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An Arakelov theoretic proof of the equality of

conductor and discriminant

par Sinan ÜNVER

Résumé. Nous donnons une preuve utilisant la théorie d’Arakelov
de l’égalité du conducteur et du discriminant.

Abstract. We give an Arakelov theoretic proof of the equality
of conductor and discriminant.

1. Introduction

Let K be a number field, OK be the ring of integers of K, and S be
Spec(OK). Let f : X → S be an arithmetic surface. By this we mean
a regular scheme, proper and flat over S, of relative dimension one. We
also assume that the generic fiber of X has genus≥ 1, and that X/S has
geometrically connected fibers.

Let ωX be the dualizing sheaf of X/S. The Mumford isomorphism
([Mumf], Theorem 5.10)

det Rf∗(ω⊗2
X )⊗K → (detRf∗ωX)⊗13 ⊗K,

which is unique up to sign, gives a rational section ∆ of

(detRf∗ωX)⊗13 ⊗ (detRf∗(ω⊗2
X ))⊗−1.

The discriminant ∆(X) of X/S is defined as the divisor of this rational
section ([Saito]). If p is a closed point of S, we denote the coefficient of p
in ∆(X) by δp.

On the other hand X/S has an Artin conductor Art(X) (cf. [Bloch]),
which is similarly a divisor on S. We denote the coefficient of p in Art(X)
by Artp. Let S′ be the strict henselization of the complete local ring of S
at p, with field of fractions K ′. Let s be its special point, η be its generic
point, and η be a geometric generic point corresponding to an algebraic
closure K ′ of K ′. Let ` be a prime different from the residue characteristic
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at p. Then

Artp(X) =
∑
i≥0

(−1)i dimQ`
Hi

ét(Xη, Q`)−
∑
i≥0

(−1)i dimQ`
Hi

ét(Xs, Q`)

+
∑
i≥0

(−1)iSwK′/K′(Hi
ét(Xη, Q`)),

where SwK′/K′ denotes the Swan conductor of the Galois representation of
K ′/K ′. Both of these divisors are supported on the primes of bad reduction
of X. We give another proof of Saito’s theorem ([Saito], Theorem 1) in the
number field case.

Theorem 1. For any closed point p ∈ S, we have δp = −Artp.

Fix a Kähler metric on X(C) invariant under complex conjugation, this
gives metrics on Ω1

Xν
’s, for each ν ∈ S(C). For a hermitian coherent sheaf

E , we endow detRf∗(E) with its Quillen metric. The proof of the theorem
has the following corollaries.

Proposition 1. We have

deg detRf∗ωX =
1
12

[deg f∗(ĉ1(ωX)2) + log Norm(−Art(X))]

[K : Q](g − 1)[2ζ ′(−1) + ζ(−1)],

with ζ the Riemann zeta function.

Proposition 1 is an arithmetic analogue of Noether’s formula in which
det Rf∗ωX is endowed with the Quillen metric. Faltings [Falt] and Moret-
Bailly [M-B] proved a similar formula for the Faltings metrics.

Proposition 2. We have
1

[K : Q]

∑
ν∈S(C)

log ‖∆ν‖ = 12(1− g)[2ζ ′(−1) + ζ(−1)],

where ∆ν is the section on Xν obtained by pulling back ∆ via the map from
Spec(C) to Spec(OK) that corresponds to ν ∈ S(C). In particular, the norm
of the Mumford isomorphism does not depend on the metric.

2. Proof

First we prove Proposition 1. By duality ([Deligne], Lemme 1.3),
deg detRf∗ωX = deg detRf∗OX . By the arithmetic Riemann-Roch the-
orem of Gillet and Soulé ([G-S], Theorem 7), we get

deg detRf∗OX = deg f∗(T̂ d(Ω1
X)(2))− 1

2

∑
ν∈S(C)

∫
Xν

Td(TXν )R(TXν ).
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Here Td and R are the Todd and Gillet-Soulé genera respectively, and the
superscript (2) denotes the degree 2 component. Applying the definitions
of these characteristic classes we obtain

deg detRf∗OX =
1
12

deg f∗(ĉ1(Ω1
X)2 + ĉ2(Ω1

X)) + [K : Q](g − 1)[2ζ ′(−1) + ζ(−1)].

Let Z denote the union of singular fibers of f , and let cZ
2,X(Ω1

X) be the local-
ized Chern class of Ω1

X with support in Z (cf. [Bloch], [Fulton]). Chinburg,
Pappas, and Taylor ([CPT], Proposition 3.1) prove the formula

deg f∗(ĉ2(Ω1
X)) = log Norm(cZ

2,X(Ω1
X)).

Combining this with the fundamental formula of Bloch ([Bloch], Theorem
1)

−Artp(X) = degp cZ
2,X(Ω1

X),

we obtain the desired formula. Note that, since detΩ1
X = ωX , ĉ1(Ω1

X) =
ĉ1(ωX). 2

Taking degrees in the Mumford isomorphism gives

13 deg det Rf∗ωX = deg det Rf∗(ω⊗2
X ) + log Norm(∆(X))−

∑
ν∈S(C)

log ‖∆ν‖.

The arithmetic Riemann-Roch theorem ([Falt], Theorem 3) gives

deg detRf∗(ω⊗2
X ) = deg detRf∗ωX + deg f∗(ĉ1(ωX)2).

Therefore we get
(1)

deg detRf∗ωX =
1
12

[deg f∗(ĉ1(ωX)2) + log Norm(∆(X))−
∑

ν∈S(C)

log ‖∆ν‖.

Subtracting (1) from the expression in the statement of Proposition 1, we
obtain

(2) log(
Norm(∆(X/S))

Norm(−Art(X/S))
) =∑

ν∈S(C)

log ‖∆ν‖+ 12[K : Q](g − 1)[2ζ ′(−1) + ζ(−1)].

Now XK has semistable reduction after a finite base change K ′/K. For
semistable X ′/S′, both −Artp′(X ′) ([Bloch]), and δp′(X ′) ([Falt], Theorem
6) are equal to the number of singular points in the geometric fiber over p′.
Therefore −Artp′ = δp′ , and hence

(3) Norm(∆(X ′/S′)) = Norm(−Art(X ′/S′)).



426 Sinan Ünver

Applying this to a semistable model X ′ of X ⊗K K ′, and noting that the
base change multiplies the right hand side of (2) by [K ′ : K], we see that
the right hand side of (2) is equal to zero, and hence that the equality

(4) Norm(∆(X/S)) = Norm(−Art(X/S))

holds for X.
To prove the equality δp = −Artp for an arbitrary closed point p ∈ S,

we will use the following lemma.

Lemma 1. Fix distinct closed points β1, .., βs ∈ S. For each i such that
1 ≤ i ≤ s, let Li be an extension of the completion Ki of K at βi such that
[Li : Ki] = n is independent of i. Then there exists an extension L/K such
that, for each 1 ≤ i ≤ s, there is only one prime γi of L lying over βi, and
the completion of L at γi is isomorphic (over Ki) to Li.

Proof. The proof is an application of Krasner’s lemma, and the approxi-
mation lemma. Details are omitted. 2

Take p=β1, a prime of bad reduction. Denote the remaining primes of
bad reduction by βi, 2 ≤ i ≤ s. Choose extensions Li of the local fields
Ki, for all 1 ≤ i ≤ s, such that L1 is unramified over K1, X has semistable
reduction over Li, for 2 ≤ i ≤ s, and [Li : Ki] = n, for some n. Applying
the lemma to this data we obtain an extension L of K. Let T = Spec(OL).
The curve X ⊗K L has a proper, regular model Y over T such that

(i) Y ⊗T Tγ1 ' X ⊗S Tγ1 , and
(ii) Y is semistable at γi, for 2 ≤ i ≤ s.

Applying (4) to Y gives the equality∑
1≤i≤s

δγi log Norm(γi) =
∑

1≤i≤s

−Artγi log Norm(γi).

On the other hand because of semistability, we have δγi = −Artγi , for
2 ≤ i ≤ s. Hence we get δγ1 = −Artγ1 . Since T/S is étale at γ1 , (i) implies

δp = δγ1 = −Artγ1 = −Artp.
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