K).

Remark 1.2. We recall results of Bloch and Kato [2]. Let K be a complete
discrete valuation field of mixed characteristics (0, p) with residue field F ,
and π be a prime element of OK . The homomorphisms

Ω1
F −→ U iK2(K)/U i+1K2(K) (2)

x · dy/y 7→ {1 + πix̃, ỹ},
and

F −→ U iK2(K)/U iK2(K) (3)

x 7→ {1 + πix̃, π},



380 Masato Kurihara

(x̃ and ỹ are liftings of x and y to OK , and the classes of the symbols do not
depend on the choices) are surjective. They determined the kernels of the
above homomorphisms in the range 0 < i ≤ ep/(p − 1) where e = vK(p).
In particular, for our K, the above homomorphisms (2) and (3) induce
isomorphisms
(i) Ω1

F
'−→ griK2(K) for i = 1, 2, ..., p− 1, and p+ 1.

(ii)

{
F/F p

'−→ UpK2(K)/UpK2(K),
Ω1
F /B1Ω1

F ' UpK2(K)/Up+1K2(K).
We also remark the surjectivity of (2) and (3) implies that

U iK2(K)/U i+1K2(K) is generated by the image of {U iK , T}, and that
U iK2(K)/U iK2(K) is generated by the image of {U iK , π} in our case.

Let U i(K2(K)/p) be the filtration on K2(K)/p, induced from the fil-
tration U iK2(K). We put gri(K2(K)/p) = U i(K2(K)/p)/U i+1(K2(K)/p).
Bloch and Kato [2] also determined the structure of gri(K2(K)/p) for gen-
eral complete discrete valuation field K. In our case, (2) and (3) induce
isomorphisms
(iii) Ω1

F
'−→ gri(K2(K)/p) for i = 1, 2, ..., p− 1, and p+ 1, and

(iv) F/F p
'−→ grp(K2(K)/p) (x 7→ {1 + πpx̃, π}). Here, we have

Up(K2(K)/p) = Up+1K2(K).
These results will be used in the subsequent sections.

Corollary 1.3. K does not have a cyclic extension which is totally ramified
and which is of degree p3.

Proof. Let M/K be a totally ramified, cyclic extension of degree pn. In
order to show n ≤ 2, since M/K is wildly ramified, it suffices to show
that p2(U1K2(K)/U1K2(K)∩NM/KK2(M)) = 0 where NM/K is the norm
map. In fact, if K is a 2-dimensional local field in the sense of Kato [8] and
Parshin [18], this is clear from the isomorphism theorem of local class field
theory

K2(K)/NM/KK2(M) ' Gal(M/K).

In general case, U1K2(K)/U1K2(K) ∩ NM/KK2(M) contains an element
of order pn by Lemma (3.3.4) in [12]. So it suffices to show

p2(U1K2(K)/U1K2(K) ∩NM/KK2(M)) = 0.

We will first prove that Up+2K2(K) ⊂ NM/KK2(M). If j is sufficiently
large, U jK = 1 + mj

K is in (K×)p
n
, so U jK2(K) is in pnK2(K), hence

in NM/KK2(M). So by Theorem 1.1, in order to prove Up+2K2(K) ⊂
NM/KK2(M), it suffices to show {U2p

K , π} is in NM/KK2(M). Since M/K
is totally ramified, there is a prime element π′ of OK such that π′ ∈
NM/K(M×). Hence, the subgroup {U2p

K , π
′} is contained in NM/KK2(M).
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We note that {U iK , π} is generated by {U iK , π′} and U iK2(K) for all i > 0.
Hence, Theorem 1.1 also tells us that {U2p

K , π} is generated by {U2p
K , π

′}
and U jK2(K) for sufficiently large j. This shows that {U2p

K , π} is in
NM/KK2(M), and Up+2K2(K) ⊂ NM/KK2(M).

Since (U1
K)p

2 ⊂ Up+2
K , we get p2U1K2(K) ⊂ Up+2K2(K), and

p2(U1K2(K)/U1K2(K) ∩ NM/KK2(M)) = 0. This completes the proof
of Corollary 1.3.

In order to describe the structure of K2(K), we need the following ex-
ponential homomorphism introduced in [12] Lemma 2.4 (see also Lemma
2.2 in §2). We define K2(K)∧ ( resp. Ω̂1

OK
) to be the p-adic completion of

K2(K) (resp. Ω1
OK

). Then, there is a homomorphism

expp2 : Ω̂1
OK

−→ K2(K)∧

such that a · db 7→ {exp(p2ab), b} for a ∈ OK and b ∈ OK \ {0}. Here
exp(x) = Σn≥0x

n/n!. Concerning K2(K)∧, we have

Corollary 1.4. Let K be as in Theorem 1.1. Then, the image of

expp2 : Ω̂1
OK

−→ K2(K)∧

is U2pK2(K)∧ and the kernel is the Zp-module generated by da with a ∈ OK
and b(pdπ/π − dT/T ) with b ∈ OK .

We will prove this corollary in the end of §3.

2. p-torsions of K2(K)

Let ζ be a primitive p-th root of unity. We define L0 = K0(ζ) and
L = K(ζ) = L0(π) where πp = pT as in Theorem 1.1.

Let {U iK2(L)} be the filtration on K2(L) defined similarly (U iK2(L) is
a subgroup generated by {1 +mi

L, L
×} where mL is the maximal ideal of

OL). Since L/K is a totally ramified extension of degree p − 1, we have
natural maps U iK2(K) −→ U (p−1)iK2(L).

We also use the filtration U i(K2(L)/p) on K2(L)/p, induced from the
filtration U iK2(L). If η is in U i(K2(L)/p) \ U i+1(K2(L)/p), we write
filL(η) = i. We also note that since L/K is of degree p−1, U i(K2(K)/p) −→
U (p−1)i(K2(L)/p) is injective.

Our aim in this section is to prove the following Lemma 2.1.

Lemma 2.1. Suppose a ∈ UK0 = O×K0
.

(1) We have {ζ, 1 + (πi/(ζ − 1))a} ≡ {1 − πia, T} (mod U (p−1)i+1K2(L))
for i > 1.
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(2) We regard {ζ, 1 + (πi/(ζ − 1))a} as an element of K2(L)/p. For i =
2, ..., p− 1 and p+ 1, we have

filL({ζ, 1 + (πi/(ζ − 1))a} mod p) = (p− 1)i.

If i = p, then filL({ζ, 1 + (πp/(ζ − 1))a} mod p) > (p− 1)p.
(3) For i = p+ 2,

{ζ, 1 + (πp+2/(ζ − 1))a} = {exp(πp+2a), p}

in K2(L)∧ where K2(L)∧ is the p-adic completion of K2(L) and exp(x) =
Σn≥0x

n/n!.
(4) For i > p+ 2, {ζ, 1 + (πi/(ζ − 1))a} = 0 in K2(L)∧.

We introduced the map expp2 in Corollary 1.4, but more generally, we
can define expp as in the following lemma, whose proof will be done in
Appendix Corollary A2.10 (see also Remark A2.11). The existence of expp2
follows at once from the existence of expp. For more general exponential
homomorphism (expc with smaller vK(c)), see [15].

Lemma 2.2. Let K be a complete discrete valuation field of mixed char-
acteristics (0, p). As in §1, we denote by K2(K)∧ (resp. Ω̂1

OK
) the p-adic

completion of K2(K) (resp. Ω1
OK

). Then there exists a homomorphism

expp : Ω̂1
OK

−→ K2(K)∧

such that a · db 7→ {exp(pab), b} for a ∈ OK and b ∈ OK \ {0}.

We use the following consequence of Lemma 2.2.

Corollary 2.3. In the notation of Lemma 2.2, we have

{1 + p2c, p} = 0 in K2(K)∧

for any c ∈ OK .

Proof. In fact, {1+ p2c, p} = expp(p−2 log(1+ p2c) · dp). Hence, by Lemma
2.2 and dp = 0, we get the conclusion.

We also use the following lemma in Kato [7].

Lemma 2.4. (Lemma 6 in [7]) If x 6= 0, 1, and y 6= 1, x−1,

{1− x, 1− y} = {1− xy,−x}+ {1− xy, 1− y} − {1− xy, 1− x}

Proof of Lemma 2.4.

{1− x, 1− y} = {1− x, x(1− y)} = {1− x,−((1− x)− (1− xy))}

= {1− x, 1− 1− xy

1− x
} = {1− xy, 1− 1− xy

1− x
}

= {1− xy,−x(1− y)(1− x)−1}.
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Using this lemma, we have

{ζ, 1 + (πi/(ζ − 1))a} =

{1− πia, ζ − 1}+ {1− πia, 1 + (πi/(ζ − 1))a}+ {ζ, 1− πia} (4)

Put πL = (ζ − 1)/π, and u = p/(ζ − 1)p−1. Then πL is a prime element of
OL, and u is a unit of Zp[ζ]. Since πp = pT , we have

ζ − 1 = uπpLT. (5)

Since u = vp(1 + w(ζ − 1)) for some v, w in Zp[ζ], by (4) and (5) we get

{ζ, 1 + (πi/(ζ − 1))a} ≡ {1− πia, T} (mod U (p−1)i+1K2(L)).

Thus, we obtain Lemma 2.1 (1).
Put x = amod p ∈ F . Lemma 2.1 (2) follows from Lemma 2.1 (1). In

fact, if 1 < i < p or i = p+ 1, {1− πia, T} mod p is not in U i+1(K2(K)/p)
by Remark 1.2 (iii) (note that x 6= 0 and x · dt/t 6= 0). Hence, it is
not in U (p−1)i+1(K2(L)/p). So, filL({1 − πia, T} mod p) = (p − 1)i. For
i = p, {1 − πpa, T} mod p is in Up+1(K2(K)/p). In fact, we may suppose
a = Σp−1

i=0 b
p
iT

i for some bi ∈ OK , then {1− πpa, T} ≡ Σi≥1{1− bpiT
i, T} =

−Σi≥1i
−1{1 − bpiT

i, bpi } ≡ 0 (mod Up+1(K2(K)/p)) (cf. Remark 1.2 (iv)).
Hence, filL({1− πpa, T} mod p) > (p− 1)p.

If p > 3 or i > p + 3, Lemma 2.1 (4) is easy because 1 + (πi/(ζ − 1))a
is in Up

2+1
L ⊂ (L×)p (Note that eLp/(p − 1) = p2). We deal with the case

p = 3 and i = p+ 3 in the end of this section.
We proceed to the proof of Lemma 2.1 (3). Since (1 + (πp+2/(ζ −

1))a)/(1 + (πp+2/(ζ − 1))aζ) ∈ Up
2+1
L ⊂ (L×)p,

{ζ, 1 + (πp+2/(ζ − 1))a} = {ζ, 1 + (πp+2/(ζ − 1))aζ}. (6)

By Lemma 2.2, we have

{ζ, 1 + (πp+2/(ζ − 1))aζ} = {ζ, exp(πp+2aζ/(ζ − 1))}
= − expp((π

2Ta/(ζ − 1))dζ)

= − expp((π
2Ta/(ζ − 1))d(ζ − 1))

= −{exp(πp+2a), ζ − 1}. (7)

Hence by (5) (6) and (7), we obtain

{ζ, 1 + (πp+2/(ζ − 1))a} = −{exp(πp+2a), u}
− p{exp(πp+2a), πL}
− {exp(πp+2a), T}. (8)
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First of all, {exp(πp+2a), u} = 0 in K2(L)∧. In fact, if we write du = w · dζ
for some w ∈ Zp[ζ],

{exp(πp+2a), u} = expp(π
2Ta · du/u)

= expp(π
2Tau−1w · dζ)

= {exp(πp+2awζu−1), ζ}.

Since exp(πp+2awζu−1) is in Up
2+1
L ⊂ (L×)p, {exp(πp+2a), u} = 0.

By the same method, p{exp(πp+2a), ζ−1} = 0, hence the second term of
the right hand side of (8) is equal to p{exp(πp+2a), π} (from πL = (ζ−1)/π).
Hence by (8) we have

{ζ, 1 + (πp+2/(ζ − 1))a} = {exp(πp+2a), πp/T} = {exp(πp+2a), p}

(recall that πp = pT ). Thus, we have got Lemma 2.1 (3).
We go back to Lemma 2.1 (4). For p = 3 and i = p + 3, by the same

method, we obtain

{ζ, 1 + (πp+3/(ζ − 1))a} = {exp(πp+3a), p}.

But the right hand side is zero by Corollary 2.3.

3. Proof of the theorem

3.1. First of all, we prove Theorem 1.1 (1). Let i be an integer such that
p+ 1 < i. Then by Lemma 2.1 (1), we have

{ζ, 1 + (πi−p/(ζ − 1))aT} ≡ {1− πi−paT, T} (mod U (p−1)(i−p)+1K2(L))

for a ∈ OK0 . Hence, taking the multiplication by p, we get

0 ≡ {1− pπi−paT, T} = {1− πia, T} (mod U (p−1)i+1K2(L)).

This implies {1 − πia, T} ≡ 0 (mod U i+1K2(K)). Since U iK2(K) =
U iK2(K) for all i with (i, p) = 1 and the surjectivity of (2) implies that
U iK2(K)/U i+1K2(K) is generated by the image of {U iK , T}, it follows from
{1 − πia, T} ∈ U i+1K2(K) that U iK2(K) = U i+1K2(K) for all i with
(i, p) = 1.

We remark that by [12] Theorem 2.2, if i > 2p and i is prime to p, we
already knew griK2(K) = 0 ((Ω̂1

OK
)tors is generated by πp−1dπ − dT , and

isomorphic to OK/(p)). So the problem was only to show griK2(K) = 0
for i such that p+ 1 < i < 2p.

3.2. Next we proceed to i = 2p. By πp = pT , we have p ·dT = pπp ·dπ/π.
Hence, expp(p · dT ) = expp(pπp · dπ/π), namely

{exp(p2aT ), T} = {exp(p2πpa), π} in K2(K)∧
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for all a ∈ OK . Hence, U2pK2(K) ⊂ U2p+1K2(K) and

gr2pK2(K) = U2pK2(K)/U2pK2(K)

(this also follows from [12] Theorem 2.2).
For a ∈ UK0 , by an elementary calculation

{1− pπpap, π} ≡ p{1− πpap, π} (mod U2p+1K2(K))

= {1− πpap, πp} = {1− πpap, 1/ap}
≡ −{1− pπpap, a},

we know that F p is contained in the kernel of the map x 7→ {1 + pπpx̃, π}
in (3) from F to gr2pK2(K) because of U2pK2(K) = U2p+1K2(K).

Next we assume that a ∈ UK0 and x = amod p is not in F p. We will prove
{1 + pπpa, π} 6∈ U2p+1K2(K). Let L = K(ζ), U i(K2(L)/p), filL(η) be as in
§2. Since x 6∈ F p, by Remark 1.2 (iv) we have filK({1+πpa, π} mod p) = p
and

filL({1 + πpa, π} mod p) = (p− 1)p. (9)

Let ∆ = Gal(L/K) be the Galois group of L/K. Consider the following
commutative diagram of exact sequences

(L×/(L×)p(1))∆
ρ1−→ K2(K)/p

ρ2−→ K2(K)/p2

↓ ↓ ↓
H1(K,Z/p(2)) −→ H2(K,Z/p(2)) −→ H2(K,Z/p2(2))

where ρ1 is the restriction to the ∆-invariant part (L×/(L×)p(1))∆ of the
map L×/(L×)p(1) −→ K2(L)/p; x 7→ {ζ, x} (we used (K2(L)/p)∆ '
K2(K)/p), and ρ2 is the map induced from the multiplication by p
(αmod p 7→ pαmod p2). The left vertical arrow is bijective, and the central
and the right vertical arrows are also bijective by Mercurjev and Suslin.

This diagram says that the kernel of ρ2 is equal to the image of {ζ, L×}∆

in K2(K)/p. The filtration U iL = 1 + mi
L on L× induces a filtration on

(L×/(L×)p(1))∆, and its graded quotients are calculated as (U iL/U
i+1
L (1))∆

= U iL/U
i+1
L if i ≡ −1 mod p− 1, and = 0 otherwise ((L×/UL ⊗ Z/p(1))∆

also vanishes). Since the image of 1 + (πi/(ζ − 1))UK0 generates
U

(p−1)i−p
L /U

(p−1)i−p+1
L , if η is in Image ρ1 ⊂ (K2(L)/p)∆, then η can be

written as η ≡ {ζ, 1+(πi/(ζ−1))ai} (mod U (p−1)i+1K2(L)) for some i > 0
with ai ∈ UK0 . Hence, by Lemma 2.1 (2), we have filL(η) 6= (p− 1)p.

Therefore by (9), {1 + πpa, π} does not belong to {ζ, L×}∆ in
(K2(L)/p)∆ = K2(K)/p. So by the above exact sequence,

{1 + pπpa, π} 6= 0 in K2(K)/p2.

Since U2p+1K2(K) = U3pK2(K) ⊂ p2K2(K), this implies that {1+pπpa, π}
6= 0 in gr2pK2(K). Hence, the kernel of the map x 7→ {1 + pπpx̃, π} from
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F to griK2(K), coincides with F p. This completes the proof of Theorem
1.1 (2).

3.3. We next prove (3) of Theorem 1.1. Let n ≥ 3. By the same method
as in 3.2, we have UnpK2(K) = Unp+1K2(K) (this also follows from [12]
Theorem 2.2), in particular, the map

F −→ grnpK2(K) (x 7→ {1 + pnx̃, π}) (10)

is surjective.
Suppose that a ∈ OK0 . By Corollary 2.3, we have {exp(pn−1a), p} = 0

in K2(K)∧, hence we get

{exp(pna), π} = {exp(pn−1a), πp} = {exp(pn−1a), pT}
= {exp(pn−1a), T}. (11)

Since n ≥ 3, the above formula implies

{1 + pna, π} ≡ {exp(pna), π} (mod U (n+1)pK2(K))

= {exp(pn−1a), T}

≡ {1 + pn−1a, T} (mod U (n+1)pK2(K)). (12)

Recall that we fixed a p-base t of F such that T mod p = t. We define
subgroups Bn of F by Bndt/t = BnΩ1

F for n > 0. Suppose that x is in
Bn−2. Let a = x̃ be a lifting of x to OK0 . Then by [14] Proposition 2.3, we
get

{1 + pn−1a, T} ∈ UnK2(K0). (13)

Let iK/K0
: K2(K0) −→ K2(K) be the natural map. Then, we have

iK/K0
(UnK2(K0)) ⊂ UnpK2(K), but by the formula (11),

iK/K0
(Un−1K2(K0)) ⊂ UnpK2(K) also holds. Hence by (12), (13), and

iK/K0
(UnK2(K0)) ⊂ U (n+1)pK2(K), we know that {1 + pna, π} is in

U (n+1)pK2(K). Namely, Bn−2 is in the kernel of the map (10).
Since Bn−2Ω1

F is generated by the elements of the form xp
n−2

ti ·dt/t such
that x ∈ F and 1 ≤ i ≤ pn−2 − 1, F/Bn−2 is isomorphic to F p

n−2
, and we

obtain a surjective homomorphism

F p
n−2 −→ grnpK2(K); x 7→ {1 + pnx̃, π}. (14)

We proceed to the proof of the injectivity of (14). We assume that
{1 + pna, π} is in Unp+1K2(K) for a ∈ OK0 . Since Unp+1K2(K) =
U (n+1)pK2(K) ⊂ pnK2(K), {1 + pna, π} = 0 in K2(K)/pn. Hence
{1+pn−1a, π} is in the kernel ofK2(K)/pn−1 −→ K2(K)/pn (αmod pn−1 7→
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pαmod pn). As in 3.2, we consider a commutative diagram of exact se-
quences with vertical bijective arrows

(L×/(L×)p(1))∆
ρ1−→ K2(K)/pn−1 ρ2−→ K2(K)/pn

↓ ↓ ↓
H1(K,Z/p(2)) −→ H2(K,Z/pn−1(2)) −→ H2(K,Z/pn(2))

where ρ1 is the restriction to (L×/(L×)p(1))∆ of the map L×/(L×)p(1) −→
K2(L)/pn−1; x 7→ {ζ, x} (we also used (K2(L)/pn−1)∆ ' K2(K)/pn−1).
From this diagram, we know that {1 + pn−1a, π} is in the image of ρ1. We
write {1 + pn−1a, π} = {ζ, c} for some c ∈ (L×/(L×)p(1))∆. So by the
argument in 3.2, c is in U

(p−1)i−p
L for some i > 1. If c was in U

(p−1)i−p
L \

U
(p−1)(i+1)−p
L for some i with 1 < i < p, we would have by Lemma 2.1 (2)

filL({ζ, c} mod p) = (p−1)i. But {1+pn−1a, π} is zero in K2(L)/p (because
1+pn−1a ∈ (L×)p), so c must be in U (p−1)p−p

L (1)∆. We write c = c1c2 with
c1 ∈ Up−2

L0
(1)∆ and c2 ∈ U

(p−1)(p+1)−p
L (1)∆. Again by the same argument

using Lemma 2.1 (2), c2 must be in U (p−1)(p+2)−p
L (1)∆. By Lemma 2.1 (3)

and (4), we can write

{1 + pn−1a, π} = {ζ, c1}+ {exp(πp+2c3), p} (15)

for some c3 ∈ OK0 in K2(L)/pn−1. Let NL/L0
: K2(L) −→ K2(L0) be

the norm homomorphism. Taking the norm NL/L0
of the both sides of the

equation (15), we get

{1 + pn−1a, pT} = {ζ, cp1}+ {exp(TrL/L0
(πp+2c3)), p}

= 0 (16)

where TrL/L0
is the trace, and we used TrL/L0

(πp+2c3) = pTc3 TrL/L0
(π2) =

0. On the other hand, the left hand side of (16) is equal to {1 + pn−1a, T}
by Corollary 2.3. Hence, the equation (16) implies that {1 + pn−1a, T} = 0
in K2(L0)/pn−1, hence in K2(K0)/pn−1.

In the proof of [14] Corollary 2.5, we showed that expp2 induces

expp2 : (Ω1
OK0

/dOK0)⊗ Z/pn−2 −→ K2(K0)/pn−1

which is injective. In K2(K0)/pn−1, we have {exp(pn−1a), T} = {1 +
pn−1a, T} = 0, hence by the injectvity of the above map, we know that
pn−3adT/T mod pn−2 is in d(OK0/p

n−2). This implies that x · dt/t is in
Bn−2Ω1

F where x = amod p ∈ F ([6] Corollaire 2.3.14 in Chapter 0). Hence,
x is in Bn−2. Thus, the kernel of the map (10) coincides with Bn−2. Namely,
the map (14) is bijective. This completes the proof of Theorem 1.1.
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3.4. Finally we prove Corollary 1.4. Let M be the Zp-submodule of Ω̂1
OK

generated by da with a ∈ OK and b(pdπ/π − dT/T ) with b ∈ OK . It
follows from πp = pT that pπpdπ/π = p2Tdπ/π = pdT in Ω̂1

OK
. Hence, the

existence of expp implies that b(pdπ/π − dT/T ) is in the kernel of expp2 .
Further, da is also in the kernel of expp2 by Lemma A2.3 in Appendix. So
expp2 factors through Ω̂1

OK
/M. Since b(pdπ/π − dT/T ) ∈ M, Ω̂1

OK
/M

is generated by the classes of the form cdπ/π. We define Fili to be the
Zp-submodule of Ω̂1

OK
/M, generated by the classes of cdπ/π with vK(c) ≥

i− 2p, and consider gri = Fili /Fili+1.
We can easily see that gri = 0 for i which is prime to p. In fact, if i is

prime to p, for a ∈ UK , aπidπ/π = ai−1dπi ≡ −πida (mod M). We can
write da = a1dT + a2dπ ≡ a1Tpdπ/π + a2πdπ/π (mod M) for some a1,
a2 ∈ OK , hence aπidπ/π is in Fili+1. For i ≤ 2p, we also have gri = 0.

Suppose that n ≥ 3 and consider a homomorphism

F −→ grnp; x 7→ pn−2x̃dπ/π. (17)

This does not depend on the choice of x̃. Suppose that x is in Bn−2 (for
Bn−2, see the previous subsection). We write x = Σpn−2−1

i=1 xp
n−2

i ti · dt/t as
in 3.3, and take a lifting a = Σpn−2−1

i=1 x̃p
n−2

i T i · dT/T where x̃i is a lifting of
xi to OK0 . We have pn−2adπ/π ≡ pn−3adT/T (mod M) ≡ db (mod Filnp)
for some b ∈ OK0 . Hence, pn−2adπ/π ∈ M, and Bn−2 is in the kernel of
(17). So the restriction of (17) to F p

n−2
gives a surjective homomorphism

F p
n−2 −→ grnp as in 3.3. This is also injective because the composite

F p
n−2 −→ grnp −→ grnpK2(K) with the induced map by expp2 is bijective

by Theorem 1.1 (3). Therefore, comparing gri with griK2(K), we know
that expp2 : Ω̂1

OK
/M−→ U2pK2(K)∧ is bijective.

Appendix A. Milnor K-groups of a local ring over a ring of
p-adic integers

In this appendix, we show the existence of expp (Corollary A2.10). To do
so, we describe the Milnor K-groups of a local ring over a complete discrete
valuation ring of mixed characteristics, by using the modules of differen-
tials with certain divided power envelopes. (For the precise statement, see
Proposition A1.3 and Theorem A2.2.) This description is related to the
theory of syntomic cohomology developed by Fontaine and Messing.

On a variety over a complete discrete valuation ring of mixed characteris-
tics, Fontaine and Messing [4] developed the theory of syntomic cohomology
which relates the etale cohomology of the generic fiber with the crystalline
cohomology of the special fiber. In [9] Kato studied the image of the syn-
tomic cohomology in the derived category of the etale sites, and considered
the syntomic complex on the etale site. He also used the Milnor K-groups



On the structure of Milnor K-groups 389

in order to relate the syntomic complex with the p-adic etale vanishing cy-
cles, and obtain an isomorphism between the sheaf of the Milnor K-groups
and the cohomology of the syntomic complex after tensoring with an al-
gebraically closed field ([9] Chap.I 4.3, 4.11, 4.12). Our description of the
Milnor K-groups says that this isomorphism exists without tensoring with
an algebraically closed field (for the precise statement cf. Remark A2.12
(28)). This appendix is a part of the author’s master’s thesis in 1986.

A.1. Smooth case.

A.1.1. Let Λ be a complete discrete valuation ring of mixed characteris-
tics (0, p). We further assume that p is an odd prime number, and that Λ
is absolutely unramified, namely pΛ is the maximal ideal of Λ. We denote
by F = Λ/pΛ the residue field of Λ.

Let (R,mR) be a local ring over Λ such that R/pR is essentially smooth
over F , and R is flat over Λ. Further, we assume that R is p-adically
complete, i.e. R '−→ lim

←
R/pnR, and define B = R[[X]]. In this section, we

study the Milnor K-group of B. (One can deal with more general rings by
the method in this section, but for simplicity we restrict ourselves to the
above ring.)

Since R/pR is essentially smooth over F , R/pR has a p-base. Namely,
there exists a family (eλ)λ∈L of elements of R/pR such that any a ∈ R/pR
can be written uniquely as

a =
∑
s

aps
∏
λ∈L

e
s(λ)
λ

where as ∈ R/pR, and s ranges over all functions L −→ {0, 1, ..., p − 1}
with finite supports.

For a ring A, Ω1
A denotes the module of Kähler differentials. Let eλ be

as above, then {deλ} is a basis of the free module Ω1
R/pR. We consider a

lifting I ⊂ R of a p-base {eλ}. Then {dT ;T ∈ I} gives a basis of the free
R-module Ω̂1

R where Ω̂1
R is the p-adic completion of Ω1

R. Since R is local,
we can take I from R×. In the following, we fix I such that I ⊂ R×.

For the lifting I of a p-base, we can take an endomorphism f of R
such that f(T ) = T p for any T ∈ I, and that f(x) ≡ xp (mod p) for any
x ∈ R. We fix this endomorphism f , and call it the frobenius endomorphism
relative to I.

We put B = R[[X]]. We extend f to an endomorphism of B by f(X) =
Xp. So f satisfies f(x) ≡ xp (mod p) for any x ∈ B. Let XB be the ideal
of B generated by X.

Lemma A.1.1. Put f1 = 1
pf : B[1/p] −→ B[1/p], fn1 = f1 ◦ ... ◦ f1 (n

times), and E1 = exp(
∑∞

n=0 f
n
1 ). Then, for a ∈ B, E1(aX) is in B×, and
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E1 defines a homomorphism (Shafarevich function)

E1 : XB −→ B×.

It suffices to show E1(aX) is in B× for a ∈ B. We define an ∈ B
inductively by a0 = a and

fn(a) = Wn(a0, a1, ..., an)

where fn = f ◦ ... ◦ f (n times), and Wn(T0, ..., Tn) is the Witt polynomial
([19] Chap.II). (It is easily verified that fn(a)−(ap

n
+pap

n−1

1 +...+pn−1an−1)
is divisible by pn. Hence, an is well-defined.) By the formula of Artin-Hasse
exponential exp(Σ∞n=0T

pn
/pn) = Π(p,m)=1(1− Tm)−µ(m)/m, we have

E1(aX) =
∞∏
n=0

∏
(p,m)=1

(1− (anXpn
)m)−µ(m)/m.

Hence, E1(aX) ∈ B×.

A.1.2. Let Ω̂1
B be the (p,X)-adic completion of Ω1

B. For an integer r ∈ Z,
let Ω̂r

B = ∧rBΩ̂1
B for r ≥ 0, and Ω̂r

B = 0 for r < 0. Let r be positive. Then
f naturally acts on Ω̂r

B, and the image is contained in prΩ̂r
B. So we can

define fr = p−rf on Ω̂r
B.

We define IB = I ∪{X}. Then {dT1 ∧ ...∧ dTr;Ti ∈ IB} is a base of Ω̂r
B.

For i > 0 we define U iXΩ̂r
B to be the subgroup (topologically) generated by

the elements of the form adT1 ∧ ...∧ dTr, and bdT1 ∧ ...∧ dTr−1 ∧ dX where
a ∈ XiB, b ∈ Xi−1B, and T1, ..., Tr ∈ I.

A.1.3. For a ring k and q ≥ 0, the MilnorK-groupKM
q (k) is by definition

KM
q (k) := (k× ⊗ ...⊗ k×)/J

where J is the subgroup generated by the elements of the form a1⊗ ...⊗aq
such that ai + aj = 0, or 1 for some i 6= j. (The class of a1 ⊗ ... ⊗ aq is
denoted by {a1, ..., aq}.)

We will define a homomorphism Eq which is regarded as exp(Σ∞n=0f
n
q )

from the module of the differential (q − 1)-forms to the q-th Milnor K-
group. First of all, we remark that in KM

2 (B), the symbol {1 + Xa,X}
makes sense for a ∈ B. Namely, for any x in the maximal ideal mB, we
define {1 + xa, x} to be

{1 + xa, x}; =
{
−{1 + xa,−a} if a 6∈ mB

{−(1 + a)/(1− x), (1 + ax)/(1− x)} if a ∈ mB.

Then, usual relations like {1 + xya, x} + {1 + xya, y} = {1 + xya, xy},
{1 + xa, x}+ {1 + xb, x} = {(1 + xa)(1 + xb), x}, {1− x, x} = 0 hold, and
the image of {1 + xa, x} in KM

2 (B[1/x]) is {1 + xa, x} ([22], [11]). Hence,
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the notation {1 + Xa, b1, ..., bq−2, X} also makes sense in KM
q (B) where

bi ∈ B×.
We define KM

q (B)∧ to be the (p,X)-adic completion of KM
q (B), namely

the completion with respect to the filtration {Vi} where Vi is the sub-
group generated by {1 + (p,X)i, B×, ..., B×}. Let U iXK

M
q (B)∧ be the

subgroup (topologically) generated by {1 + XiB,B×, ..., B×} and {1 +
XiB,B×, ..., B×, X}. We define

Eq : U1
XΩ̂q−1

B −→ KM
q (B)∧ (18)

by

aX · dT1

T1
∧ ... ∧ dTq−1

Tq−1
7→ {E1(aX), T1, ..., Tq−1}

where a ∈ B and Ti ∈ IB. Since fq(aX · (dT1)/T1 ∧ ... ∧ (dTq−1)/Tq−1) =
f1(aX) · (dT1)/T1∧ ...∧ (dTq−1)/Tq−1, Eq can be regarded as exp(Σ∞n=0f

n
q ).

Lemma A.1.2. Eq vanishes on U1
XΩ̂q−1

B ∩ dΩ̂q−2
B = d(U1

XΩ̂q−2
B ).

We may assume q = 2. So we have to prove E2(d(Xa)) = 0. By the
additivity of the claim, we may assume that a is a product of elements
of IB, namely a = ΠTi where Ti ∈ IB. In particular, f(a) = ap. Using
Xa = XΠTi, we have

E2(d(Xa)) =
∑

{E1(Xa), XTi} = {E1(Xa), Xa}

= {
∏

(p,m)=1

(1− (Xa)m)−µ(m)/m, Xa}

=
∑

(p,m)=1

−µ(m)/m2{1− (Xa)m, (Xa)m}

= 0.

This completes the proof of Lemma 2.2.

A.1.4. For i > 0 we define U iX(Ω̂q−1
B /dΩ̂q−2

B ) to be the image of U iXΩ̂q−1
B

in Ω̂q−1
B /dΩ̂q−2

B .

Proposition A.1.3. Eq induces an isomorphism

Eq : U1
X(Ω̂q−1

B /dΩ̂q−2
B ) '−→ U1

XK
M
q (B)∧

which preserves the filtrations.

Proof. Using Vostokov’s pairing [23], Kato defined in [9] a symbol map

hq = (sf,q, d log) : KM
q (B) −→ (Ω̂q−1

B /dΩ̂q−2
B )⊕ Ω̂q

B
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such that

sf,q({a1, ..., aq})

=
q∑
i=1

(−1)i−1 1
p

log
f(ai)
api

da1

a1
∧ ... ∧ dai−1

ai−1
∧ f

p
(
dai+1

ai+1
) ∧ ... ∧ f

p
(
daq
aq

)

and d log{a1, ..., aq} = (da1)/a1 ∧ ... ∧ (daq)/aq.
Concerning the map sf,q we will give two remarks. If T1,...,Tq−1 are in

IB (and {a, T1, ..., Tq−1} is defined), then

sf,q({a, T1, ..., Tq−1}) =
1
p

log
f(a)
ap

dT1

T1
∧ ... ∧ dTq−1

Tq−1
.

Here, we are allowed to take Ti = X. To see this, since the definition of sf,q
is compatible with the product structure of the Milnor K-group, we may
assume q = 2 and T1 = X. Since {a,X} is defined, by our convention, a
can be written as a = 1 + bX. The image of {a,X} under the symbol map
K2(B[1/X]) −→ Ω̂1

B[1/X]/d(B[1/X]) is p−1 log(f(1+ bX)/(1+ bX)p)dX/X

which belongs to the image of Ω̂1
B/dB −→ Ω̂1

B[1/X]/d(B[1/X]). This map
is injective, so sf,2({a,X}) = p−1 log(f(1 + bX)/(1 + bX)p)dX/X (cf.also
[10] 3.5).

Next we remark the assumption p > 2 is enough to show that sf,q factors
through KM

q (A). In fact, by the compatibility of sf,q with the product
structure of the Milnor K-group, the problem again reduces to the case
q = 2. So Chapter I Proposition (3.2) in [9] implies the desired property.
We do not need the q-th divided power J [q] or Sn(q) with q > 2 in [9] to
see this.

We go back to the proof of Proposition A1.3. We have

sf,q ◦ Eq(aX · dT1

T1
∧ ... ∧ dTq−1

Tq−1
)

= (f1 − 1) log exp(
∞∑
n=0

fn1 )(aX)
dT1

T1
∧ ... ∧ dTq−1

Tq−1

= −aX · dT1

T1
∧ ... ∧ dTq−1

Tq−1
.

This means that sf,q ◦ Eq = −id. Thus, Eq is injective.
On the other hand, by [2] (4.2) and (4.3), we have a surjective homo-

morphism

ρi : Ω̂q−1
B ⊕ Ω̂q−2

B −→ U iXK
M
q (B)∧/U i+1

X KM
q (B)∧
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such that

ρi(a
db1
b1

∧ ... ∧ dbq−1

bq−1
, 0) = {1 +Xia, b1, ..., bq−1}

ρi(0, a
db1
b1

∧ ... ∧ dbq−2

bq−2
) = {1 +Xia, b1, ..., bq−2, X}

where a ∈ B, and bi ∈ B×. This shows that U iXK
M
q (B)∧/U i+1

X KM
q (B)∧ is

generated by the elements of the form {1 + aXi, T1, ..., Tq−1} where a ∈ B,
and T1,...,Tq−1 are in IB. Hence, Eq is surjective, which completes the
proof.

A.2. Smooth local rings over a ramified base.

A.2.1. In this section, we fix a ring B as in §1, and study a ring

A = B/= where = = (Xe − pu).

Here, u is a unit of B, and = is the ideal of B generated by Xe − pu. We
put ϕ = Xe − pu. We denote by

ψ : B −→ A

the canonical homomorphism. (For example, if A is a complete discrete
valuation ring with mixed characteristics, one can take Λ as in §A1 such
that A/Λ is finite and totally ramified. Suppose that R = Λ, B = R[[X]],
and f(X) = Xe − pu (u ∈ B×) is the minimal polynomial of a prime
element of A over Λ. Then, A ' B/(Xe − pu) and the above condition on
A is satisfied.)

Let D be the divided power envelope of B with respect to the ideal =,
namely D = B[ϕr/r! : r > 0]. We also denote by

ψ : D −→ A

the canonical homomorphism which is the extension of ψ : B −→ A.
We define J = Ker(D

ψ−→ A). Then, the endomorphism f of B naturally
extends to D. Since ϕ = Xe − pu, we have D = B[ϕr/r! : r > 0] =
B[Xer/r! : r > 0]. Hence, f(J) ⊂ pD holds. So f1 = p−1f : J −→ D can
be defined. Since f(Ω̂q−1

B ) ⊂ pq−1Ω̂q−1
B , fq−1 = p−(q−1)f can be defined on

Ω̂q−1
B , and

fq =
1
pq
f : J ⊗ Ω̂q−1

B −→ D ⊗ Ω̂q−1
B (19)

can be also defined.
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A.2.2. Recall that B = R[[X]]. We denote the image of X in A by the
same letter X. For i > 0, we define U iXA

× = 1+XiA. We note that U1
XA
×

is p-adically complete.

Lemma A.2.1. Let e′ = [e/(p− 1)] + 1 be the smallest integer i such that
i ≥ e/(p− 1) + 1. Then, x 7→ xp gives an isomorphism

U e
′
XA
× ' U e+e

′

X A×.

The proof is standard (cf. [19] Chap.V Lemme 2).
For an element x ∈ U e+e

′

X A×, by Lemma A2.1, there is a unique y ∈
U e

′
XA
× such that yp = x. We denote this element by x1/p. By the same

way, for x ∈ Une+e′X A×, a unique element y ∈ U e′XA× such that yp
n

= x, is
denoted by x1/pn

. Since U1
XA
× is a Zp-module, we also use the notation

x1/mpn
for an integer m with (p,m) = 1 for x ∈ Une+e′X A×.

Recall that D = B[ϕr/r! : r > 0] = B[Xer/r! : r > 0]. Let U1
XD be the

ideal of D generated by all Xer/r! with r > 0. We define a homomorphism

E1,A : U1
XD −→ A×

by
E1,A(aXer/r!) = ψ(E1(aXer))1/r!

where a ∈ B, and E1 : XB −→ B× is the map defined in §A.1. Since
er ≥ e ordp(r!) + e′, ψ(E1(aXer))1/r! is well-defined by the above remark.

A.2.3. For q > 0, we will define Eq,A similarly as in 1.3. For i > 1,
let U1

X(D ⊗ Ω̂q−1
B ) (resp. U iX(D ⊗ Ω̂q−1

B )) be the subgroup generated by
a · (dT1)/T1 ∧ ... ∧ (dTq−1)/Tq−1 where a ∈ U1

XD (resp. a ∈ XiD) and
Tj ∈ IB.

Let KM
q (A) be the q-th Milnor K-group. As in 1.3, for i ≥ 0, let

U iXK
M
q (A) be the subgroup generated by {1 +XiA,A×, ..., A×} and {1 +

XiA,A×, ..., A×, X}, and define KM
q (A)∧ to be the completion of KM

q (A)
with respect to the filtration U iXK

M
q (A). We denote by U iXK

M
q (A)∧ the

closure of U iXK
M
q (A) in KM

q (A)∧. Note that U1
XK

M
q (A)∧ is p-adically

complete, namely U1
XK

M
q (A)∧ = lim

←
U1
XK

M
q (A)/pn. We also note that by

definition, a natural homomorphism KM
q (B)∧ −→ KM

q (A)∧ exists.
We define

Eq,A : U1
X(D ⊗ Ω̂q−1

B ) −→ KM
q (A)∧ (20)

by

Eq,A(a · dT1

T1
∧ ... ∧ dTq−1

Tq−1
) = {E1,A(a), ψ(T1), ..., ψ(Tq−1)}

where Ti ∈ IB.
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Recall that fq = p−qf : J ⊗ Ω̂q−1
B −→ D⊗ Ω̂q−1

B is defined (cf. (19)). We
put

Sqf (A,B) = D ⊗ Ω̂q−1
B /(d(D ⊗ Ω̂q−2

B ) + (fq − 1)(J ⊗ Ω̂q−1
B )). (21)

The filtration onD⊗Ω̂q−1
B induces a filtration on Sqf (A,B), which we denote

by U iXS
q
f (A,B). Our aim in this section is to prove

Theorem A.2.2. Eq,A induces an isomorphism

Eq,A : U1
XS

q
f (A,B) '−→ U1

XK
M
q (A)∧

which preserves the filtrations.

A.2.4. Let Ω̂q−1
A be the p-adic completion of Ωq−1

A . We begin with the
following lemma.

Lemma A.2.3. There exists a homomorphism

expp2 : Ω̂q−1
A −→ KM

q (A)∧

such that

a
db1
b1

∧ ... ∧ dbq−1

bq−1
7→ {exp(p2a), b1, ..., bq−1}

where a ∈ A, bi ∈ A×, and exp(x) = Σn≥0x
n/n!. Furthermore, dΩ̂q−2

A is
contained in the kernel of expp2.

Proof. By Corollary 2.5 in [14], we have a homomorphism

expp2,B : Ω̂q−1
B /dΩ̂q−2

B −→ KM
q (B)∧

such that

a
db1
b1

∧ ... ∧ dbq−1

bq−1
7→ {exp(p2a), b1, ..., bq−1}

where a ∈ B and bi ∈ B×. Consider the exact sequence

=⊗B Ω̂q−1
B −→ Ω̂q−1

B /dΩ̂q−2
B −→ Ω̂q−1

A /dΩ̂q−2
A −→ 0.

Since = ⊗ Ω̂q−1
B is clearly in the kernel of ψ ◦ expp2,B : Ω̂q−1

B /dΩ̂q−2
B −→

KM
q (B)∧ −→ KM

q (A)∧, the map expp2,B induces the desired homomor-
phism

expp2 : Ω̂q−1
A /dΩ̂q−2

A −→ KM
q (A)∧.

Corollary A.2.4. For any a ∈ A \ {0}, in K2(A)∧ we have
(1) {exp(p2a), a} = 0,
(2) {exp(p3a), p} = 0.
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Proof. In the proof of Lemma 2.5 in [12], we showed that

{exp(p2a), a}+ {exp(p2b), b} = {exp(p2(a+ b)), a+ b}.

This formula holds for a, b such that a, b, a + b ∈ A \ {0}, hence (1) is
reduced to the case a ∈ A×, so follows from Lemma A2.3.

The equation (2) is a consequence of (1). In fact,

{exp(p3a), a} = p{exp(p2a), a} = 0

by (1). So we have

{exp(p3a), p} = {exp(p3a), ap}.

But the latter is zero again by (1).

A.2.5. We first show

Lemma A.2.5. Eq,A vanishes on d(U1
X(D ⊗ Ω̂q−2

B )).

As in Lemma A1.2, it suffices to show E2,A(d(aXer/r!)) = 0 for a ∈
D and r such that f(a) = ap and r ≥ p. Let EAH(T ) = Π(p,m)=1(1 −
T i)−µ(m)/m ∈ Zp[[T ]] be the Artin-Hasse exponential. We have

E2,A(d(aXer/r!))

= {ψ(EAH(aXer))1/(r−1)!, ψ(Xe)}+ {ψ(EAH(aXer))1/r!, ψ(a)}

= {EAH((pψ(u))rψ(a))1/(r−1)!, pψ(u)}+ {EAH((pψ(u))rψ(a))1/r!, ψ(a)}

= {EAH((pψ(u))rψ(a))1/(r−1)!, p}+ {EAH((pψ(u))rψ(a))1/r!, ψ(aur)}.

Hence, Lemma A2.5 is reduced to show the following.

Lemma A.2.6. For any a ∈ A \ {0},
(1) {EAH(pra)1/(r−1)!, p} = 0,
(2) {EAH(pra)1/r!, a} = 0.

Proof of Lemma A2.6. From EAH(T ) = Σ∞m=0 exp(T p
m
/pm), in order to

prove Lemma A2.6 (1), it is enough to show {exp((pra)p
m
/pm(r−1)!), p} =

0, which follows from Corollary A2.4 (2). By the same method, Lemma
A2.6 (2) follows from Corollary A2.4 (1).

By Lemma A2.5, Eq,A induces a homomorphism

Eq,A : U1
X(D ⊗ Ω̂q−1

B )/d(U1
X(D ⊗ Ω̂q−2

B ))

= U1
X(D ⊗ Ω̂q−1

B )/[U1
X(D ⊗ Ω̂q−1

B ) ∩ d(D ⊗ Ω̂q−2
B )] −→ KM

q (A)∧.
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A.2.6. Next we have to show that Eq,A vanishes on

Image(J ⊗ Ω̂q−1
B

fq−1−→ D ⊗ Ω̂q−1
B −→ D ⊗ Ω̂q−1

B /d(D ⊗ Ω̂q−2
B ))

∩ U1
X(D ⊗ Ω̂q−1

B )/d(U1
X(D ⊗ Ω̂q−2

B )).

We assume that

$ =
∑
r>0

(Xe − pu)r

r!
(ηr +Xωr) (22)

satisfies

(fq − 1)($) ∈ U1
X(D ⊗ Ω̂q−1

B ) (mod d(D ⊗ Ω̂q−2
B )) (23)

where ηr ∈ Ω̂q−1
R and ωr ∈ Ω̂q−1

B . We write u = u0 + u1X with u0 ∈ R×

and u1 ∈ B. We put

η =
1
p

∑
r>0

(−pu0)r

r!
ηr.

So $ − pη ∈ U1
X(D ⊗ Ω̂q−1

B ). The assumption (23) implies that

(fq − 1)(pη) ∈ d(Ω̂q−2
R ). (24)

Lemma A.2.7. η can be written as η = pη1 such that η1 ∈ d(Ω̂q−2
R ).

By the standard method, Lemma A2.7 is obtained from (24) (cf. [6]
Chap.0 Corollaire 2.3.14).

We put

$1 =
∑
r>0

(Xe − pu)r − (−pu0)r

r!
ηr, $2 =

∑
r>0

(Xe − pu)r

r!
Xωr.

So by (22),
$ = $1 +$2 + pη. (25)

From (24) and the definition of Eq,A, we have

Eq,A((fq − 1)$) = Eq,A((fq − 1)$1) + Eq,A((fq − 1)$2).

If we write ωr = Σiar,i(dTr,i,1)/Tr,i,1∧ ...∧(dTr,i,q−1)/Tr,i,q−1 with Tr,i,j ∈
IB, by the definition of Eq,A,

Eq,A((fq − 1)$2) =
∑
r,i

{ψ(exp(
(Xe − pu)r

r!
Xar,i)), ψ(Tr,i,1), ..., ψ(Tr,i,q−1)}

= 0.

Next we calculate Eq,A((fq − 1)$1). We write ηr = Σibr,i(dTr,i,1)/Tr,i,1 ∧
... ∧ (dTr,i,q−1)/Tr,i,q−1 with Tr,i,j ∈ IB. Then by the definition of Eq,A, we
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get

Eq,A((fq − 1)$1)

=
∑
r,i

{ψ exp(
(Xe − pu)r − (−pu0)r

r!
br,i), ψ(Tr,i,1), ..., ψ(Tr,i,q−1)}

=
∑
r,i

{ψ exp(
−(−pu0)r

r!
br,i), ψ(Tr,i,1), ..., ψ(Tr,i,q−1)}.

By Lemma A2.7, ∑
r>0

(−pu0)r

r!
ηr = pη = p2η1

and η1 ∈ d(Ω̂q−2
R ). Hence by Lemma A2.3,

Eq,A((fq − 1)$1) = − expp2(η1) = 0.

This shows that

Image(J ⊗ Ω̂q−1
B

fq−1−→ D ⊗ Ω̂q−1
B −→ D ⊗ Ω̂q−1

B /d(D ⊗ Ω̂q−2
B ))

∩ [U1
X(D ⊗ Ω̂q−1

B )/d(U1
X(D ⊗ Ω̂q−2

B ))]

is in the kernel of Eq,A. Namely, Eq,A induces a homomorphism

Eq,A : U1
XS

q
f (A,B) −→ U1

XK
M
q (A)∧. (26)

A.2.7. As in §1, Eq,A has the inverse. The target group of the symbol
map in [9] has two components as in §1, and its projection to the first
component is

sf,q,A : KM
q (A) −→ Sqf (A,B)

which satisfies

sf,q,A({a1, ..., aq})

=
q∑
i=1

(−1)i−1 1
p

log
f(ãi)
ãpi

dã1

ã1
∧ ... ∧ dãi−1

ãi−1
∧ f

p
(
dãi+1

ãi+1
) ∧ ... ∧ f

p
(
dãq
ãq

)

where ãi is an element of D× such that ψ(ãi) = ai. This does not depend
on the choices of ãi.

As in §1, sf,q,A ◦ Eq,A = −id because if T1,...,Tq−1 are in IB, then

sf,q({a, ψ(T1), ..., ψ(Tq−1)}) =
1
p

log
f(ã)
ãp

dT1

T1
∧ ... ∧ dTq−1

Tq−1
.

(As we note in §A1, we are allowed to take Ti = X using our conven-
tion.) So Eq is injective. On the other hand, by considering U iXK

M
q (A)∧/

U i+1
X KM

q (A)∧ as in §A1, we know that Eq is surjective. Hence, Eq is bijec-
tive. It is clear that Eq preserves the filtrations. This completes the proof
of Theorem A2.2.
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Remark A.2.8. By a slight modification, we can deal with more general
ring, for example, a ring of the form R[X1, ..., Xr](mR,X1,...,Xr)/(X

e1
1 · ... ·

Xer
r − pu) by the same method.

Remark A.2.9. Assume that #I ≤ q − 2. Then we have U1
XS

q
f (A,B) =

Sqf (A,B) and U1
XK

M
q (A)∧ = KM

q (A)∧. So Theorem 1.1 says that we have
an isomorphism

Eq,A : Sqf (A,B) ' KM
q (A)∧.

This isomorphism in this special case was obtained in Kato [10].

Corollary A.2.10. There exists a homomorphism

expp : Ωq−1
A −→ KM

q (A)∧

such that

a
db1
b1

∧ ... ∧ dbq−1

bq−1
7→ {exp(pa), b1, ..., bq−1}

where a ∈ A and bi ∈ A×.

Proof. By [2] Lemma 4.2, it suffices to show

l∑
i=1

{exp(pai), ai, b1, ..., bq−2} =
m∑
i=1

{exp(pa′i), a
′
i, b1, ..., bq−2} (27)

for ai, a′i, bj ∈ A× such that Σai = Σa′i. So we may assume q = 2.
Let sf,2,A be the map as above. Then, for a ∈ A×, taking ã ∈ B such

that ψ(ã) = a, we can calculate

sf,2{exp(pa), a} = (f1 − 1) log exp(pã)f1(d log ã)

− 1
p

log(f(ã)/ãp)d log exp(pã)

= f1(dã)− pdã.

Here, we used d(log(f(ã)/ãp) · ã) = 0 in Sqf (A,B). The final equation is
clearly additive in a. Since

sf,2,A : U1
XK2(A)∧ −→ U1

XS
2
f (A,B)

is bijective by Theorem A2.2, {exp(pa), a} is additive in a, and (27) is
satisfied. Hence, expp is a homomorphism.

Remark A.2.11. One has {exp(pãb̃Xi), b̃Xi} = {exp(pã(1 + b̃Xi)),
(1+b̃Xi)} for i > 0, ã ∈ B, and b̃ ∈ B× (note that {exp(pãb̃Xi), b̃Xi}makes
sense inK2(B)∧ by our convention (cf.1.3)) because sf,2({exp(pãb̃Xi), b̃Xi})
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= sf,2({exp(pã(1+ b̃Xi)), (1+ b̃Xi)}) (cf. remark after the definition of sf,q
in the proof of Proposition A1.3). Hence, we have

expp(adb1X
i ∧ db2

b2
∧ ... ∧ dbq−1

bq−1
) = {exp(pab1Xi), b1Xi, b2, ..., bq−1}

for a ∈ A, b1,...,bq−1 ∈ A×, and i > 0.

Remark A.2.12. Theorem 1.1 gives a different proof of the main result
in [13]. Let K be a complete discrete valuation field with integer ring OK ,
and X be a smooth scheme over OK . We denote by i : Y −→ X the special
fiber of X and by j : Xη −→ X the generic fiber of X.

LetKM
q (OX) be the sheaf of MilnorK-groups, and Sn(r) be the syntomic

complex on D(Yet) defined in [9] for n > 0. Then by using (a modified
version of ) Theorem A2.2, we can show the existence of an isomorphism

i∗KM
q (OX)/pn ' Hq(Sn(q)) (28)

for q such that 0 < q < p − 1. In fact, Theorem A2.2 says that
U1i∗KM

q (OX)/pn ' U1Hq(Sn(q)). (Here U1i∗KM
q (OX) is defined similarly

as above.)
Comparing this isomorphism (28) with a result in [2], we have an exact

sequence

0 −→ Hq(Sn(q)) −→ i∗Rqj∗Z/pn(q) −→WnΩ
q−1
Y,log −→ 0. (29)

This exact sequence was proved in [13] by a different method.
For r such that q < r < p− 1, we can also prove the bijectivity of

(i∗KM
q (OX)/p)⊗ µ⊗(r−q)

p ' Hq(S1(r)) (30)

by a similar method as in this paper. Then by (29), (30), and the theory of
Fontaine and Messing, we can show the existence of a distinguished triangle

Sn(r) −→ τ≤ri
∗Rj∗Z/pn(r) −→WnΩr−1

Y,log[−r]

which was the main theorem of [13]. Tsuji extended this result to much
more general setting [20] [21], and proved the semi-stable conjecture by
Fontaine and Jannsen.

(*) Note. This paper was written long time ago, but the author still thinks
the problems to determine all griKM

q (K) for complete discrete valuation
fields of mixed characteristics, and also to determine the kernels of the
exponential homomorphisms for Milnor K-groups (cf. [15]) are interesting
problems.
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