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On Tate’s refinement for a conjecture of Gross

and its generalization

par Noboru AOKI

Résumé. Nous étudions un raffinement dù à Tate de la conjecture
de Gross sur les valeurs de fonctions L abéliennes en s = 0 et for-
mulons sa généralisation à une extension cyclique abitraire. Nous
prouvons que notre conjecture généralisée est vraie dans le cas des
corps de nombres. Cela entraine en particulier que le raffinement
de Tate est vrai pour tout corps de nombres.

Abstract. We study Tate’s refinement for a conjecture of Gross
on the values of abelian L-function at s = 0 and formulate its
generalization to arbitrary cyclic extensions. We prove that our
generalized conjecture is true in the case of number fields. This in
particular implies that Tate’s refinement is true for any number
field.

1. Introduction

In [9] Gross proposed a conjecture which predicts a relation between two
arithmetic objects, the Stickelberger element and the Gross regulator, both
of which are defined for any data (K/k, S, T ), where K/k is an abelian ex-
tension of global fields and S, T are finite, non-empty subsets of the places
of k satisfying certain conditions. In the same paper, he proved the con-
jecture in the case of unramified extensions of number fields, and obtained
a partial result when the extension is cyclic of prime degree. Since then
the conjecture has been verified to be true in several cases (see Proposition
2.2 below), but yet it remains to be proved in general. Taking a close look
at the conjecture, however, one can easily notice that it becomes trivial in
some cases. For example, if S contains a place which completely splits in
K, then both the Stickelberger element and the Gross regulator are zero,
and the conjecture is trivially true. Besides such a trivial case, there are
still some cases where the conjecture becomes trivial. As observed by Tate
[22], this is the case if K/k is a cyclic extension whose degree is a power of
a prime number l and if at least one place of S “almost splits completely”
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in K/k (see Section 3 for the definition) and another place in S splits in
K/k. He then proposed a refined conjecture in that case.

The purpose of this paper is to study Tate’s refined conjecture from a
cohomological view point and to generalize it to arbitrary cyclic extensions.
(In a forthcoming paper [2], a further generalization of the conjecture will
be given.) We will prove that a weak congruence holds for any cyclic l-
extension (Theorem 3.3), which implies Tate’s refined conjecture when k
is a number field (Theorem 3.4). Piecing the congruences together for
all primes l, we will also obtain a weak congruence for arbitrary cyclic
extensions (Theorem 4.2), which is a partial result in the direction of our
conjecture. In particular it shows that the generalized conjecture (and
hence the Gross conjecture) is true for arbitrary cyclic extensions of number
fields (Theorem 4.3 and Corollary 4.4). In the last section, using the results
above, we will give a new proof of the Gross conjecture for arbitrary abelian
extensions K/Q (Theorem 10.1), which simplifies our previous proof in [1].

The main idea of the proof consists of two ingredients: one is an inter-
pretation of the Gross regulator map in terms of Galois cohomology, and
the other is genus theory for cyclic extensions K/k. Here by genus theory
we mean a formula (Theorem 7.1) for the (S, T )-ambiguous class number
of K/k, and it will play an important role when we relate the Stickelberger
element to the Gross regulator in the proof of Theorem 4.2. The idea to
use genus theory can be already found in the paper of Gross [9], where
he implicitly used it to prove a weak congruence in the case of cyclic ex-
tensions of prime degree. Thus our proof may be regarded as a natural
generalization of his.

Acknowledgements I would like to thank Joongul Lee and Ki-Seng Tan
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suggestions. Especially I am considerably indebted to Lee for the treatment
of the case “m0 > 0” in Theorem 9.2. I am very grateful to David Burns
for letting me know of recent work by himself [3] and by Anthony Hayward
[11] both of which are closely related to this article. I also wish to express
my gratitude to John Tate for many valuable comments and suggestions.

2. The Gross conjecture

In this section we briefly recall the Gross conjecture. Let k be a global
field, and let S be any finite, non-empty set of places of k which contains
all the archimedean places if k is a number field. Let OS be the ring of
S-integers of k and consider the S-zeta function

ζS(s) =
∑

a⊆OS

(Na)−s,
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where the summation is over the ideals a of OS . It is well known that
this series converges for <(s) > 1 and has a meromorphic continuation to
the s-plane, with only a simple pole at s = 1. The analytic class number
formula for k says that the Taylor expansion of ζS(s) at s = 0 begins:

ζS(s) = −hSRS
wS

sn +O(sn+1),

where hS is the class number of OS , RS is the S-regulator, wS is the number
of root of unity in the S-unit group US = O×

S and n = |S| − 1. To achieve
a formula with no denominator, following Gross, we introduce a slightly
modified zeta function. Let T be a finite set of places of k which is disjoint
from S, and define the (S, T )-zeta function

ζS,T (s) =
∏
v∈T

(1−Nv1−s) · ζS(s),

where Nv is the cardinality of the residue field of v. To describe the corre-
sponding formula for ζS,T (s), we define the (S, T )-unit group of k by

US,T = {u ∈ US | u ≡ 1 (mod v) for all v ∈ T}.

Clearly the index (US : US,T ) is finite, and is a divisor of
∏

q∈T (Nv − 1).
Define the (S, T )-class number h = hS,T by the formula

(1) h = hS ·
∏
v∈T (Nv − 1)
(US : US,T )

.

Then the Taylor expansion of ζS,T (s) at s = 0 begins:

(2) ζS,T (s) = (−1)|T |−1hRS,T
w

sn +O(sn+1),

where RS,T is the (S, T )-regulator (see below for the definition) and w is
the number of root of unity in US,T . We henceforth assume that T is chosen
so that US,T is torsion-free. Then from (2) we obtain a formula without a
denominator:

(3) ζS,T (s) = (−1)|T |−1hRS,T s
n +O(sn+1).

To define the (S, T )-regulator, let YS be the free abelian group generated
by the places of S and

XS =

{∑
v∈S

av · v ∈ YS

∣∣∣∣∣ ∑
v∈S

av = 0

}
the subgroup of elements of degree zero in YS . Then XS

∼= Zn. Since we
are assuming that US,T is torsion-free, we have an isomorphism US,T ∼= Zn.
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Let 〈u1, . . . , un〉 and 〈x1, . . . , xn〉 be Z-bases of US,T and XS respectively.
Let detR(λ) be the determinant of the map

λR,S,T : US,T −→ R⊗XS , u 7→
∑
v∈S

log ||u||v ⊗ v.

taken with respect to Z-bases of US,T and XS chosen above. The (S, T )-
regulator RS,T is by definition the absolute value of detR(λ). By (3) we
have

(4) ζS,T (s) = ±h · detR(λ)sn +O(sn+1),

where the sign of course depends on the choice of bases of US,T and XS .
The Gross conjecture predicts that there is an analogous congruence

relation if we replace ζS,T (s) and detR(λ) in (4) by the Stickelberger element
and the Gross regulator respectively. We give a brief review of the definition
of these two objects.

First we define the Stickelberger element. Let K/k be a finite abelian
extension which is unramified outside S and G the Galois group of K/k.
For any complex valued character χ of G, we define the (S, T )-L function
associated to χ to be the infinite product

LS,T (χ, s) =
∏
v∈T

(1− χ(Frv)N(v)1−s)
∏
v 6∈S

(1− χ(Frv)N(v)−s)−1,

where Frv ∈ G denotes the Frobenius element at v. Then there exists a
unique element θG = θG,S,T ∈ C[G] such that χ(θG) = LS,T (χ, 0) for any
χ. Gross [9] showed that θG is in Z[G] using integrality properties proved
independently by Deligne-Ribet [7] and Barsky-Cassou-Noguès [5].

Next, to define the Gross regulator, consider the map

λ = λG,S,T : US,T −→ G⊗XS , u 7→
∑
v∈S

rv(u)⊗ v,

where rv : k×v −→ G denotes the local reciprocity map. Let (gij) be the
n×n matrix representing λ with respect to the bases {ui} and {xj} chosen
above, namely:

λ(ui) =
n∑
j=1

gij ⊗ xj (i = 1, . . . , n).

Let Z[G] be the integral group ring of G and IG the augmentation ideal of
Z[G]. Then there is an isomorphism G ∼= IG/I

2
G, g 7→ g − 1. Using this

isomorphism we can view the matrix (gij − 1) with entries in IG/I
2
G as a

matrix representing λ. Define the Gross regulator by

detG(λ) =
∑
σ

sgn(σ)(g1,σ(1) − 1) · · · (gn,σ(n) − 1) ∈ InG/In+1
G ,

where the sum is over the permutations σ of {1, . . . , n}.
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We are now in a position to state the conjecture of Gross.

Conjecture 2.1. Let the notation be as above. Then θG ∈ InG and the
following congruence holds:

θG ≡ ±hdetG(λ) (mod In+1
G ),

where the sign is chosen in a way consistent with (4).

In the following we have a list of the cases where Conjecture 2.1 is proved.

Proposition 2.2. Conjecture 2.1 is true in the following cases:
(i) n = 0.
(ii) k is a number field and S is the set of the archimedean places.
(iii) K is a quadratic extension of k.
(iv) k is a function field and n = 1.
(v) k = Q.
(vi) K/k is an abelian p-extension of function fields of characteristic p.
(vii) K/k is an abelian l-extension, where l is a prime number different

from the characteristic of k and divides neither the class number of
k nor the number of roots of unity in K.

(viii) K/k is an abelian extension of a rational function field k over a finite
field and |S| ≤ 3.

Proof. In the case of (i) Conjecture 2.1 is an immediate consequence of (4).
In both cases (ii) and (iii) the conjecture was proved by Gross in [9]. Case
(iv) is a consequence of the work of Hayes [10] proving a refined version of
the Stark conjecture. Case (v) was treated in our previous paper [1]. In
the cases (vi), (vii) and (viii) the conjecture was proved by Tan [19], Lee
[15] and Reid [16], respectively. �

As mentioned in the introduction, Gross [9] proved a weak congruence
when K/k is a cyclic extension of a prime degree. Here we give the precise
statement because our main results (Theorem 3.3 and Theorem 4.2) may
be viewed as a generalization of it to arbitrary cyclic extensions.

Proposition 2.3. Suppose K/k is a cyclic extension of prime degree l.
Then there is a constant c ∈ (Z/lZ)× such that

θG ≡ c · hdetG(λ) (mod In+1
G ).

Proof. See [9, Proposition 6.15]. �

3. Tate’s refinement for the Gross conjecture

In this section we give the precise statement of Tate’s refinement for the
Gross conjecture.
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First, we assume that G is an arbitrary finite abelian group. Choose and
fix a place v0 ∈ S and set S1 = S \ {v0} = {v1, . . . , vn}. Then, as a Z-basis
of XS , we can take {v1 − v0, . . . , vn − v0}. In this case we have

λ(u) =
n∑
j=1

rvj (u)⊗ (vj − v0).

Choosing a Z-basis {u1, . . . , un} of US,T , we define

RG = RG,S,T := det (rvi(uj)− 1)1≤i,j≤n ∈ Z[G].

It is clear from the definition thatRG ∈ InG andRG ≡ detG(λ) (mod In+1
G ).

Now, suppose that G is a cyclic group of degree lm, a power of a prime
number l. For each v ∈ S, let Gv denote the decomposition group of v in
G. We fix the ordering of the elements of S = {v0, v1, . . . , vn} so that

Gv0 ⊇ Gv1 ⊇ · · · ⊇ Gvn .

Let lmi = (G : Gvi) for i = 0, . . . , n. Thus m0 ≤ m1 ≤ . . . ≤ mn ≤ m. Let

N = lm0 + · · ·+ lmn−1 = |S(K)| − lmn .

Clearly N ≥ n, and N = n if and only if m0 = · · · = mn−1 = 0.
If mn = m, that is, vn splits completely in K/k, then θG = RG = 0.

Hence Conjecture 2.1 trivially holds. Let us consider the second simplest
case mn = m − 1. Following Tate, we say that the place vn almost splits
completely in K if mn = m− 1. Tate [22] proved the following.

Theorem 3.1. Assume that mn = m − 1. Then θG ∈ ING and RG ∈
IN−l

m0+1
G . Moreover, the image of RG in IN−l

m0+1
G /IN−l

m0+2
G is, up to the

sign, independent of the choice of the basis of US,T and the choice of v0.

Since N ≥ n, this theorem, in particular, shows that θG ∈ InG. Let us
consider the case where m0 > 0. In this case we have N > n and hence
Theorem 3.1 also shows that θG ∈ In+1

G . Moreover, one can show that
hRG ≡ 0 (mod In+1

G ) (see Theorem 9.2, (i)). Therefore Conjecture 2.1 is
trivially true if m0 > 0. On the other hand, if m0 = 0, then both θG and
RG are in the same ideal ING . Therefore it is meaningful to compare them
in the quotient group ING /I

N+1
G . Based on these facts, Tate [22] proposed

a refinement for the Gross conjecture.

Conjecture 3.2. Assume that m0 = 0 and mn = m− 1. Then

θG ≡ ±hRG (mod IN+1
G ),

where the sign is chosen in a way consistent with (4).

Obviously Conjecture 3.2 implies Conjecture 2.1 since N ≥ n and

detG(λS,T ) ≡ RG (mod In+1
G ).

Now, we can state one of our main results.
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Theorem 3.3. Let the notation and assumptions be as in Conjecture 3.2.
Then there exists an integer c prime to l such that

θG ≡ c · hRG (mod IN+1
G ).

In particular, if l = 2, then Conjecture 3.2 is true.

We will give the proof of this theorem (more precisely, of Theorem 9.1
which is equivalent to Theorem 3.3) in Section 9. Here we only note that
the last assertion immediately follows from the first one. To see this we
have only to observe that ING /I

N+1
G

∼= Z/|G|Z since G is a cyclic group and
that both θG and RG are killed by l in ING /I

N+1
G under the condition that

mn = m− 1 (see Proposition 5.4). Therefore, if l = 2, then chRG ≡ hRG

(mod IN+1
G ). Thus Conjecture 3.2 is true.

As a special case of Theorem 3.3 we have the following.

Corollary 3.4. If K/k is a cyclic l-extension of number fields, then Con-
jecture 3.2 is true.

Proof. Actually, Conjecture 3.2 is non-trivial only when l = 2 in the number
field case since ING /I

N+1
G is an l-group and both θG andRG are killed by 2 in

ING /I
N+1
G . Thus Corollary 3.4 is a direct consequence of Theorem 3.3. �

Remark 3.5. As remarked by Lee [14], one can not drop the condition
m0 = 0 from the conditions in Conjecture 3.2. Indeed, he showed that
there are infinitely many cyclic l-extensions K/k for which θG 6∈ IN+1

G but
hdetG(λ) ∈ IN+1

G . In the next section, we will generalize Conjecture 3.2 to
arbitrary cyclic extensions in order to remove the restriction on m0.

4. A generalization of Tate’s conjecture

In this section G will be an arbitrary cyclic group. For any v ∈ S, let

IG(v) = Ker(Z[G] −→ Z[G/Gv])

be the kernel of the canonical surjection Z[G] −→ Z[G/Gv]. Let us choose
and fix a place v0 ∈ S. Let S1 = S \ {v0} and consider the ideal

IG(S1) =
n∏
i=1

IG(vi)

in Z[G]. If σ is a generator of G, then Gvi is generated by σvi := σ(G:Gvi )

and IG(S1) is a principal ideal generated by (σv1−1) · · · (σvn−1). Since the
entries of the i-th row of the matrix (rvi(uj)− 1)i,j are in the ideal IG(vi),
its determinant RG belongs to the ideal IG(S1). Moreover, the image of
RG in the quotient group IG(S1)/IGIG(S1) is, up to the sign, independent
of the choice of the basis of US,T .
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Given a finite abelian extension K/k of global fields and finite sets S, T of
places of k such that S∩T = ∅, we call the triple (K/k, S, T ) an admissible
data if the following conditions are satisfied:

(i) S contains the places of k ramifying in K and the archimedean places
of k.

(ii) UK,S,T is torsion-free.

In [9] Gross gave a sufficient condition for US,T to be torsion-free:

• In the function field case US,T is torsion-free if T is non-empty.
• In the number field case US,T is torsion-free if T contains either primes

of different residue characteristics or a prime v whose absolute ramifi-
cation index ev is strictly less than p−1, where p is the characteristic
of Fv.

It is worthwhile to note that each condition above also ensures that UK,S,T
is torsion-free for any finite abelian extension unramified outside S.

We propose the following conjecture which will turn out to be equivalent
to Tate’s refinement when K/k is a cyclic l-extension such that m0 = 0 and
mn = m− 1.

Conjecture 4.1. Let (K/k, S, T ) be an admissible data such that G =
Gal(K/k) is a cyclic group. Then

θG ≡ ±hRG (mod IGIG(S1)),

where the sign is chosen in a way consistent with (4).

It is very likely that the congruence in the conjecture holds for any finite
abelian extension K/k. In a forthcoming paper [2], this will be discussed
in some detail and some evidence will be given.

If l is a prime number dividing |G|, we denote by Gl the l-Sylow subgroup
of G. For each v ∈ S, let Gv be the decomposition group of v in G, and put
Gv,l = Gv ∩ Gl. Thus Gv,l is the l-Sylow subgroup of Gv. Now, consider
the following condition:

(5)
{

There exists a place vn ∈ S1 such that |Gvn,l| ≤ l
for any prime divisor l of |G|.

In other words, this requires that there exists a place vn in S which either
splits completely or almost splits completely in the maximal l-extension of
k contained in K for each prime divisor l of |G|. Although this condition is
very restrictive in the function field case, it is always satisfied in the number
field case since |Gv| = 1 or 2 for any archimedean place v of k.

Now, we can state our main result, which may be viewed as a partial
answer to Conjecture 4.1.
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Theorem 4.2. Suppose condition (5) holds. Then θG belongs to IG(S1)
and there exists an integer c prime to |G| such that

θG ≡ c · hRG (mod IGIG(S1)).

In the next section we will see that in order to prove Theorem 4.2 it
suffices to prove it when G is a cyclic group of a prime power order.

In the case of number fields, Theorem 4.2 gives a complete answer to
Conjecture 4.1.

Theorem 4.3. If K/k is a cyclic extension of number fields, then we have

θG ≡ hRG (mod IGIG(S1)).

Proof. As we have remarked above, condition (5) is always satisfied in the
number field case. As is well known, if k is not totally real or K is not
a totally imaginary, then Conjecture 2.1 is trivial. Suppose K is a totally
imaginary extension of a totally real field k. Then, as we will see later (see
Proposition 5.4), the quotient group IG/IGIG(S1) is a cyclic group of order
2. Thus Theorem 4.3 immediately follows from Theorem 4.2. �

Since Conjecture 3.2 implies Conjecture 2.1, Theorem 4.3 proves the
following.

Corollary 4.4. If K/k is a cyclic extension of number fields, then Con-
jecture 2.1 is true.

5. Stickelberger elements for cyclic l-extensions

Throughout this section we will assume that G is a cyclic l-group and
that (K/k, S, T ) is an admissible data. In particular UK,S,T is torsion-free.
In order to state Theorem 5.1 below, let F be the intermediate field of K/k
with [K : F ] = l and put

h∗K,S,T = hK,S,T /hF,S,T .

If at least one place in S does not split completely in K/k, then h∗K,S,T is
an integer by [17, Lemma 3.4]. In particular, if mn = m− 1, then h∗K,S,T is
an integer.

Theorem 5.1. Suppose mn = m− 1. Then

θG ≡ 0 (mod IG(S1)).

Moreover, the following assertions hold.
(i) If m0 > 0, then θG ≡ 0 (mod IGIG(S1)).
(ii) If m0 = 0, then θG ≡ 0 (mod IGIG(S1)) if and only if h∗K,S,T ≡

0 (mod l).
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Although both the first statement and (i) of the second statement follows
from Tate’s theorem (Theorem 3.1) in view of Proposition 5.4, we will give
a proof for the completeness. We begin with a lemma.

Lemma 5.2. Let M be an intermediate field of K/k such that |S(K)| =
|S(M)|. Then UK,S,T = UM,S,T .

Proof. Let u be any element of UK,S,T . For any σ ∈ G, uσ−1 is also an ele-
ment of UK,S,T since UK,S,T is G-stable. Moreover the following argument
shows that uσ−1 is a root of unity. Indeed, the assumption of the lemma im-
plies that UK,S,T /UM,S,T is a finite group. It follows that there exists a pos-
itive integer m such that um ∈ UM,S,T . Therefore (uσ−1)m = (um)σ−1 = 1.
Thus uσ−1 is an m-th root of unity. However, since UK,S,T is torsion-free,
this shows that uσ−1 = 1 for any σ ∈ Gal(K/M), hence u ∈M×. The asser-
tion of the lemma then follows from the fact that UK,S,T∩M× = UM,S,T . �

Proposition 5.3. Assume that mn = m− 1. Then∏
χ

χ(θG) = ±l|S(K)|−1h∗K,S,T ,

where χ runs through the faithful characters of G.

Proof. Let F be as above. Then the assumption on Gv’s implies that
|S(K)| = |S(F )|. This, in particular, implies that

ords=0ζK,S,T (s) = ords=0ζF,S,T (s).

Further we have

(6) lim
s→0

ζK,S,T (s)
ζF,S,T (s)

=
∏
χ

LS,T (χ, 0) =
∏
χ

χ(θG),

where χ runs through the faithful characters of G. On the other hand, by
(3), we have

(7) lim
s→0

ζK,S,T (s)
ζF,S,T (s)

= ±
hK,S,TRK,S,T
hF,S,TRF,S,T

.

Gross [9, (6.4), (6.5)] showed that

RK,S,T
RF,S,T

=
l|S(K)|−1

(UK,S,T : UF,S,T )
.

The denominator of the right hand side is 1 by Lemma 5.2, hence
RK,S,T
RF,S,T

= l|S(K)|−1.

The assertion of the proposition then immediately follows from (6) and
(7). �
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Proposition 5.4. Assume that mn = m− 1. Let ρ be an element of G of
order l. Then we have an equality

(8) IG(S1) = IN−l
m0+1

G ∩ (ρ− 1)Z[G]

and an isomorophism

(9) IG(S1)/IGIG(S1) ∼= Z/lZ.

Proof. See [22]. �

Corollary 5.5. If K/k is a cyclic l-extension such that m0 = 0 and mn =
m− 1, then Conjecture 3.2 is equivalent to Conjecture 4.1

Proof. If m0 = 0, then from (8) we have

IG(S1) = ING ∩ (ρ− 1)Z[G],

IGIG(S1) = IN+1
G ∩ (ρ− 1)Z[G].

Since both θG and RG belong to (ρ − 1)Z[G], this shows that Conjecture
3.2 is equivalent to Conjecture 4.1. �

Proof of Theorem 5.1. Let NQ(ζlm )/Q denote the norm map from Q(ζlm) to
Q. Then by Proposition 5.3 we have

ordl
(
NQ(ζlm )/Q(χ(θG))

)
= |S(K)| − 1 + ν,

where ν = ordl(h∗K,S,T ). Since l completely ramifies in Q(ζlm), it follows
from this that

ordl(χ(θG)) = |S(K)| − 1 + ν.

Since |S(K)| − 1 = N + lm−1 − 1 and θG ∈ (ρ − 1)Z[G], from Proposition
5.3 and the lemma of [22] we deduce that

(10) θG ∈ IN+ν
G \ IN+ν+1

G .

Thus θG ∈ IG(S1) by Proposition 5.4. This proves the first statement.
If m0 > 0, then lm0 > 1, whence

IGIG(S1) ⊇ ING ∩ (ρ− 1)Z[G]

by Proposition 5.4. Therefore θG ∈ IGIG(S1) by Theorem 3.1. If m0 = 0,
then by the same proposition we have

(11) IGIG(S1) = IN+1
G ∩ (ρ− 1)Z[G].

Therefore from (10) and (11) we deduce that θG ∈ IGIG(S1) if and only if
h∗K,S,T ≡ 0 (mod l). This completes the proof. 2
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6. Reduction to cyclic l-extensions

We wish to reduce Theorem 4.2 to the case of cyclic l-extensions. For
that purpose we consider the ring homomorphism Ψl : Z[G] −→ Z[Gl]
induced from the canonical surjection G −→ Gl. Let

Ψ = ⊕Ψl : Z[G] −→
⊕
l

Z[Gl],

where l runs through the prime numbers dividing |G|. For any place v ∈ S1,
we have Ψl(IG(v)) = IGl

(v) and hence Ψl(IG(S1)) = IGl
(S1). If ∗ denotes

either v or S1, then we define the map

Ψ∗ : IG(∗) −→
⊕
l

IGl
(∗)

to be the restriction of Ψ to IG(∗).

Proposition 6.1. The following assertions hold for the maps Ψv and ΨS1.
(i) Both Ψv and ΨS1 are surjective.
(ii) Ker(Ψv) = Ker(ΨS1).
(iii) The maps Ψv and ΨS1 respectively induce isomorphisms

IG(v)/IG(S1) ∼=
⊕
l

IGl
(v)/IGl

(S1),

IG(S1)/IGIG(S1) ∼=
⊕
l

IGl
(S1)/IGl

IGl
(S1),

where l runs through the prime numbers dividing |G|.

Before giving the proof of this proposition, we show how the proof of
Theorem 4.2 can be reduced to the case of cyclic l-extensions. We continue
to use the notation above and assume that condition (5) holds. Then θG
belongs to IG(vn). Suppose that Theorem 6.1 is true for any Gl, that is, for
each prime divisor l of |G|, θGl

belongs to IGl
(S1) and we have a congruence

(12) θGl
≡ cl · hRGl

(mod IGl
IGl

(S1))

for some integer cl prime to l. Since Ψl(θG) = θGl
, Proposition 6.1, (iii)

shows that θG belongs to IG(S1). Let c be an integer such that c ≡ cl
(mod l) for any prime l dividing |G|. By Proposition 5.4, IGl

(S1)/IGl
IGl

(S1)
is trivial or isomorphic to Z/lZ according as |Gv,l| = 1 or l. It follows that

Ψl(c · hRG) ≡ cl · hRGl
(mod IGl

IGl
(S1))

for all l dividing |G|. Then Proposition 6.1, (iv) and (12) shows that

θG ≡ c · hRG (mod IGIG(S1)),

as desired. 2



Tate’s refinement for a conjecture of Gross 469

To state the following lemma, for any subgroup H of G, we denote by
IH the kernel of the natural surjection Z[G] → Z[G/H].

Lemma 6.2. Let G a finite abelian group and G1, G2 subgroups of G such
that GCD(|G1|, |G2|) = 1. Then

IG1IG2 ⊆ ItG1
IG2 + IG1I

t
G2
.

for any positive integer t.

Proof. We have only to show that

(13) (g1 − 1)(g2 − 1) ∈ ItG1
IG2 + IG1I

t
G2

for any gi ∈ Gi and any positive integer t. First we note that |Gi|(gi− 1) ∈
I2
Gi

for i = 1, 2. By induction on t one can easily see that |Gi|t(gi−1) ∈ It+1
Gi

for any positive integer t. Since GCD(|G1|, |G2|) = 1, there exist integers
a1, a2 such that a1|G1|t + a2|G2|t = 1. Then the identity

(g1 − 1)(g2 − 1) = a1|G1|t(g1 − 1)(g2 − 1) + a2|G2|t(g1 − 1)(g2 − 1)

shows that equation (13) holds, completing the proof. �

Proof of Proposition 6.1. It is clear from the definition that

(14) Ψl(IGv,l
) = IGl

(v)

for any v ∈ S and for any prime l dividing |G|. Since IG(v) is generated by
IGv,l

as l ranges over the prime divisors of |G|, it follows from (14) that Ψv

is surjective. From (14) and the definition of Ψl we also deduce that

Ψl

(∏
v∈S

IGv,l′

)
=

{
IGl

(S1) if l = l′,

0 otherwise.

Since IG(S1) contains
∏
v∈S1

IGv,l
for all l, we conclude that the map ΨS1

is also surjective.
To prove (ii) note that the ideal Ker(Ψv) is generated by the products

IGv,l
IGv,l′ of two ideals IGv,l

and IGv,l′ as l, l′ runs through distinct prime
divisors of |G|. By Lemma 6.2 we have an inclusion

IGv,l
IGv,l′ ⊆ ItGv,l

IGv,l′ + IGv,l
ItGv,l′

for any positive integer t. Since ItGv,l
⊆ IG(S1) for any t ≥ n, this shows

that IGv,l
IGv,l′ ⊆ IG(S1). Therefore Ker(Ψv) ⊆ IG(S1), whence Ker(ΨS1) =

Ker(Ψv).
To prove the first isomorphism of (iii), for ∗ = v or S1 let

PG(∗) =
⊕
l

IGl
(∗).
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Since PG(v)/PG(S1) is isomorphic to
⊕

l IGl
(v)/IGl

(S1), Ψv induces a map

Ψv : IG(v)/IG(S1) −→ PG(v)/PG(S1).

We have to show that Ψv is an isomorphism. To this end, consider the
commutative diagram

0 −−−−→ IG(S1) −−−−→ IG(v) −−−−→ IG(v)/IG(S1) −−−−→ 0yΨS1

yΨv

yΨv

0 −−−−→ PG(S1) −−−−→ PG(v) −−−−→ PG(v)/PG(S1) −−−−→ 0.

Since both ΨS1 and Ψv are surjective, this diagram shows that Ψv is also
surjective. Moreover by the snake lemma we have an exact sequence

0 −−−−→ Ker(ΨS1) −−−−→ Ker(Ψv) −−−−→ Ker(Ψv) −−−−→ 0.

Then the equality Ker(ΨS1) = Ker(Ψv) shows that Ker(Ψv) = 0, whence
Ψv is an isomorphism.

In order to prove the second isomorphism of (iii), let

QG(S1) =
⊕
l

IGl
IGl

(S1).

Then QG(S1) is a subgroup of PG(S1) and PG(S1)/QG(S1) is isomorphic
to
⊕

l IGl
(S1)/IGl

IGl
(S1). Hence ΨS1 induces a map

ΨS1 : IG(S1)/IGIG(S1) −→ PG(S1)/QG(S1).

To show that ΨS1 is an isomorphism, we consider the commutative diagram

0 −−−−→ IGIG(S1) −−−−→ IG(S1) −−−−→ IG(S1)/IGIG(S1) −−−−→ 0yϕS1

yΨS1

yΨS1

0 −−−−→ QG(S1) −−−−→ PG(S1) −−−−→ PG(S1)/QG(S1) −−−−→ 0,

where ϕS1 denotes the restriction of ΨS1 to IGIG(S1). As we have seen
above, ΨS1 is surjective. Moreover, quite similarly as in the proof of the
surjectivity of ΨS1 , one can prove that ϕS1 is also surjective. Hence, by the
snake lemma again, ΨS1 is also surjective and we obtain an exact sequence

(15) 0 −−−−→ Ker(ϕS1) −−−−→ Ker(ΨS1) −−−−→ Ker(ΨS1) −−−−→ 0.

We wish to show that Ker(ΨS1) = 0. To see this note that in the proof of (i)
we have actually proved that Ker(Ψv) is contained in the ideal IGIG(S1).
Therefore Ker(ΨS1) is also contained in the same ideal, whence Ker(ΨS1) =
Ker(ϕS1). Thus from (15) we deduce that Ker(ΨS1) = 0, as desired. This
completes the proof of Proposition 6.1. 2
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7. The (S,T)-ambiguous class number

Let S, T be any finite sets of places of k such that S∩T = ∅. (We do not
impose any other condition on S and T .) Let Jk be the idèle group of k.
If v is a place of k, then we denote by kv and Ov the completion of k and
the integer ring of k at v, respectively. We define the (S, T )-idèle group
JS,T = Jk,S,T of k to be the subgroup

JS,T =
∏
v∈S

k×v ×
∏
v∈T

O×
v,1 ×

∏
v 6∈S∪T

O×
v

of Jk, where for v ∈ T we put O×
v,1 = {u ∈ O×

v | u ≡ 1 (mod v)}. Clearly
we have

(16) US,T = k× ∩ JS,T .

The (S, T )-idèle class group CS,T = Ck,S,T is defined to be the quotient
group

CS,T = JS,T /US,T .

Let Ck = Jk/k
× be the idèle class group of k. It follows from (16) that the

inclusion JS,T ↪→ Jk induces an injective map CS,T ↪→ Ck. We define the
(S, T )-ideal class group ClS,T = Clk,S,T of k by

ClS,T = Ck/CS,T .

Then ClS,T is isomorphic to the ray class group Jk/k
×JS,T corresponding

to the subgroup k×JS,T of Jk. To see this, note that

Ker(Jk/k× −→ Jk/k
×JS,T ) = k×JS,T /k

×.

By (16) we have an isomorphism k×JS,T /k
× ∼= JS,T /US,T , whence

Jk/k
×JS,T ∼=

Jk/k
×

JS,T /US,T
∼= Ck/CS,T = ClS,T .

Let h be the (S, T )-class number defined in (1). This naming will be justified
if we show that h = |ClS,T |. To show this, note that we have an exact
sequence

(17) 0 −→ US,T −→ JS,T −→ Ck −→ ClS,T −→ 0.

For simplicity we let ClS := ClS,∅ (the S-ideal class group of k) and JS =
JS,∅ (the S-idèle group of k), respectively. Then, as a special case of (17),
we have an exact sequence

(18) 0 −→ US −→ JS −→ Ck −→ ClS −→ 0.
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For any v ∈ T , let Fv be the residue field of v. Then two exact sequences
(17) and (18) fit into the following commutative diagram:

0 0 0y y y
US,T US

∏
v∈T F×vy y y

0 −−−−→ JS,T −−−−→ JS −−−−→
∏
v∈T F×v −−−−→ 0y y y

0 −−−−→ Ck −−−−→ Ck −−−−→ 0 −−−−→ 0y y y
ClS,T ClS 0y y

0 0
Applying the snake lemma to this diagram, we obtain an exact sequence

0 −→ US,T −→ US −→
∏
v∈T

F×v −→ ClS,T −→ ClS −→ 0.

Since hS = |ClS |, it follows that

|ClS,T | = hS ·
∏
v∈T (Nv − 1)
(US : US,T )

.

Therefore h = |ClS,T |, as desired.
Now, let K/k be a finite Galois extension with the Galois group G.

We define UK,S,T , JK,S,T , CK,S,T , etc. similarly as above. Then, taking
H ·(G,−) of the exact sequence

(19) 0 −−−−→ UK,S,T
α−−−−→ JK,S,T

β−−−−→ CK,S,T −−−−→ 0

of G-modules, we obtain the long exact sequence
(20)

0 −−−−→ US,T
α0−−−−→ JS,T

β0−−−−→ CK,S,T
G

−−−−→ H1(G,UK,S,T ) α1−−−−→ H1(G, JK,S,T )
β1−−−−→ H1(G,CK,S,T )

−−−−→ H2(G,UK,S,T ) α2−−−−→ H2(G, JK,S,T )
β2−−−−→ H2(G,CK,S,T )

−−−−→ · · · .
The next formula will play a key role in the proof of Theorem 4.2.
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Theorem 7.1. Suppose G is cyclic. Then∣∣ClK,S,T G∣∣ = h|Coker(α2)|
|G|

.

Proof. Since H1(G,CK) = 0, taking cohomology of the short exact se-
quence

0 −→ CK,S,T −→ CK −→ ClK,S,T −→ 0
yields the exact sequence

0 −→ CK,S,T
G −→ CGK −→ ClK,S,T

G −→ H1(G,CK,S,T ) −→ 0.

Noticing that CGK = Ck, we obtain

(21) |ClK,S,T G| = |H1(G,CK,S,T )| · |Ck/CK,S,T G|.
For any G-module M , let Q(M) denote the Herbrand quotient:

Q(M) =
|H2(G,M)|
|H1(G,M)|

.

From the exact sequence (20) we deduce that

(22)
Q(JK,S,T )
Q(UK,S,T )

· |H1(G,CK,S,T )| = |CK,S,T G/CS,T | · |Coker(α2)|.

By class field theory we know that Q(CK) = |G|. Moreover, we have
Q(ClK,S,T ) = 1 since ClK,S,T is a finite group. Therefore, from the exact
sequence

0 −→ CK,S,T −→ CK −→ ClK,S,T −→ 0
we obtain Q(CK,S,T ) = |G|. Since Q(JK,S,T ) = Q(UK,S,T )Q(CK,S,T ), it
follows that Q(JK,S,T )/Q(UK,S,T ) = |G|. Therefore by (22) we have

|H1(G,CK,S,T )| =
|CK,S,T G/CS,T | · |Coker(α2)|

|G|
.

Substituting this into (21), we obtain

|ClK,S,T G| =
|Ck/CK,S,T G| · |CK,S,T G/CS,T | · |Coker(α2)|

|G|

=
|Ck/CS,T | · |Coker(α2)|

|G|
.

Since |Ck/CS,T | = |ClS,T | = h, this proves the theorem. �

Remark 7.2. If S is the set of archimedean places S∞ and T = ∅, then h
is the usual class number hk of k and Theorem 7.1 reduces to a well known
formula for the ambiguous class number for the cyclic extension K/k:

(23) |ClKG| =
hke(K/k)

|G|(Ek : NK/kK× ∩ Ek)
,
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where hk = |Clk|, e(K/k) and Ek denote the class number of k, the product
of ramification indices in K/k of the places of k and the unit group of k,
respectively. For this formula we refer the reader to [12, Lemma 4.1]. We
should also remark that Federer [8] obtained a similar formula for |ClK,SG|
when S is arbitrary. Thus our formula may be viewed as a generalization of
those formulae. To see that (23) is a special case of Theorem 7.1, it suffices
to prove the formula

(24) |Coker(α2)| =
e(K/k)

(Ek : NK/kK× ∩ Ek)
in the case of S = S∞, T = ∅. To prove this note that

H2(G, JK,S∞) ∼=
∏
v

O×
v /NKw/kv

(O×
w ) ∼=

∏
v

Z/evZ,

where v runs through the places of k. Hence |H2(G, JK,S∞)| = e(K/k).
Moreover, we have H2(G,UK,S∞) ∼= Ek/NK/kEK , where EK = UK,S∞ is
the unit group of K. Therefore (24) follows if we prove the formula

Ker(α2) =
NK/kK

× ∩ Ek
NK/kEK

.

But this is an easy consequence of the Hasse’s norm theorem asserting the
injectivity of the natural map

k×/NK/kK
× −→

∏
v

k×v /NKw/kv
K×
w .

8. Cohomological interpretation of λ

Throughout this section we will assume that (K/k, S, T ) is an admissible
data such that G = Gal(K/k) is a finite cyclic extension. In Section 1 we
have defined λ to be a map from US,T to G⊗XS . However, in order to give
a cohomological interpretation of λ, it seems natural to replace the target
group G⊗XS with a subgroup XG,S defined below. To begin with, we let

YG,S =
⊕
v∈S

Gv.

We will regard YG,S as a subgroup of G ⊗ YS via the natural injection
sending (. . . , gv, . . .)v∈S to

∑
v∈S gv ⊗ v. Next we define a subgroup XG,S

of YG,S by the exact sequence

0 −→ XG,S −→ YG,S −→ DS −→ 0,

where DS is the subgroup of G generated by Gv for all v ∈ S and the map
YG,S −→ DS is defined by sending (. . . , gv, . . .)v∈S to

∏
v∈S gv. Then the

image of λ is contained in XG,S . We will hereafter regard λ as a map

λ : US,T −→ XG,S .
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For example Coker(λ) will stand for the quotient group XG,S/Im(λ).
We now wish to reveal a connection between the Gross regulator map

λ and the (S, T )-ambiguous class number formula (Theorem 7.1). To this
end, we start with studying H2(G, JK,S,T ). For each place v of k, choose,
once and for all, a place w of K lying above v. Then by Schapiro’s lemma
we have an isomorphism

(25) H2(G, JK) ∼=
⊕
v

H2(Gv,K×
w ),

where v runs through the places of k. Let

prS : H2(G, JK) −→
⊕
v∈S

H2(Gv,K×
w ).

be the projection to the S-part in the right hand side of (25). Similarly we
have an isomorphism

H2(G, JK,S,T ) ∼=
⊕
v∈S

H2(Gv,K×
w )⊕

⊕
v∈T

H2(Gv,O×
w,1)⊕

⊕
v 6∈S∪T

H2(Gv,O×
w ).

Lemma 8.1. Both H2(Gv,O×
w ) and H2(Gv,O×

w,1) vanish whenever v 6∈ S.

Proof. First, for any v we have H2(Gv,O×
w ) ∼= Z/evZ, where ev denotes the

ramification index of v in the extension K/k. Therefore, if v 6∈ S, then K/k
is unramified at v, and so H2(Gv,O×

w ) = 0. Next, to see that H2(Gv,O×
w,1)

also vanishes for any v 6∈ S, we consider the long exact sequence

(26) · · · −→ H1(Gv,F×w) −→ H2(Gv,O×
w,1) −→ H2(Gv,O×

w ) −→ · · ·
obtained from the short exact sequence

0 −→ O×
w,1 −→ O×

w −→ F×w −→ 0.

By Hilbert’s theorem 90 we have H1(Gv,F×w) = 0. From this and (26) it
follows that H2(Gv,O×

w,1) = 0 for any v 6∈ S. This completes the proof. �

By this lemma we may view H2(G, JK,S,T ) as a subgroup of H2(G, JK).
Thus, restricting the map prS to H2(G, JK,S,T ), we obtain an isomorphism

prS : H2(G, JK,S,T ) −→
⊕
v∈S

H2(Gv,K×
w ).

Recall that the local invariant map

invv : H2(Gv,K×
w ) −→ 1

|Gv|
Z/Z

is an isomorphism for any place v. Let

YG,S =
⊕
v∈S

1
|Gv|

Z/Z.
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Then the map

invS := (⊕v∈S invv) ◦ prS : H2(G, JK,S,T ) −→ YG,S

is an isomorphism. In order to study the image of Im(α2) ⊆ H2(G, JK,S,T )
under the map invS , let

s : YG,S −→ Q/Z, (. . . , yv, . . .)v∈S 7→
∑
v∈S

yv

be the summation map. If we denote by DS the subgroup of G generated
by Gv for all v ∈ S, then Im(s) = 1

|DS |Z/Z. We define XG,S by the exact
sequence

(27) 0 −−−−→ XG,S −−−−→ YG,S
s−−−−→ 1

|DS |Z/Z −−−−→ 0.

Lemma 8.2. invS(Im(α2)) ⊆ XG,S.

Proof. By class field theory we have an isomorphism

invK/k : H2(G,CK) −→ 1
|G|

Z/Z.

Let invK/k,S : H2(G,CK,S,T ) −→ 1
|G|Z/Z be the composite map of invS and

the natural map H2(G,CK,S,T ) −→ H2(G,CK). Then we have a commu-
tative diagram

H2(G,UK,S,T ) α2−−−−→ H2(G, JK,S,T )
β2−−−−→ H2(G,CK,S,T )yinvS

yinvK/k,S

0 −−−−→ XG,S −−−−→ YG,S
s−−−−→ 1

|G|Z/Z,

from which the assertion of the lemma follows. �

Now, the connecting homomorphism

δ : Hom(G,Q/Z) −→ H2(G,Z)

obtained from the short exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0.

is an isomorphism since H i(G,Q) = 0 for i > 0. For any G-module M we
consider the cup product

∪ : H0(G,M)×H2(G,Z) −→ H2(G,M).

Choose and fix a faithful additive character ψ ∈ Hom(G,Q/Z) of G. Then
δ(ψ) ∈ H2(G,Z) defines an homomorphism

∪δ(ψ) : MG = H0(G,M) −→ H2(G,M), x 7→ x ∪ δ(ψ).

Lemma 8.3. If M is torsion free, then the map ∪δ(ψ) is surjective.
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Proof. By [18, Chap. IX, §8, Theorem 14], the cup product

Ĥ0(G,M)×H2(G,Z) −→ H2(G,M)

is a non-degenerate pairing. Since H2(G,Z) is a cyclic group generated by
δ(ψ), this induces an isomorphism Ĥ0(G,M) ∼= H2(G,M). Therefore the
composite map

∪δ(ψ) : MG � Ĥ0(G,M)
∼=−→ H2(G,M)

is also surjective. �

We define a map
µψ : US,T −→ XG,S

to be the composite map

US,T
∪δ(ψ)−−−−→ H2(G,UK,S,T ) invS◦α2−−−−−→ XG,S .

Since ψ is a faithful additive character of G, it induces an isomorphism
Gv ∼= 1

|Gv |Z/Z for any v ∈ S. We denote the map

YG,S −→ YG,S , (. . . , gv, . . .)v∈S 7→ (. . . , ψ(gv), . . .)v∈S

by the same notation ψ. Clearly this map is also an isomorphism.

Proposition 8.4. Notation being as above, we have

ψ ◦ λ = µψ.

In particular, we have |Coker(λ)| = |Coker(µψ)|.

Proof. For each v ∈ S we denote by

µv : US,T −→
1
|Gv|

Z/Z

the v-component of the map µψ. Similarly let

αi,v : H i(G,UK,S,T ) αi−−−−→ H i(G, JK,S,T )
prv−−−−→ H i(G,K×

w )

be the v-component of the map αi. Then we have a commutative diagram

(28)

US,T
α0,v−−−−→ k×v

rv−−−−→ Gvy∪δ(ψ)

y∪δ(ψ)

yψ
H2(G,UK,S,T ) −−−−→

α2,v

H2(Gv,K×
w ) −−−−→

invv

1
|Gv |Z/Z.

Indeed, the left square commutes by the functorial property of the cup
product. The right square commutes by [18, Chap. XI, §3, Proposition 2].
Let

rS = ⊕v∈Srv : JS,T
prS−−−−→

⊕
v∈S k

×
v

⊕
v∈S rv−−−−−→ YG,S .
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Then λ = rS ◦ α0. From (28) we obtain a commutative diagram

US,T
α0−−−−→ JS,T

rS−−−−→ YG,Sy∪δ(ψ)

y∪δ(ψ)

yψ
H2(G,UK,S,T ) −−−−→

α2

H2(Gv, JK,S,T ) −−−−→
invS

YG,S .

It follows that µψ = invS ◦ α2 ◦ ∪δ(ψ) = ψ ◦ rS ◦ α0 = ψ ◦ λ. This proves
the proposition. �

The following proposition, which is a corollary of Theorem 7.1, will be
useful when we relate θG with hRG.

Proposition 8.5. Notation being as above, we have

|(ClK,S,T )G| = h|Coker(λ)|
|G/DS |

.

Proof. Since UK,S,T is torsion-free, the map

∪δ(ψ) : US,T −→ H2(G,UK,S,T )

is surjective by Lemma 8.3. Thus we have a commutative diagram

US,T
α2◦∪δ(ψ)−−−−−−→ H2(G, JK,S,T ) −−−−→ Coker(α2) −−−−→ 0

λ

y ∼=
yinvS

0 −−−−→ XG,S −−−−→ YG,S −−−−→ 1
|DS |Z/Z −−−−→ 0.

From this we obtain an exact sequence

0 −→ Coker(λ) −→ Coker(α2) −→
1

|DS |
Z/Z −→ 0.

Hence

|Coker(α2)| = |DS | · |Coker(λ)|.

Substituting this into the right hand side of the formula in Theorem 7.1,
we obtain the desired equality∣∣(ClK,S,T )G

∣∣ = h|DS ||Coker(λ)|
|G|

.

This proves the proposition. �
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9. Proof of Theorem 3.3

In this section we will prove the following theorem which is equivalent
to Theorem 3.3 under the assumption that m0 = 0 and mn = m − 1 (see
Corollary 5.5).

Theorem 9.1. Assume that G is a cyclic l-group and m0 = 0,mn = m−1.
Then there exists an integer c prime to l such that

θG ≡ c · hRG (mod IGIG(S1)).

We start with the following theorem, which is a counter part of Theorem
5.1.

Theorem 9.2. Assume that G is a cyclic l-group and mn = m− 1. Then
the following assertions hold.

(i) If m0 > 0, then hRG ≡ 0 (mod IGIG(S1)).
(ii) If m0 = 0, then hRG ≡ 0 (mod IGIG(S1)) if and only if |ClK,S,T G| ≡

0 (mod l).

Before begining the proof of this theorem we will prove the following
lemma, which I learned from Lee and is stated in [14, §4] without proof.

Lemma 9.3. Notation and assumptions being as above, the (S, T )-class
number h is divisible by lm0.

Proof. Let M be the subextension of K/k such that [M : k] = lm0 . Then
every place in S splits completely in M . Let S(M) denote the set of places
of M lying above a place in S. Let 〈S〉 and 〈S(M)〉 be the subgroup of Clk
and ClM generated by the prime ideals in S and S(M) respectively. Then
we have a commutative diagram

0 −−−−→ 〈S(M)〉 −−−−→ ClM −−−−→ ClM,S −−−−→ 0yNM/k

yNM/k

yNM/k

0 −−−−→ 〈S〉 −−−−→ Clk −−−−→ Clk,S −−−−→ 0,
where NM/k denotes the norm map. Since every place in S splits completely
in M , the left vertical map is surjective. Therefore we have an isomorphism

Clk/NM/k(ClM ) ∼= Clk,S/NM/k(ClM,S)

Since M/k is unramified, Clk/NM/k(ClM ) (and hence Clk,S/NM/k(ClM,S))
is isomorphic to Z/lm0Z. This, in particular, implies that |Clk,S | is divisible
by lm0 . Since h is a multiple of |Clk,S |, it follows that h is also divisible by
lm0 . �

Proof of Theorem 9.1. Suppose first that m0 > 0. Then h ≡ 0 (mod l)
by Lemma 9.3. But, since IG(S1)/IGIG(S1) ∼= Z/lZ, this implies that
hRG ≡ 0 (mod IGIG(S1)). This proves (i).
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To prove (ii), let σvi a generator of Gvi . First we will prove that there
exists an integer c prime to |G| such that

(29) RG ≡ c · |Coker(λ)| ·
n∏
i=1

(σvi − 1) (mod IGIG(S1)).

To prove this, define n2 integers aij by rvi(uj) = σ
aij
vi . Since the map

US,T → IG(vi)/IGIG(vi) sending u 7→ rv(u) − 1 (mod IG(v)2) is a homo-
morphism, we have

(30) RG ≡ det(aij) ·
n∏
i=1

(σvi − 1) (mod IGIG(S1)).

On the other hand we have a congruence

(31) det(aij) ≡ c · |Coker(λ)| (mod l)

with an integer c prime to l. Then (29) follows from (30) and (31) .
Now, combining Proposition 8.4 with (29), we obtain a congruence rela-

tion

(32) RG ≡ c · |Coker(λ)| ·
∏
v∈S1

(σv − 1) (mod IGIG(S1)).

Note that DS = G since we are assuming that m0 = 0. It then follows
from Proposition 8.5 that |ClK,S,T G| = h|Coker(λ)|. From this and (32) we
deduce that

hRG ≡ c · |ClK,S,T G| ·
∏
v∈S1

(σv − 1) (mod IGIG(S1)).

Therefore, hK,S,TRG belongs to IGIG(S1) if and only if |ClK,S,T G| ≡ 0
(mod l). This proves (ii). 2

We would like to prove Theorem 3.3 by relating Theorem 9.2 to Theorem
5.1. For this end we will prove two lemmas.

Lemma 9.4. Let G be a cyclic l-group and A a finite abelian G-module.
Let H be the subgroup of G with |H| = l, and put ν =

∑
h∈H h ∈ Z[G].

Then the following conditions are equivalent.
(i) |A| ≡ 0 (mod l).
(ii) |AG| ≡ 0 (mod l).
(iii) |Ker(ν : A −→ A)| ≡ 0 (mod l).

Proof. Clearly it suffices to show the lemma in the case where A is an
l-group. Both implications (ii)⇒(i) and (iii)⇒(i) are trivial. To prove
the converse implications, assume that (i) holds, namely A 6= 0. This, in
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particular, means that the multiplication-by-l map on A is not injective.
Let σ be a generator of G. Then we have an identity

(33) (σ − 1)|G| = −
|G|−1∑
i=1

(
|G|
i

)
(ρ− 1)i.

Since G is an l-group, we have
(|G|
i

)
≡ 0 (mod l) for any integer i with

0 < i < |G|. It follows from (33) that the map σ − 1 : A → A is not
injective. This means that AG 6= 0, hence (i)⇒(ii).

To prove the implication (i)⇒(iii), note that we have an identity

ν2 = lν.

This implies that the map ν : A → A is not injective, or equivalently,
Ker(ν : A −→ A) 6= 0. This proves (iii), completing the proof. �

Lemma 9.5. Let M be the intermediate field of K/k such that |S(M)| =
|S(K)|. If UK,S,T is torsion-free, then the natural map ClM,S,T → ClK,S,T
is injective.

Proof. Let H = Gal(K/M). First we show that H1(H,UK,S,T ) = 0. For
this end note that UK,S,T = UM,S,T by Lemma 5.2. Therefore

H1(H,UK,S,T ) = H1(H,UM,S,T ) = Hom(H,UM,S,T ).

The last group is trivial since H is a finite group and UM,S,T (⊆ UK,S,T )
is torsion-free, so H1(H,UK,S,T ) = 0. Thus, taking H ·(H,−) of the exact
sequence (19), we obtain an exact sequence

(34) 0 −−−−→ UM,S,T −−−−→ JM,S,T −−−−→ CK,S,T
H −−−−→ 0.

This implies that CM,S,T
∼= CK,S,T

H .
Now, consider the commutative diagram

0 −−−−→ CM,S,T −−−−→ CM −−−−→ ClM,S,T −−−−→ 0y y y
0 −−−−→ CK,S,T

H −−−−→ CK
H −−−−→ ClK,S,T

H ,

where the vertical maps are natural maps. It is well known that the middle
vertical map CM → CK

H is an isomorphism. By what we have shown
above, the left vertical map CM,S,T → CHK,S,T is also an isomorphism. As a
consequence the right vertical map ClM,S,T → ClK,S,T

H is injective, hence
the map ClM,S,T → ClK,S,T is also injective. �

Proof of Theorem 3.3. One can easily see that Conjecture 3.2 for the data
(K/k, S, T ) implies the conjecture for any data (K/k, S′, T ) with S′ ⊃ S.
Therefore we have only to prove Theorem 3.3 in the case where S is the
union of the places ramifying in K and the archemidean places. If m0 > 0,
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then Theorem 4.2 becomes the trivial congruence 0 ≡ 0 (mod IGIG(S1))
by Theorem 5.1,(i) and Theorem 9.2,(i). Suppose m0 = 0. In this case, by
Theorem 5.1,(ii) and Theorem 9.2,(ii), Theorem 4.2 reduces to the equiva-
lence ∣∣∣(ClK,S,T )G

∣∣∣ ≡ 0 (mod l) ⇐⇒ h∗K,S,T ≡ 0 (mod l).

To show this, let ν = 1 + ρ + · · · + ρl−1 ∈ Z[G] and NK/F the norm map
from K to F . Since ClF,S,T → ClK,S,T is injective by Lemma 9.5, we have

Ker(ν : ClK,S,T −→ ClK,S,T ) = Ker(NK/F : ClK,S,T −→ ClF,S,T ).

Therefore, in view of Lemma 9.4, we have only to show the equality

(35) h∗K,S,T = |Ker(NK/F : ClK,S,T −→ ClK,S,T )|.
First, consider the commutative diagram

(36)

ClK −−−−→ ClK,SyNK/F

yNK/F

ClF −−−−→ ClF,S ,

where the both horizontal maps are surjective and the vertical maps are
norm maps. Since every finite place of S ramifies completely in K/F , the
norm map NK/F : ClK → ClF is surjective. Therefore (36) shows that the
norm map NK/F : ClK,S → ClF,S is also surjective.

Next, consider the commutative diagram∏
w∈T (K) F×w −−−−→ ClK,S,T −−−−→ ClK,S −−−−→ 0y yNK/F

yNK/F∏
v∈T (F ) F×v −−−−→ ClF,S,T −−−−→ ClF,S −−−−→ 0,

where the left vertical map is the norm map, and is surjective. The right
vertical map is also surjective as we have seen above. Therefore the middle
vertical map is also surjective. It follows that

|Ker(NK/F : ClK,S,T −→ ClF,S,T )| =
|ClK,S,T |
|ClF,S,T |

= h∗K,S,T .

Thus (35) holds, as desired. 2

10. The Gross conjecture for abelian extensions over Q

As a consequence of Corollary 4.4 we can give a proof of the Gross
conjecture for abelian extensions of Q which simplifies our previous one [1].

Theorem 10.1. If k = Q, then Conjecture 2.1 is true, that is, the congru-
ence

θG ≡ hdetG(λ) (mod In+1
G )
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holds for any admissible data (K/Q, S, T ).

Actually we will prove this in a more general setting. To state it we need
some notation. Let G be a finite abelian group such that

(37) G = G1 × · · · ×Gr,

where G1, . . . , Gr are non-trivial cyclic groups of prime power order. Then
r = r(G) is independent of the decomposition. Fix a number field k. If
K/k is a finite abelian extension, we denote by Sram(K/k) the set of places
of k which ramify in K and by S∞ the archimedean places of k. Define two
integers r(K/k) and n(K/k) by

r(K/k) = r(Gal(K/k)), n(K/k) = |Sram(K/k) ∪ S∞| − 1.

Let Kk be the set of finite abelian extensions K/k such that r(K/k) ≥
n(K/k). If K/k ∈ Kk, then we put

δ(K/k) = (n(K/k), r(K/k)− n(K/k)) ∈ Z2
≥0,

where Z≥0 denotes the set of non-negative integers.

Theorem 10.2. If K/k ∈ Kk, then Conjecture 2.1 is true for any admis-
sible data (K/k, S, T ).

Proof. We consider the lexicographic order on the set Z2
≥0. Thus for any

(a, b), (a′, b′) ∈ Z2
≥0, we have (a, b) > (a′, b′) if and only if either a > a′

or a = a′ and b > b′. Clearly the minimal element of Z2
≥0 is (0, 0). We

will prove Conjecture 2.1 for any admissible data (K/k, Sram∪S∞, T ) with
K/k ∈ Kk by induction on δ(K/k). If δ(K/k) = (0, 0), then Conjecture
2.1 is true as we have remarked in Proposition 2.2. Suppose δ(K/k) =
(n, r−n) > (0, 0) and assume that the conjecture holds for any K ′/k ∈ Kk
with δ(K ′/k) < δ(K/k). Let G = Gal(K/k). In the decomposition (37),
for each i = 1, . . . , r, we let

πi : Z[G] −→ Z[G/Gi]

be the ring-homomorphism induced from the natural surjections πi : G →
G/Gi. If we set Ki = KGi , then Ki/k ∈ Kk and δ(Ki/k) < δ(K/k) for all
i. By the inductive hypothesis we have

πi(θG − hdetG(λ)) ≡ θG/Gi
− hdetG/Gi

(λ) ≡ 0 (mod In+1
G/Gi

)

for all i.
Here we need a lemma.

Lemma 10.3. Let σi be a generator of Gi. Then
r⋂
i=1

π−1
i

(
In+1
G/Gi

)
= (σ1 − 1) · · · (σr − 1)Z[G] + In+1

G
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Proof. We use Darmon’s trick ([6, §8]). For any α =
∑

σ∈G cσσ ∈ Z[G], we
consider the element

α′ =
∑
σ

cσ(σ1 − 1) · · · (σr − 1) ∈ (σ1 − 1) · · · (σr − 1)Z[G],

where for each σ ∈ G we write σ = σ1 · · ·σr with σi ∈ Gi according as
the decomposition (37) of G. For each subset J of {1, . . . , r}, we regard
GJ =

∏
j∈J Gj as a subgroup of G and let

πJ : Z[G] −→ Z[G/GJ ]

be the natural surjection. Then we have

(38) α′ =
∑

J⊆{1,...,r}

(−1)|J |iJ(πJ(α)),

where iJ : Z[G/GJ ] −→ Z[G] denotes the injection induced by the inclusion
map G/GJ ↪→ G. Clearly we have iJ(In+1

G/GJ
) ⊆ In+1

G . Now, suppose

πi(α) ∈ In+1
G/Gi

for all i = 1, . . . , r. Then πJ(α) ∈ In+1
G/GJ

for any non-empty
J . Therefore (38) shows that

α = α′ −
∑

∅6=J⊆{1,...,r}

(−1)|J |iJ(πJ(α)) ∈ (σ1 − 1) · · · (σr − 1)Z[G] + In+1
G .

This proves the inclusion
r⋂
i=1

π−1
i

(
In+1
G/Gi

)
⊆ (σ1 − 1) · · · (σr − 1)Z[G] + In+1

G .

Since the converse inclusion is clear, the lemma holds. �

By this lemma, we have

θG − hdetG(λ) ∈ (σ1 − 1) · · · (σr − 1)Z[G] + In+1
G .

If r > n, then this shows that θG ≡ hdetG(λ) (mod In+1
G ). Suppose r = n.

Then there exists an integer a such that

(39) θG − hdetG(λ) ≡ a(σ1 − 1) · · · (σn − 1) (mod In+1
G ).

Let ϕ : G → Γ be the maximal cyclic quotient of G such that ϕ(σi) = γ
for all i, where γ is a generator of Γ. Then |Γ| = GCD(|G1|, . . . , |Gn|). By
Corollary 3.4 we know that

ϕ(θG − hdetG(λ)) ≡ θΓ − hdetΓ(λ) ≡ 0 (mod In+1
Γ ).

Since ϕ((σ1 − 1) · · · (σn − 1)) = (γ − 1)n, this shows that

a(γ − 1)n ≡ 0 (mod In+1
Γ ).
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Note that (γ − 1)n is a generator of the quotient group InΓ/I
n+1
Γ

∼= Z/|Γ|Z,
this shows that a ≡ 0 (mod |Γ|). Thus, if we show that

(40) |Γ|(σ1 − 1) · · · (σn − 1) ≡ 0 (mod In+1
G ),

then (39) proves that Conjecture 2.1 holds for (K/k, Sram, T ). To show
(40) note that there exist integers a1, . . . , an such that

a1|G1|+ · · ·+ an|Gn| = |Γ|

since |Γ| = GCD(|G1|, . . . , |Gn|). Then the fact |Gi|(σi − 1) ∈ I2
G proves

(40), as desired. The proof of Theorem 10.2 is now complete. �

Proof of Theorem 10.1. It suffices to prove Conjecture 2.1 for any admissible
data (Q(ζm)/Q, Sm, T ) for all positive integers m, where ζm is a primitive
m-th root of unity and Sm = {∞} ∪ {primes dividing m}. By Theorem
10.2 we have only to show that Q(ζm) ∈ KQ. Let m = m1 · · ·mn be the
decomposition of m into the product of prime powers with GCD(mi,mj) =
1 (i 6= j) and let Gi = Gal(Q(ζmi)/Q). Then

G ∼= G1 × · · · ×Gn.

Note that if we regard Gi as a subgroup of G, then Gi coincides with the
inertia group of the prime dividing mi. Thus Q(ζm) ∈ KQ, as desired. 2
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