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Constructing elliptic curves over finite fields using

double eta-quotients

par Andreas ENGE et Reinhard SCHERTZ

Résumé. Nous examinons une classe de fonctions modulaires
pour Γ0(N) dont les valeurs engendrent des corps de classes
d’anneaux d’ordres quadratiques imaginaires. Nous nous en ser-
vons pour développer un nouvel algorithme de construction de
courbes elliptiques à multiplication complexe. Vu que le genre des
X0(N) associées n’est pas zéro, le calcul de la courbe se fait à
l’aide de certains polynômes modulaires.

Étant un produit de quatre fonctions η, les fonctions modu-
laires proposées peuvent être vues comme une généralisation na-
turelle des fonctions traitées par Weber et généralement utilisées
pour construire des courbes elliptiques à multiplication complexes.
Contrairement au cas des fonctions de Weber, les valeurs des fonc-
tions examinées ici engendrent tous les corps de classes d’anneaux
de n’importe quel ordre quadratique imaginaire sans tenir compte
des congruences satisfaites par leur discriminant modulo des puis-
sances de 2 ou 3.

Abstract. We examine a class of modular functions for Γ0(N)
whose values generate ring class fields of imaginary quadratic or-
ders. This fact leads to a new algorithm for constructing elliptic
curves with complex multiplication. The difficulties arising when
the genus of X0(N) is not zero are overcome by computing certain
modular polynomials.

Being a product of four η-functions, the proposed modular func-
tions can be viewed as a natural generalisation of the functions ex-
amined by Weber and usually employed to construct CM-curves.
Unlike the Weber functions, the values of the examined functions
generate any ring class field of an imaginary quadratic order re-
gardless of the congruences modulo powers of 2 and 3 satisfied by
the discriminant.

Manuscrit reçu le 8 avril 2003.
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1. Introduction

Over the past decades, elliptic curves over finite fields have become an
important ingredient for different number theoretic algorithms. They are
used, for instance, to construct secure public key cryptosystems [17, 21],
factor integers [20] or prove the primality of an integer [13, 1]. For at
least two of these applications it is necessary to construct curves whose
orders satisfy certain constraints. The order of an elliptic curve suitable for
cryptography must have a large prime factor to exploit to the maximum
the security potential of the key space. To show that an integer q is prime,
one may construct an elliptic curve over Z/qZ and a point on the curve of
order larger than ( 4

√
q + 1)2 and recursively show that this order is prime.

The theory of complex multiplication yields an attractive approach to
the construction of elliptic curves with a suitable number of points over a
finite field. It allows to first determine the relevant parameters and then
to tailor the elliptic curve to one’s needs. Furthermore, it can be used
to construct many non-isomorphic (albeit isogenous) curves at the same
time. For obtaining the curves it is necessary to explicitly determine the
ring class field of an imaginary-quadratic order. Classically, this involves
singular values of certain modular functions, whose minimal polynomials
have to be computed during the algorithm. A nice feature of the functions
described in the literature is that they generate a rational extension of
the field C(j) of modular functions for the full modular group. Thus, it
is easy to deduce the j-invariant of the curve and finally the curve itself.
On the other hand, some of these functions lead to minimal polynomials
with prohibitively large coefficients, which limits their applicability to small
discriminants. Others are suited for discriminants of a special type only.
In particular, the commonly employed Weber functions cannot be used
directly for discriminants divisible by 96 or congruent to 5 modulo 8.

In this article, we propose a new family of modular functions whose singu-
lar values allow to construct the ring class field of any imaginary-quadratic
order, thus permitting a unified approach regardless of the discriminant.
Moreover, their associated class polynomials have comparatively small co-
efficients and can thus be computed in a reasonable amount of time. In
Section 2, we give a concise introduction to the theory of complex multipli-
cation and the algorithms proposed in the literature, before presenting our
alternative modular functions in Section 3. In general, these functions do
not generate a rational function field over C(j) any more. Hence the actual
computation of the j-invariant corresponding to a singular value of a such
a function (and thus of the complex multiplication curve itself) becomes
a problem. In Section 4, we propose a solution by factoring the modular
polynomial relating our functions and j. We conclude by presenting a few
examples in Section 5.
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2. Complex multiplication

2.1. Orders, class fields, and curves. Complex multiplication of el-
liptic curves is the study of their endomorphism rings, which turn out to
be orders in imaginary-quadratic number fields. We introduce the nota-
tion used throughout this article and recall a few basic facts; for a more
comprehensive account of quadratic orders, see [2, Chapter 2.7] or [3].

Let d < 0 be a fundamental discriminant, D = f2d and K = Q(
√
d)

the imaginary-quadratic field of discriminant d. Denote by O1 its maximal
order and by Of the order of discriminantD and conductor f . The elements
of the ideal class group Hf of the order Of are conveniently (for the sake
of computations) represented by quadratic forms: to the ideal a = [α1, α2]
of Of we associate its basis quotient α = α1

α2
, where we suppose that the

numbering is such that α ∈ H = {z ∈ C : =(z) > 0}. In turn, α is the root
of a primitive quadratic form [A,B,C] = AX2 + BX + C of discriminant
D, that is, A > 0, gcd(A,B,C) = 1 and D = B2 − 4AC. The hf = h(D)
elements of Hf are in bijective correspondence with certain quadratic forms
of discriminant D, called reduced, which are easily enumerated.

Concerning elliptic curves, the standard reference is [26], a more elemen-
tary (and far less comprehensive) introductory book is [7].

Over the complex numbers, the endomorphism ring of an ordinary elliptic
curve is either Z or an imaginary quadratic order Of ; in the latter case,
the curve is said to have complex multiplication by Of or D. There are
exactly h(D) isomorphism classes of such curves. They are characterised
by their j-invariant being a singular value of the absolute modular invariant
j, that is, a value j(α) where α is the root of a primitive quadratic form
of discriminant D, or equivalently the basis quotient of a proper ideal of
Of . The singular values of j have the algebraic property that they generate
the ring class field Kf over K = Q(

√
d). By class field theory, the Galois

group of Kf/K is canonically isomorphic to Hf : if j(a) is the singular value
associated to the ideal a, then the automorphism σ(b) corresponding to an
ideal class b acts on Kf by j(a)σ(b) = j(ab−1).

Ordinary elliptic curves over finite fields Fq have necessarily complex
multiplication by some imaginary-quadratic order Of . Deuring’s lifting and
reduction theorem [5, p. 202–203] states that any such curve is obtained as
the reduction of an elliptic curve over C with complex multiplication by Of

(so that in fact the complex curve is defined over Kf ). More precisely, if
q = pm with p prime, then p splits in Of as p = pp, and p is of order m in
Hf . By class field theory, the ideals above p in the ring of integers of Kf

are of inertia degree m, and the curve over Fq is obtained by reducing a
complex multiplication curve over Kf modulo a prime ideal above p. The
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order of p being m implies that q = pm can be written as

4q = u2 + |D|v2 with u, v ∈ Z.

If D 6∈ {−3,−4}, then the number of Fq-rational points on the reduced
curve is given by q + 1 + u or q + 1− u.

2.2. Classical complex multiplication constructions. The results
mentioned in the previous section imply a conceptually simple way of
constructing elliptic curves with complex multiplication. For a suitable
combination of q = pm and D, compute the minimal polynomial HD[j],
called the class polynomial, of a singular value of j as follows: enumerate
a system [Ai, Bi, Ci], i = 1, . . . , h(D), of reduced quadratic forms of dis-
criminant D and compute complex approximations of the singular values
j(αi) = j

(
−Bi+

√
D

2Ai

)
and of the class polynomial

HD[j](X) =
h(D)∏
i=1

(X − j(αi)).

In fact, HD[j] has rational integral coefficients, and if the complex ap-
proximations are sufficiently accurate, the coefficients can be obtained by
rounding. Over Fq, this polynomial splits completely, and its roots j are
precisely the j-invariants of the elliptic curves over Fq with complex multi-
plication by D. An elliptic curve equation is then given by simple formulae
(which we provide for D 6= {−3,−4}):

• If char Fq = 2, let E : Y 2 +XY = X3 + j
−1
.

• If char Fq = 3, let E : Y 2 = X3 − j|F|/3X2 + 1.
• If char Fq ≥ 5, let c = j

1728−j
, and E : Y 2 = X3 + 3cX + 2c.

Any elliptic curve with j-invariant j is then isomorphic over Fq either to E
or to its quadratic twist.

Unfortunately, the coefficients of HD[j] grow very fast with D. Consider
the logarithmic height of HD[j], i.e. the logarithm of the largest absolute
value of its coefficients. Obviously, the conjugates j(αi) have to be approx-
imated to a precision of at least this height so that the coefficients may
be rounded properly. In practice, it suffices to increase the accuracy by
only a few digits to account for numerical errors. Thus, the time needed
to determine HD[j] is closely correlated to its height, and it is desirable to
devise equivalent polynomials with smaller coefficients which may play the
role of class equations. In order to not loose the elliptic curves out of sight,
it appears hereby reasonable to remain close to j, and thus to the ring class
field Kf generated by the singular values of j. This motivates the following
definition, cf. [27].
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Definition. Let w be a non-constant modular function and α the root
of a primitive quadratic form of discriminant D = f2d. If the singular
value w(α) lies in the ring class field Kf , we call it a class invariant for D.
The characteristic polynomial HD[w] of the singular value with respect to
Kf/K is called a class polynomial.

A few such modular functions have been investigated in the literature
[27, 1, 19, 24], all of which are suited only for specific types of discriminants.

Denote by q = e2πiz the Fourier transform of a complex variable z, and
let q1/24 = e(2πiz)/24. We introduce Dedekind’s η–function [4]

η(z) = q1/24
∞∏

n=1

(1−qn) = q1/24

(
1 +

∞∑
n=1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

))
.

The simple η quotients are given by

w`(z) =
η(z/`)
η(z)

for some integer ` (often chosen as a prime). Weber examined the function
f1 = w2 and the further functions f and f2, obtained in a similar fashion
as a quotient of η by applying a modular transformation of level 2 and

normalising suitably: f = e−πi/24 η( z+1
2 )

η(z) and f2 =
√

2 η(2z)
η(z) . Certain powers

of these functions turn out to be class invariants for some discriminants D,
where the main constraint is that 2 be not inert in Q(

√
D). The exact

exponents depend on the congruences of D satisfied modulo powers of 2
and modulo 3; for modern proofs, see [24].

These results have been generalised to powers of w` for primes ` such
that ` − 1|24, see [1], under essentially the same condition that ` be not
inert in Q(

√
D).

Hence there are discriminants for which this finite family of functions is
not suited. Moreover, the higher the additional exponent, the larger the
height of the class polynomial, see [8]. Thus even in cases where these
functions are actually class invariants, they need not be a good choice from
a computational point of view.

3. Double η quotients as class invariants

In this section, we examine a class of functions that can be seen as a
natural generalisation of the simple η quotients as described in the previous
section. Being defined for an infinite combination of parameter values, they
yield invariants for any discriminant. For two prime numbers p1 and p2,
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define the double η quotient of level N = p1p2 by

wp1,p2(z) =
wp1(z)

wp1(z/p2)
=

wp2(z)
wp2(z/p1)

=
η
(

z
p1

)
η
(

z
p2

)
η(z)η

(
z

p1p2

) .
Here we do not exclude the cases that p1 = p2 or that p1, p2 ∈ {2, 3}.
In fact, letting p1 = p2 = 2 shows an interesting connection to Weber’s
functions: the well-known identity ff1f2 =

√
2, already proved in [16],

implies that

f
(z

2

)
=

η
(

z
2

)2
η(z)η

(
z
4

) = w2,2(z).

Let s = 24/ gcd(24, (p1 − 1)(p2 − 1)) be the integer measuring how far
(p1 − 1)(p2 − 1) is from being divisible by 24. Then the functions we are
interested in are the ws

p1,p2
. (We mention that an infinite family of class

invariants may also be obtained from simple η quotients of arbitrary level,
as examined in [9].)

As can be seen by examining the behaviour of η under unimodular trans-

formations, ws
p1,p2

is a modular function for Γ0(N) =
{(

a b
c d

)
∈ Γ : N |b

}
,

see [22]. Furthermore, it is invariant under the Fricke–Atkin–Lehner invo-
lution of level N by [10], Theorem 2, and an element of FN , the field of
modular functions of level N whose q-expansions at any cusp lie in the
N -th cyclotomic field, by Theorem 7 of [10].

Our first aim is to determine under which conditions the singular values
of ws

p1,p2
lie in the ring class fieldKf , which places them close to the singular

values of j. In Section 4, we discuss how to obtain the corresponding elliptic
curves with complex multiplication by Of . The properties of ws

p1,p2
allow

to apply the following result, which is Theorem 4 of [24].

Theorem 3.1. Let w ∈ FN be a modular function for Γ0(N) such that
w(z) and w

(−1
z

)
have rational q-expansions. Let D < 0 be a quadratic

discriminant. Assume that there is a quadratic form [A1, B1, C1] = A1X
2+

B1X +C1 of discriminant B2
1 − 4A1C1 = D such that gcd(A1, N) = 1 and

N |C1, and let α1 be its root in H. If α1 is not a pole of w, then w(α1) ∈ Kf .
The conjugates of w(α1) under Gal(Kf/K) are given by the w(αi), where

αi varies over the roots in H of an N -system for D, that is a complete
system of inequivalent quadratic forms [Ai, Bi, Ci] of discriminant D such
that

(3.1) gcd(Ai, N) = 1 and Bi ≡ B1 (mod 2N).
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It is not difficult to show that an N -system can always be obtained
effectively by applying unimodular transformations to any system of re-
presentatives of the class group (cf. [24], Proposition 3). Notice also that
(3.1) implies the divisibility by N of all the Ci.

Theorem 3.2. Let D = f2d with d < 0 a fundamental discriminant,
N = p1p2 with p1, p2 prime, satisfying furthermore the following condition:

• If p1 6= p2, then
(

D
p1

)
,
(

D
p2

)
6= −1;

• if p1 = p2 = p, then either
(
D
p

)
= 1 or p|f .

Then there is a primitive quadratic form [A1, B1, C1] of discriminant D
with gcd(A1, N) = 1 and N |C1. Let α1 be its root in H. The singular value
ws

p1,p2
(α1) lies in Kf . The conjugates of ws

p1,p2
(α1) are the ws

p1,p2
(αi),

where the αi vary over the roots of an N -system as defined in Theorem 3.1.

Proof. The existence of the quadratic form [A1, B1, C1] amounts to the
existence of B1 such that 4N |D − B2

1 , which can readily be shown to be
equivalent to the given conditions on p1 and p2.

The remaining assertions are a direct consequence of Theorem 3.1. The
main point we have not yet verified is the rationality of the different q-
expansions. For ws

p1,p2
itself this follows directly from the rationality of

the q-expansion of η. The invariance of ws
p1,p2

under the Fricke–Atkin–
Lehner involution z 7→ −N

z associated to Γ0(N) implies that ws
p1,p2

(
−1

z

)
=

ws
p1,p2

(Nz), which clearly has a rational q-expansion. Finally, as η has
neither zeroes nor poles in H, also ws

p1,p2
has no poles in H. �

Remark. It can be shown that depending on the congruences satisfied by
D modulo 12, lower powers of wp1,p2 may yield singular values in the ring

class field. Indeed, Satz 4 of [23] states that (γ2γ3)
(p1−1)(p2−1)

4 wp1,p2 has
singular values in Kf if N is coprime to 6f . Depending on D modulo 12,
the singular values of γ2 and γ3 may lie in Kf themselves, so the same
holds already for wp1,p2 . We do not pursue this issue any further here, as
the incurred technicalities would rather obscure the following discussions.

The singular values of ws
p1,p2

are algebraic integers and in many cases
even units, for which there is a simple proof in the case p1 6= p2.

Theorem 3.3. Under the conditions of Theorem 3.2, the number ws
p1,p2

(α1)
is an algebraic integer. If p1 6= p2, or p1 = p2 = p and

(
D
p

)
= 1, then they

are units.

Proof. Consider the modular polynomial Φp1,p2 relating ws
p1,p2

and j; this is

the monic polynomial Φp1,p2(X, j) of degree ψ(N) = N
∏

p|N, p prime

(
1 + 1

p

)
in X such that Φp1,p2(w

s
p1,p2

, j) = 0. It is shown in Theorem 7 of [10] that
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Φp1,p2 is an element of Z[j,X]. Specialising in the singular values yields
that Φp1,p2(X, j(α1)) is a monic polynomial with coefficients in Z[j(α1)]
and with ws

p1,p2
(α1) as a root. As j(α1) is an algebraic integer, this implies

that also ws
p1,p2

(α1) is an integer.
For p1 6= p2, Theorem 9 of [10] states that the constant coefficient of

Φp1,p2 is 1. Hence, the specialised reciprocal polynomial Φ∗p1,p2
(X, j(α1))

is monic with root
(
ws

p1,p2
(α1)

)−1 and with integral coefficients, so that
ws

p1,p2
(α1) is indeed a unit.

If p1 = p2 = p, then the constant coefficient of the modular polynomial
is a proper power of p, so that the preceding argument does not apply. In
this case, the prime ideal decomposition of the singular values given in [6],
§ 22, provides a proof. �

The previous two theorems yield a simple algorithm to compute the class
polynomial HD[ws

p1,p2
] of ws

p1,p2
(α1). The algorithm consists of enumerat-

ing an N -system, computing complex approximations of the conjugates
ws

p1,p2
(αi) and of HD[ws

p1,p2
](X) =

∏h(D)
i=1

(
X −ws

p1,p2
(αi)

)
= Xh(D) +∑h(D)−1

i=0 aiXi. The coefficients ai are elements of the principal order O1,
and choosing an integral basis [1, ω] of O1 and separating the real and the
imaginary parts of the ai allows to recognise them as algebraic integers.

The following theorem shows that under mild additional constraints,
this algorithm can be simplified, since the class polynomials are actually
elements of Z[X]. So the conjugates are either real or come in complex-
conjugate pairs, which saves about half of the work, as only one conjugate
in each pair needs to be computed.

Theorem 3.4. Under the assumptions of Theorem 3.1, suppose further-
more that w is invariant under the Fricke–Atkin–Lehner involution, that
is, w

(
−1

z

)
= w(Nz) for z ∈ H. Assume that C1 = N . Denote by ai =[

Ai,
−Bi+

√
D

2

]
Z

the ideal corresponding to the quadratic form [Ai, Bi, Ci]. If

aial is equivalent to a1, then w(αi) = w(αl). In particular, HD[w] ∈ Q[X].

Proof. Denote the complex conjugation by κ. We consider first the special
case i = 1 with N = C1 = B2

1−D
4A1

and l = 0, where α0 is defined as the

basis quotient of a0 = Of =
[
1, −B1+

√
D

2

]
. Since w(z) is supposed to have a

rational q-expansion, i.e. it can be written as a Laurent series with rational
coefficients in q1/n = e2πiz/n for some n ∈ N, and since (q1/n)κ = e2πi(−z)/n,



Constructing elliptic curves over finite fields 563

we have w(z)κ = w(−zκ). Now

w(α1) = w

(
−B1 +

√
D

2A1

)
= w

(
B2

1 −D

2A1(−B1 −
√
D)

)

= w

(
2N

−B1 −
√
D

)
= w

(
B1 +

√
D

2

)
= w

(
−B1 +

√
D

2

)κ

= w(α0)κ.

Let now ai and al be arbitrary. We are going to use the action of Gal(Kf/Q)
on the singular values of w to reduce this case to the previously considered
one. For a proper ideal a =

[
A, −B+

√
D

2

]
Z

of Of we have

j(a)κ = j

(
−B +

√
D

2

)κ

= j

(
B +

√
D

2

)
= j(a−1) ∈ Kf ,

so κ is an automorphism of Kf/Q.
If b is a second proper ideal of Of , then

j(a)κσ(b)κ = j(a−1)σ(b)κ = j(a−1b−1)κ = j(ab) = j(a)σ(b−1).

Since Kf = Q(
√
D, j(a)), we have Gal(Kf/Q) = 〈κ〉nσ(Hf ) with κσ(b)κ =

σ(b−1).
Notice that w(αi) = w(α0)σ(a−1

i ) (cf. the proof of Theorem 7 in [24],
used for the proof of Theorem 3.1), whence

w(αi) = w(α0)σ(a−1
i ) = w(α1)κσ(a−1

i ) = w(α0)σ(a−1
1 )κσ(a−1

i )

= w(α0)σ(a−1
1 ai)κ

= w(α0)σ(a−1
l ) since a−1

1 ai is in the same class as a−1
l

= w(αl)κ.

�

Corollary 3.1. With the notations of Theorem 3.2, suppose that the fol-
lowing conditions hold:

• If p1 6= p2, then
(

D
p1

)
,
(

D
p2

)
6= −1, and p1, p2 - f ;

• if p1 = p2 = p 6= 2, then
(
D
p

)
= 1 or p|f ;

• if p1 = p2 = 2, then
(
D
2

)
= 1, or 2|f , but D 6≡ 4 (mod 32).

Then there is a primitive quadratic form [A1, B1, C1] of discriminant D
with gcd(A1, N) = 1 and C1 = N . The assertions of Theorem 3.2 hold,
and the class polynomial HD[ws

p1,p2
](X) is an element of Z[X]. If ∼ denotes
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equivalence of ideals, the class polynomial can be computed as∏
i:a2

i∼a1

(
X −ws

p1,p2
(αi)

) ∏
i:aial(i)∼a1, l(i)>i

(
X2 − Tr(ws

p1,p2
(αi))X + N(ws

p1,p2
(αi))

)
,

where Tr resp. N denote the complex trace resp. norm.

Proof. For p1 6= p2, the existence of the quadratic form with C1 = N is
equivalent to the existence of B1 such that p1, p2 ‖

D−B2
1

4 . For p1 = p2, it is

equivalent to the existence of B1 such that N ‖ D−B2
1

4 . It is readily verified
that this situation is captured by exactly the conditions of the corollary.
The assertion now follows directly from Theorem 3.4. �

Remark. The additional constraint of the corollary in the case p1 = p2 =
2, when compared to Theorem 3.2, is in fact no serious restriction: If D ≡ 4
(mod 32), then f = 2 and

(
d
2

)
= 1. One may then use the double η quotient

for the fundamental discriminant d to construct the Hilbert class field K1,
which in this special case equals the ring class field K2 associated to D.

4. Retrieving j

As observed in the previous sections, an elliptic curve over a finite field F
having complex multiplication by the discriminantD = df2 can be obtained
via the ring class field Kf . Using some class invariant w, the approach
consists of computing the class polynomial HD[w] as an element of Z[X]
or O1[X] and of reducing it modulo the characteristic of F. If F has been
chosen such that the desired complex multiplication curve exists, then the
reduced class polynomial splits completely over F, and one determines a
root w. Writing down an explicit equation for the elliptic curve is now
equivalent to determining the corresponding value j of its j-invariant, cf.
the formulae in Section 2.2.

In the classical case where w is one of the Weber functions, this task
is easily accomplished: there is a rational expression for j in terms of w,
with coefficients in Z, so that reducing to F yields a rational expression
for j in terms of w. However, this approach can only be possible when
the associated modular curve is of genus zero. This is the case for the
Weber functions, which are functions on X0(2). A rational expression still
exists for the simple η-quotients w` with ` ∈ {3, 4, 5, 7, 9, 13, 25}. All other
modular curves X0(N) are not rational, whence there is no possibility of ob-
taining j directly. For ws

p1,p2
of level 4, 9 or 25, moreover, the function field

extension C(ws
p1,p2

, j)/C(ws
p1,p2

) is of degree 2; otherwise said, C(ws
p1,p2

) is
not a rational model for the function field of X0(N).

However, in any case ws
p1,p2

and j are still related by the modular poly-
nomial Φp1,p2(X, j) ∈ Z[X, j], which already played a role in the proof
of Theorem 3.3, and which is studied more thoroughly in [10]. Here, it
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suffices to recall that Φp1,p2(X, j) is a polynomial in Z[X, j] such that
Φp1,p2(w

s
p1,p2

, j) = 0. Hence, the desired value j is among the roots of
Φp1,p2(w, J) in F.

In general, there will be several roots j1, . . . , jk leading to several elliptic
curves E1, . . . , Ek (and their quadratic twists), and it remains to test which
of them has complex multiplication by D. As the cardinality of the target
curve is known, a quick check consists of taking a random point on each
curve and testing whether it has torsion by this cardinality. This test will
rule out most (in particular the quadratic twists), but not necessarily all of
the candidates.

In certain applications (construction of elliptic curve cryptosystems, el-
liptic curve primality proving), one is not necessarily interested in the com-
plex multiplication discriminant itself, but rather in the curve having a
point of large, known prime order, which can be checked easily. In the case
that 4|F| = u2 + |D|v2 with v 6= 1, one might then end up with a curve
having complex multiplication by Df2

1 with f1|v and f1 6= 1; if one has
started with D = df2 of non-trivial conductor f , one might also end up
with complex multiplication by D/g2 for some g|f . Unfortunately, v 6= 1
happens systematically for D ≡ 1 (mod 8) and |F| odd, where 2|v and the
curves with complex multiplication by D and by 4D have the same cardi-
nality. If one wants to be sure to have complex multiplication by the given
discriminant, one needs to use Kohel’s algorithm [18, 12] for computing the
exact endomorphism rings of the constructed curves.

Of course, the approach sketched here for deriving the j-invariant and
thus the complex multiplication curve from a root of some class polynomial
is not limited to ws

p1,p2
: it can be used for w` or any other class invariant

whose modular polynomial is an element of Z[X, j].

5. Examples and discussion

We implemented the computation of ring class fields and elliptic curves
over prime fields via double η-quotients in C, using gmp, mpfr and mpc
for the computation of class polynomials and ntl for their factorisation
[14, 15, 11, 25]. For more details and implementational tricks, see [8].

As a first small example, computable “by hand”, consider D = −23 with
h(D) = 3, p1 = 3 and p2 = 13. Let q be the smallest prime larger than
1000 such that the resulting curve over Fq has order C = cQ with Q prime
and c ∈ {1, 2, 3, 4}. Then q = 1117 and C = 1084 = 4 · 271.

A (partial) 39-system is given by [1,−61, 936], leading to the pair of com-
plex conjugates 0.87±0.75i, and [2,−61, 468], leading to the real conjugate
−0.75. Hence, the class polynomial is H−23[w3,13] = X3 −X2 + 1. A root
modulo q is given by 176. The modular polynomial Φ3,13 is of degree 2
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in j, see [10], and its specialisation has the two roots 946 and 88; an el-
liptic curve with j-invariant 946 and 1084 points over F1117 is obtained as
E : Y 2 = X3 + 455X + 1048.

For larger examples, it is useful to know the required precision for the
complex approximations. This precision depends essentially on the largest
coefficient of the computed class polynomial. The logarithm of its absolute
value is the logarithmic height of the polynomial. An estimate for the height
is provided in [8]. For HD[j], the heuristic estimate is π

√
|D|
∑ 1

A , where
the sum is taken over all reduced quadratic forms [A,B,C] of discrimi-
nant D. For other class invariants, the height is proved to asymptotically
change by a constant factor, given by the quotient of the degrees of the
modular polynomial in the different variables, degj(Φ(X,j))

degX(Φ(X,j)) . In our case, by
Theorem 9 of [10], the factor is

s(p1 − 1)(p2 − 1)
12(p1 + 1)(p2 + 1)

for p1 6= p2 and
s(p− 1)2

12p(p+ 1)
for p1 = p2 = p,

which is always smaller than 1. Its smallest value 1/28 is obtained for w3,13.
The size of this factor allows to set up a hierarchy of class invariants, ordered
corresponding to the precision required to carry out the computations and
thus ultimately according to the efficiency of the computations.

Providing an example of cryptographic size, let D = −78641219 with
h(D) = 5000, and let q be the smallest 192-bit prime leading to an elliptic
curve with a prime number of points. Then

q = 3138550867693340381917894711603833208051177722232404395593,

and the cardinality is

3138550867693340381917894711662857589240094253422590322543.

We may choose p1 = 3 and p2 = 61. Using the above estimate for the height
of the class polynomial (and adding a few bits to allow for rounding errors),
we compute all approximations to complex numbers with a precision of
14793 bits. In fact, the largest coefficient of the class polynomial turns out
to have 13050 bits.

On an Athlon 64 with 2.4 GHz, the timings for the different steps of the
curve computation are as follows:

0.3 s for the class group and an N -system
94 s for the conjugates
58 s to derive the minimal polynomial from the conjugates
29 s for the root w modulo p
0.1 s for factoring Φ3,61(w, j) and constructing the curve

While the degree of the modular polynomial Φ3,61 in j is 10 by Theorem 9
of [10], actually only 2 of its roots are elements of Fq. An elliptic curve over
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Fq having complex multiplication by D is given by the j-invariant

j = 61214882069988307097880578764793561824854404286016498206

and finally the curve equation E : Y 2 = X3 + aX + b with

a = 3115836233330800492041622286815602160980719047690489875548
b = 2016651797253760621691021725108451981799256233015221196912
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Bordeaux 14(1) (2002), 325–343.

[25] Victor Shoup, ntl — a library for doing number theory. Version 5.3.2, available from
http://www.shoup.net/ntl/.

[26] Joseph H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1986.

[27] Heinrich Weber, Lehrbuch der Algebra, volume 3. Chelsea Publishing Company, New York,

3rd edition, 1908.

Andreas Enge
INRIA Futurs & LIX (CNRS/UMR 7161)
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