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On the existence of Minkowski units in totally

real cyclic fields

par Frantǐsek MARKO

Résumé. Soit K un corps de nombres cyclique réel de degré n
qui est le produit de deux nombres premiers distincts et tel que
le nombre de classes du n-ième corps cyclotomique soit égal à 1.
Nous établissons certaines conditions nécessaires et suffisantes
pour l’existence d’une unité de Minkowski pour K.

Abstract. Let K be a totally real cyclic number field of degree
n that is the product of two distinct primes and such that the
class number of the n-th cyclotomic field equals 1. We derive
certain necessary and sufficient conditions for the existence of a
Minkowski unit for K.

1. Introduction

The main result (Theorem II.1) of [1] states a necessary and sufficient
condition for the existence of the Minkowski unit in the totally real cyclic
fields of degree pn. These conditions are of an inductive nature as they
relate the existence of the Minkowski unit in such a field Kn to the ex-
istence of the Minkowski unit in the subfield Kn−1. Additional necessary
conditions are the isomorphism of the factor-group of units EKn/EKn−1

and the group Z[ζpn ] of integers of the pn-th cyclotomic field together with
the surjectivity of the norm map from Kn to Kn−1 on units modulo {±1}.
For the sufficient conditions it is necessary to know the Minkowski unit of
Kn−1 and the generator of EKn/EKn−1 over Z[ζpn ]. The relationship be-
tween these generators is then described using a coordinate element from
Z[ζpn ]. If the coordinate element can be represented by a unit of a certain
ring and the previously mentioned norm map on units is surjective, the
existence of the Minkowski unit follows. This method works best when all
the invertible classes can be covered by units as is the case for the degrees
pn = 4, 8 and 9. For these degrees the existence of the Minkowski unit is
equivalent to the surjectivity of the norm map on units, see [1], Theorem
II.2.

The general idea of local generators and coordinates similar to [1] extends
to totally real cyclic number fields of degree n for which the ring Z[ζn] of



196 Frantǐsek Marko

the integers of the n-th cyclotomic field is a unique factorisation domain.
We treat in detail the case when n is a product of two distinct primes.
Among other results we prove the following statement.

Theorem 1.1. Let K be a totally real cyclic number field of degree n = 6, 10
or 14. Then K contains a Minkowski unit if and only if the norm maps
from K to its subfields are surjective on units.

For precise formulation see Corollary 5.3. This theorem is a generaliza-
tion of Theorem 3 of [3].

2. Notation

Throughout the paper the symbols p, q will denote distinct prime num-
bers, n a positive composite integer, K = Kn a totally real cyclic number
field of degree n over the field Q of rational numbers. Denote by σ a
generator of the Galois group G of K over Q, by Km a subfield of K of
degree m > 1 over Q that is fixed by the subgroup of G generated by σm.
The letters m, l, d will be reserved for divisors of n that are larger than
1, hence they correspond to subfields of K. Let EKm be the group of all
units of the field Km and UKm = EKm/{±1}. Further denote by ϕm(x)
the m-th cyclotomic polynomial, let ζm a primitive m-th root of unity
and put ψm(x) =

∑ n
m

−1

i=0 xim = xn−1
xm−1 =

∏
l|n;l-m ϕl(x), O = Z[x]/(x

n−1
x−1 )

and Om = Z[x]/(ϕm(x)). Note that UK is not only a G-module but an
O-module as well.

A unit u ∈ EKm is called a Minkowski unit of Km if the conjugates of u
generate UKm ; this is equivalent to the Galois module UKm being cyclic.

For an O-module W denote Wm = Wψm(x) and W̃m =
∏
p|mWm

p
and

W̃m = Wm/W̃
m. An O-module W will be called structured if W̃m is

a nontrivial cyclic Om-module for each m|n. Actually W̃m
∼= Om as

O-modules in that case.
The number of isomorphism classes of O-structured modules is denoted

by M(n). We conjecture that each isomorphism class of structured O-
modules contains UK for some number field K. In any case the index
M(n) is an upper bound for the number of isoclasses of structured Galois
modules UK for fields K of degree n.

The function Ω(m) is defined as the sum of the exponents in the prime
factorization of m, i.e. if m =

∏t
i=1 p

ei
i , then Ω(m) =

∑t
i=1 ei. For a

structured module W we say that its element w has length k and write
`(w) = k if w ∈

∏
m;Ω(m)=kWm but w 6∈

∏
m;Ω(m)=k−1Wm.
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3. Coordinates and Galois structure

We start with an observation. Let m =
∏s
k=1 p

ak
k , and put Ak(x) =∏

l|m;l- m
pk

ϕl(x).

Lemma 3.1. The ideal of Z[x] generated by polynomials Ak for k = 1, . . . , s
equals (ϕm(x)).

Proof. Clearly ϕm(x) divides Ak, so write Ak = ϕm(x)gk(x). The polyno-
mials ϕk are all irreducible, and this implies that the polynomials gk are
pairwise relatively prime. Therefore the ideal of Z[x] generated by all gk’s
equals cZ[x] for a certain non-zero c ∈ Z[x]. This shows that the ideal
I generated by the Ak’s is principal, and is generated by cϕm(x). Hence
all coefficients of polynomials lying in I are divisible by c, however the
polynomals Ak are monic, and this forces c to be 1. �

Existence of a Minkowski unit of K implies certain structural properties
of the groups of units of subfields of K.

Proposition 3.2. If K has a Minkowski unit, then NormK/KmUK = UKm
for each subfield Km of K. Moreover, the O-module UKm/

∏
p|m UKm

p
is

isomorphic to Om.

Proof. If K has a Minkowski unit ε, then by [4], Prop.I.3, the Z[G]-module
UK is isomorphic to O, where the generator ε corresponds to 1 and the
conjugation by σ corresponds to multiplication by x. Moreover, in this
case according to [4], Prop.I.4, and its corollary, each subfield Km has a
Minkowski unit and NormK/KmUK = UKm for each subfield Km of K. The
group UKm is isomorphic to ψm(x)O and the factor-group UK/

∏
p|n UKn

p

is isomorphic to O modulo the ideal generated by all ψn
p
(x). Using Lemma

3.1, we get that this factor-group is isomorphic to Z[x]/(ϕn(x)). It is an
immediate consequence of R(m) that the ideal of O generated by all ψm

p
(x)

for all p|m equals (ϕm(x)ψm(x)). Therefore for each m|n the factor-group
UKm/

∏
p|m UKm

p
is isomorphic to Om = Z[x]/(ϕm(x)). �

Corollary 3.3. The O-module O is structured. Moreover, if K has a
Minkowski unit, then U = UK is structured.

Proof. Since UKm = NormK/KmU = Uψm(x) we have UKm = Um for each
m|n. �

For special values of n the Galois module U is structured if the norm
maps on units are surjective (without the assumption about the existence
of the Minkowski unit).

Proposition 3.4. If Z[ζn] is a principal ideal domain and NormK/KmUK
= UKm for each subfield Km of K, then UK is structured.
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Proof. According to [3], UK is isomorphic as a G-module to an ideal M of
the ring O. Assuming that the norm map on units are surjective (that is
NormK/KmUK = UKm for each subfield Km of K) we obtain that Um =
UKm corresponds to module ψm(x)M that is annihilated by

∏
l|n;l-m ϕl(x)

and Ũm is isomorphic to ψm(x)M/(ψm
p
(x)M ; p|m). Lemma 3.1 implies that

ψm(x)M/(ψm
p
(x)M ; p|m) is a module over Z[ζm]. If Z[ζn] is a principal ideal

domain, then so is Z[ζm] and in this case Ũm is a cyclic Z[ζm]-module. The
fact that it is nontrivial follows from the Dirichlet unit theorem. �

From now on assume that an O-module W is structured. Keep in mind
the prominent example of the structured O-module, namely the group UK
of the field K that is given by Proposition 3.4.

Fix and denote by wm an element of Wm whose class represents a gen-
erator of W̃m as an Om-module. Note that each wm can be written as
wm = v

ψm(x)
m where vm ∈ W . Then each w ∈ W can be written uniquely

as a product w =
∏
m|nw

αm(w)
m , where αm(w) is a polynomial from O such

that its degree does not exceed the degree of ϕm(x). The exponents αm(u)
are called coordinates of w.

The elements {wm;m|d} (as well as {vm;m|d}) are generators of W as
an O- module. In order to work with the above factorizations and to
determine the O-structure of W , we will derive conditions describing when∏
m|nw

am(x)
m = 1 for arbritrary polynomials αm(x) from O.

For each wm and each d|m we have w
ψd(x)

ψm(x)
m = v

ψd(x)
m . Denote am,d =

αd(v
ψd(x)
m ). Then am,m = 1 and the collection of all such am,d for d|m; d 6= m

is called the coordinate system of W .

Proposition 3.5. Let am(x);m|n be polynomials in O. Then
∏
m|nw

am(x)
m

= 1 if and only if for all d|n the condition Cd :
∑

d|m|n
n
mam(x)am,d ≡ 0

(mod ϕm(x)) is satisfied.

Proof. We proceed in steps depending on the upper bound for the length
of w =

∏
m|nw

am(x)
m . First, `(w) < Ω(n) if and only if w ∈ W̃n which

is equivalent to an(x) ≡ 0 (mod ϕn(x)) and that is condition Cn. Next
assume that `(w) ≤ k. We are looking for conditions that are equivalent
to `(w) < k. The assumption `(w) ≤ k means that w ∈

∏
l|n;`(l)=kWl, say

w =
∏
l|n;`(l)=k zl with zl ∈Wl. Choose l0|n such that `(l0) = k and consider

wψl0 (x). It is a product of z
ψl0 (x)

l0
and other terms z

ψl0 (x)

l for l 6= l0. Since

each zl = y
ψl(x)
l for some yl ∈W and ψl0(x)ψl(x) ∈ (ψl0(x)ϕl0(x)) for l 6= l0,

each zψlo (x)l belongs to W̃ l0 . Therefore zl0 ∈ W̃ l0 if and only if wψl0 (x) ∈ W̃ l0

which is the same as αl0(w
ψl0 (x)) = 0. Since αl0(w

ψl0 (x)
m ) = n

l0
am,l0 the last
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equality is equivalent to Cl0 . Therefore `(w) < k if and only if all conditions
Cl for `(l) = k are satisfied. Hence u = 1 if and only if all conditions Cd
for d|n are satisfied. �

Although the above conditions Cd do not describe explicitly the Galois
action on wm they provide a means of checking whether the computations
involving Galois action on generators wm are correct.

It is interesting that only the leading exponent am,d in the factorization

of w
ψd(x)

ψm(x)
m with respect to generators wl is needed in the above theorem.

The polynomials am,d are related by various congruences. They vary
depending on the type of decomposition of n into the product of primes
and therefore we will investigate the relationship between am,d separately
for each such type.

In the next sections we will be looking for conditions on a coordinate
system am,d of U that will guarantee the existence of a Minkowski unit in
K. For that purpose we will investigate the relationship between coordinate
systems for various fields of the same degree n.

4. The case n = p2

The main priority in the case n = p2 is not to prove new results but to
explain our method in the simplest nontrivial case, show a connection with
the work of [1], and view and reprove some of their results from a different
perspective. First note that ϕp2(x) ≡ p (mod ϕp(x)).

A structured O-module T is given by a generating set {tp2 , tp} and the

coordinate ap2,p. If t = t
αp2 (t)

p2
t
αp(t)
p , then tψp(x) = t

ap2,pαp2 (t)+pαp(t)
p . Since

Tψp(x) = Tp the congruence ap2,pαp2(t)+pαp(t) ≡ 1 (mod ϕp(x)) must have
a solution which is equivalent to ap2,p being invertible modulo (p, ϕp(x)).

Conversely, if a polynomial ap2,p is invertible modulo (p, ϕp(x)), then
we can define an O-module T̃ generated by {t̃p2 , t̃p} that is structured
and ap2,p is its coordinate. Set T̃ = Op2 ⊕ Op as an abelian group and
t̃p2 = (1, 0), t̃p = (0, 1). A Z[x]-module structure on T̃ is defined as
c(x)(a(x), b(x)) = (f(x), ap2,pe(x) + b(x)c(x)), where e(x) and f(x) are the
quotient and the remainder respectively after the division of the polynomial
a(x)c(x) by ϕp2(x).

Assume now that we have two structured O-modules T and W gene-
rated by {tp2 , tp} and {wp2 , wp} respectively, with coordinates ap2,p and
bp2,p respectively.

We would like to determine when T and W are isomorphic as O-modules.
As a special case, for number fields K and K

′
of degree n = 4, 9 or 25

satisfying NormK/KpUK = UKp and NormK′/K′
p
U

′

K′ = U
′
Kp

this would
allow us to compare Galois structures of UK and UK′ as well as to determine
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whether K has an Minkowski unit (if UK is isomorphic to the structured
module O).

If L : T →W is anO-morphism, then L(Tp) ⊂Wp and therefore L(tp2) =

w
a(x)
p2

w
b(x)
p and L(tp) = w

c(x)
p for some a(x) ∈ O and b(x), c(x) ∈ Op. A

map L defined on generators in the above way is a morphism of O-modules
if tk(x)

p2
t
l(x)
p = 1 for k(x) ∈ O, l(x) ∈ Op implies L(tp2)k(x)L(tp)l(x) = 1.

Proposition 3.5 applied to T shows tk(x)
p2

t
l(x)
p = 1 if and only if

k(x) ≡ 0 (mod ϕp2(x)) and ap2,pk(x) + pl(x) ≡ 0 (mod ϕp(x)).

That means

k(x) = ϕp2(x)k
′
(x) and l(x) ≡ −ap2,pk

′
(x) (mod ϕp(x)).

Use Proposition 3.5 again for W to see that

L(tp2)
k(x)L(tp)l(x) = w

a(x)k(x)
p2

wb(x)k(x)+c(x)l(x)p = 1

if and only if a(x)k(x) ≡ 0 (mod ϕp2(x)) and

bp2,pa(x)k(x) + p(b(x)k(x) + c(x)l(x)) ≡ 0 (mod ϕp(x)).

The first congruence is clearly satisfied and the second one is equivalent to

bp2,pa(x)k
′
(x) + pb(x)k′(x)− c(x)ap2,pk

′
(x) ≡ 0 (mod ϕp(x)).

Since there are no restrictions on the values of k
′
(x) we can choose k

′
(x) = 1

and obtain

bp2,pa(x)− ap2,pc(x) ≡ −pb(x) (mod ϕp(x)).

This congruence gives a necessary and sufficient condition for L to be an
O-morphism from T to W .

Therefore the existence of an O-morphism L from T to W as above is
given by the following congruence:

bp2,pa(x) ≡ ap2,pc(x) (mod (p, ϕp(x))).

If this congruence is satisfied for some a(x), c(x), we can compute b(x) as
required to make L an O-morphism.

Assume now that L as above is an isomorphism. Then L(Tp) = Wp and
since L(tl(x)p ) = w

c(x)l(x)
p , the class of c(x) modulo ϕp(x) must be invertible.

Since L(T ) = W the class of a(x) modulo ϕp2(x) must be invertible as
well. Conversely, we will show that if a(x) is invertible modulo ϕp2(x)
and c(x) is invertible modulo ϕp(x), then L is an isomorphism. Assume
t ∈ Ker(L) and k(x), l(x) are coordinates of t with respect to the generators
{tp2 , tp}. Then L(t) = w

a(x)k(x)
p2

w
b(x)k(x)+c(x)l(x)
p = 1 implies a(x)k(x) ≡ 0

(mod ϕp2(x)) and since the class of a(x) is invertible, we have k(x) = 0.

Therefore L(t) = w
c(x)l(x)
p = 1 and since the class of c(x) is invertible we
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also have l(x) = 0 and thus t = 1. We have established that such map L
is injective. If c(x) is invertible modulo ϕp(x), then clearly L(Tp) = Wp.
If also the class of a(x) modulo ϕp2(x) is invertible, then L also induces a
map onto W̃ = W/Wp and thus L is surjective.

Hence we determined the conditions for an isomorphism between struc-
tured modules.

Proposition 4.1. Let T and W be structured O-modules for n = p2 with
coordinates ap2,p and bp2,p respectively. Then T ∼= W as O-modules if and
only if there is a(x) ∈ O that is invertible modulo ϕp2(x), c(x) ∈ Op that is
invertible modulo ϕp(x) and

bp2,pa(x) ≡ ap2,pc(x) (mod (p, ϕp(x))).

When comparing this result with [1], Theorem II.1, it is worth noting
that the congruence classes there appear as a consequence of a choice of
generators whereas congruence classes here appear because of the require-
ment for morphism.

The above criteria further simplifies for n = p2 = 4, 9 and 25. This is
the case when the class number of Z[ζn] and Z[ζp] equals 1 and hence all
units in these rings are ± cyclotomic units.

If a polynomial is represented by a cyclotomic unit xa−1
x−1 for (a, p) = 1

modulo ϕp2(x), then its class modulo ϕp(x) is also represented by a unit.
Thus if a(x) is represented by a unit modulo ϕp2(x) then a(x) is also repre-
sented by a unit modulo ϕp(x). Therefore the condition of Proposition 4.1
is satisfied if and only if the invertible class of bp2,pa

−1
p2,p

modulo (p, ϕp(x))
is represented by a unit modulo ϕp(x). This also means that if an isomor-
phism of T and W exists, then there is one with a(x) = 1. We have thus
proved the following statement.

Proposition 4.2. If n = p2 = 4, 9 or 25, then structured modules T and W
are isomorphic as O-modules if and only if the invertible class of bp2,pa

−1
p2,p

modulo (p, ϕp(x)) is represented by a unit modulo ϕp(x).

Corollary 4.3. If K is a totally real cyclic number field of degree n = p2 =
4 or 9, then K contains a Minkowski unit if and only if NormK/KpUK =
UKp.

Corollary 4.4. If K is a totally real cyclic number field of degree n = 25
such that NormK/K5

UK = UK5, then K contains a Minkowski unit if and
only if the class of its coordinate b25,5 modulo (5, ϕ5(x)) is represented by a
unit modulo ϕ5(x).

Proof. Assumption NormK/KpUK = UKp implies that T = UK is struc-
tured. Put W = O in the above proposition. Since the coordinate bp2,p = 1
for O, the modules UK and O are isomorphic (meaning a Minkowski unit
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exists for K) if and only if ap2,p modulo (p, ϕp(x)) has a representative that
is a unit modulo ϕp(x). It can be checked easily that every for n = 4, 9,
every invertible class modulo (p, ϕp(x)) satisfies this condition. �

Corollary 4.5. M(25) = 5.

Proof. It can be easily verified that the condition in Corollary 4.4 is true
only for 20 out of 100 invertible classes. �

Therefore there are at most 5 nonisomorphic Galois structures of UK for
fields K of degree n = 25 with NormK/K5

U = UK5 .

5. The case n = pq

We will proceed in the same way as outlined in section 4. First note that
(ϕp(x), ϕq(x)) = 1,ψp(x) = ϕpq(x)ϕq(x) ≡ q (mod ϕp(x)) and ψq(x) =
ϕpq(x)ϕp(x) ≡ p (mod ϕq(x)).

A structured O-module T is given by a generating set {tpq, tp, tq} and
the coordinate system {apq,p, apq,q}. If t = t

αpq(t)
pq t

αp(t)
p t

αq(t)
q , then tψp(x) =

t
apq,pαpq(t)+qαp(t)
p and tψq(x) = t

apq,qαpq(t)+pαq(t)
q . Since Tψp(x) = Tp and

Tψq(x) = Tq the congruences apq,pαpq(t) + qαp(t) ≡ 1 (mod ϕp(x)) and
apq,qαpq(t) + pαq(t) ≡ 1 (mod ϕq(x)) must have solutions which is equiv-
alent to apq,p being invertible modulo (q, ϕp(x)) and apq,q being invertible
modulo (p, ϕp(x)).

Conversely, given a pair {apq,p, apq,q} such that the polynomial apq,p is
invertible modulo (q, ϕp(x)) and the polynomial apq,q is invertible modulo
(p, ϕp(x)), we can define an O-module T̃ generated by {t̃pq, t̃p, t̃q} that
is structured and {apq,p, apq,q} is its coordinate system. Set T̃ = Opq ⊕
Op ⊕ Oq as an abelian group and t̃pq = (1, 0, 0), t̃p = (0, 1, 0), t̃q = (0, 0, 1).
Let γp(x) and γq(x) be polynomials such that ϕp(x)γp(x) + ϕq(x)γq(x) =
1. A Z[x]-module structure on T̃ is defined as d(x)(a(x), b(x), c(x)) =
(f(x), γp(x)apq,pe(x) + b(x)d(x), γq(x)apq,qe(x) + c(x)d(x)), where e(x) and
f(x) are the quotient and the remainder respectively after the division of
the polynomial a(x)d(x) by ϕpq(x).

Assume now that we have two structured O-modules T and W generated
by {tpq, tp, tq} and {wpq, wp, wq} respectively with the coordinate systems
{apq,p, apq,q} and {bpq,p, bpq,q} respectively.

If L : T → W is an O-morphism, then L(Tp) ⊂ Wp and L(Tq) ⊂
Wq and therefore L(tpq) = w

a(x)
pq w

b(x)
p w

c(x)
q , L(tp) = w

d(x)
p and L(tq) =

w
e(x)
q for some a(x) ∈ O, b(x), d(x) ∈ Op and c(x), e(x) ∈ Oq. A map

L defined on generators in the above way is a morphism of O-modules
if tk(x)pq t

l(x)
p t

m(x)
q = 1 for k(x) ∈ O, l(x) ∈ Op and m(x) ∈ Oq implies

L(tpq)k(x)L(tp)l(x)L(tq)m(x) = 1.
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Proposition 3.5 applied to T shows tk(x)pq t
l(x)
p t

m(x)
q = 1 if and only if

k(x) ≡ 0 (mod ϕpq(x)), apq,pk(x) + ql(x) ≡ 0 (mod ϕp(x))

and
apq,qk(x) + pm(x) ≡ 0 (mod ϕq(x)).

That means

k(x) = ϕpq(x)k
′
(x), l(x) ≡ −apq,pk

′
(x) (mod ϕp(x))

and
m(x) ≡ −apq,qk

′
(x) (mod ϕq(x)).

Use Proposition 3.5 again for W to see that

L(tpq)k(x)L(tp)l(x)L(tq)m(x) = wa(x)k(x)pq wb(x)k(x)+d(x)l(x)p wc(x)k(x)+e(x)m(x)
q

= 1 if and only if a(x)k(x) ≡ 0 (mod ϕpq(x)),

bpq,pa(x)k(x) + q(b(x)k(x) + d(x)l(x)) ≡ 0 (mod ϕp(x))
and

bpq,qa(x)k(x) + p(c(x)k(x) + e(x)m(x)) ≡ 0 (mod ϕq(x)).

The first congruence is clearly satisfied and the later ones are equivalent to

bpq,pa(x)k
′
(x) + qb(x)k′(x)− d(x)apq,pk

′
(x) ≡ 0 (mod ϕp(x))

and

bpq,qa(x)k
′
(x) + pc(x)k′(x)− e(x)apq,qk

′
(x) ≡ 0 (mod ϕq(x)).

Since there are no restrictions on the values of k
′
(x) we can choose

k
′
(x) = 1 to verify that both

bpq,pa(x)− apq,pd(x) ≡ −qb(x) (mod ϕp(x))

and
bpq,qa(x)− apq,qe(x) ≡ −pc(x) (mod ϕq(x))

must have solutions. These congruences provide a necessary and sufficient
condition for L to be an O-morphism from T to W .

If the following system of congruences

bpq,pa(x) ≡ apq,pd(x) (mod (q, ϕp(x))

bpq,qa(x) ≡ apq,qe(x) (mod (p, ϕq(x))
has a solution, then we can compute b(x), c(x) as required to make L an
O-morphism.

An element t = t
k(x)
pq t

l(x)
p t

m(x)
q of T is been mapped by L to

wa(x)k(x)pq wb(x)k(x)+d(x)l(x)p wc(x)k(x)+e(x)m(x)
q .
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Assume now that L as above is an isomorphism. Then L(Tp) = Wp and
L(Tq) = Wq and since L(tl(x)p ) = w

d(x)l(x)
p and L(tm(x)

q ) = w
e(x)m(x)
q the

classes of d(x) modulo ϕp(x) and e(x) modulo ϕq(x) must be invertible.
Since L(T ) = W the class of a(x) modulo ϕpq(x) must be invertible as well.
Conversely, we will show that if a(x) is invertible modulo ϕpq(x), d(x) is
invertible modulo ϕp(x) and e(x) is invertible modulo ϕq(x), then L is an
isomorphism. Assume t ∈ Ker(L) and k(x), l(x),m(x) are coordinates of t
with respect to the generators {tpq, tp, tq}. Then

L(t) = wa(x)k(x)pq wb(x)k(x)+d(x)l(x)p wc(x)k(x)+e(x)m(x)
q = 1

implies a(x)k(x) ≡ 0 (mod ϕpq(x)) and since the class of a(x) is inver-
tible, we have k(x) = 0. Therefore L(t) = w

d(x)l(x)
p w

e(x)m(x)
q = 1. Then

(ϕp(x), ϕq(x)) = 1 implies wd(x)l(x)p = 1 and w
e(x)m(x)
q = 1. Since the

classes of d(x) and e(x) are invertible we must have l(x) = 0 and m(x) = 0
hence t = 1. We have established that such map L is injective. If d(x) is
invertible modulo ϕp(x) and e(x) is invertible modulo ϕq(x), then clearly
L(Tp) = Wp and L(Tq) = Wq. If also the class of a(x) modulo ϕpq(x) is
invertible, then L also induces a map onto W̃ = W/WpWq and hence L is
surjective.

Hence we determined the conditions for an isomorphism between struc-
tured modules.

Proposition 5.1. Let T and W be structured O-modules for n = pq with
coordinate systems {apq,p, apq,q} and {bpq,p, bpq,q} respectively. Then T ∼=
W as O-modules if and only if there there is a(x) ∈ O that is invertible
modulo ϕpq(x), d(x) ∈ Op that is invertible modulo ϕp(x), e(x) ∈ Oq that
is invertible modulo ϕq(x) and

bpq,pa(x) ≡ apq,pd(x) (mod (q, ϕp(x))

bpq,qa(x) ≡ apq,qe(x) (mod (p, ϕq(x)).

The above criteria further simplifies when the class number of Z[ζpq]
equals 1 and hence all units in Z[ζpq],Z[ζp] and Z[ζq] are ± cyclotomic
units. This is the case if and only if n = 6, 10, 14, 15, 21, 22, 26, 33, 34, 35 or
38.

We will look first at the case when n = 2p, that is n = 6, 10, 14, 22, 26, 34,
38. If a(x) is invertible modulo ϕ2p(x) then there is polynomial a∗(x) such
that a(x)a∗(x) ≡ 1 (mod ϕ2p(x)). Since ϕ2p(x) = ϕp(−x) it is equivalent
to a(−x)a∗(−x) ≡ 1 (mod ϕp(x)) that is a(−x) is invertible modulo ϕp(x).
But a(x) ≡ a(−x) (mod 2) shows that classes modulo (2, ϕp(x)) repre-
sented by polynomials that are invertible modulo ϕ2p(x) coincide with those
classes modulo (2, ϕp(x)) represented by polynomials invertible modulo
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ϕp(x). We can therefore replace the first congruence of Proposition 5.1
by congruence b2p,pa

−1
2p,p ≡ d

′
(x) (mod (2, ϕp(x)) for a polynomial d

′
(x)

invertible modulo ϕp(x).
How about congruence classes of a(x) modulo (p, x+1) for a(x) invertible

modulo ϕ2p(x)? For p = 3, 5, 11, 13 and 19, the polynomial 1−x is invertible
modulo ϕ2p(x) and 1 − x ≡ 2 (mod x + 1), and since 2 is a primitive
root modulo p, every nonzero class modulo (p, x + 1) is represented by a
polynomial invertible modulo ϕ2p(x). For the remaining cases p = 7 and
17, the polynomial 1−x+x2 is invertible modulo ϕ2p(x) and 1−x+x2 ≡ 3
(mod x+1) and we use the fact that 3 is now a primitive root modulo p to
see that each nonzero class modulo (p, x+1) is represented by a polynomial
invertible modulo ϕ2p(x). We have thus established that we can always
choose a(x) such that the second congruence is satisfied.

We have proved the following proposition.

Proposition 5.2. Let n = 6, 10, 14, 22, 26, 34 or 38. Then the structured
modules T and W are isomorphic as O-modules if and only if the inver-
tible class of b2p,pa−1

2p,p modulo (2, ϕp(x)) can be represented by a polynomial
invertible modulo ϕp(x).

Corollary 5.3. If K is a totally real cyclic number field of degree n = 2p =
6, 10 or 14, then K contains a Minkowski unit if and only if NormK/KpUK
= UKp and NormK/K2

UK = UK2.

Corollary 5.4. If K is a totally real cyclic number field of degree n = 2p =
22, 26, 34 or 38 such that NormK/KpUK = UKp and NormK/K2

UK = UK2,
then K contains a Minkowski unit if and only if the class of its coordinate
b2p,p modulo (2, ϕp(x)) is represented by a unit modulo ϕp(x).

Proof. Assumption of the corollaries imply that T = UK is structured. For
W = O the coordinate system a2p,p = 1, a2p,2 = 1 and the modules UK
and O are isomorphic (meaning Minkowski unit exists for K) if and only
if the invertible class b2p,p modulo (p, ϕp(x)) has a representative that is a
unit modulo ϕp(x). For n = 2p = 6, 10 powers of a cyclotomic unit 1 + x
modulo ϕp(x) cover all nonzero classes modulo (2, ϕp(x)). For n = 2p = 14
the prime 2 has index 2 modulo 7 and hence ϕ7(x) modulo factors into
a product of two irreducible polynomials of degree 3. Therefore there are
49 invertible classes modulo (2, ϕ7(x)) all of which can be represented by
classes that are products of powers of cyclotomic units 1+x and 1+x+x2

modulo ϕ7(x). �

In relation to Corollary 5.4 it is natural to ask how many possible classes
b2p,p modulo (2, ϕp(x)) are represented by units modulo ϕp(x) or better yet
what is the index of classes covered by units modulo ϕp(x) in the subroup
of invertible classes modulo (2, ϕp(x))? This index coincides with M(n) for
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these particular values of n. More generally, according to Proposition 5.1,
the index M(n) equals the index of all coordinate systems {bpq,p, bpq,q} for
which bpq,p is represented by a unit modulo ϕp(x) and bpq,q is represented
by a unit modulo ϕq(x) in the set of all coordinate systems {bpq,p, bpq,q}.

Proposition 5.5. M(22) = 3,M(26) = 5,M(34) = 17,M(38) = 27 and
M(15) = 2,M(21) = 4,M(33) = 44,M(35) = 90.

Proof. The claim can be established for n = 22, 26, 34 and 38 by using
Corollary 5.4 and computing the number of classes modulo (2, ϕp(x)) that
can be covered by units modulo ϕp(x). For the remaining classes n =
15, 21, 33 and 35 we have to use Proposition 5.1. Also, in this case we used
the generators for the n-th cyclotomic units from [2].

The computation of these values was done using the software package
PARI with the help of my undergraduate student Anthony Disabella. �
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