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Galois covers of P1 over Q with prescribed local or

global behavior by specialization

par Bernat PLANS et Núria VILA

Résumé. On considère des versions raffinées du Problème Inverse
de Galois. Nous étudions le comportement local et global des
spécialisations rationnelles de quelques revêtements galoisiens finis
de P1

Q.

Abstract. This paper considers some refined versions of the In-
verse Galois Problem. We study the local or global behavior of
rational specializations of some finite Galois covers of P1

Q.

1. Introduction

The Inverse Galois Problem asks whether, for an arbitrary finite group
G, there exists a Galois extension L/Q with Galois group isomorphic to
G. Such an extension L/Q will be called a G-extension of Q. Usually, this
also means that an isomorphism G ∼= Gal(L/Q) has been fixed. Stronger
versions of the Inverse Galois Problem can be obtained imposing additional
restrictions on the local behavior at finitely many primes. For example, we
may require all primes in a finite set S to be unramified in L/Q. For every
finite solvable group G and every finite set S, it is known that this is always
possible (cf. [13, Thm. 6.2]). Also, following Birch [4], one can require all
ramified primes to be tamely ramified; this is known as the Tame Inverse
Galois Problem.

A natural way to obtain G-extensions of Q is by rational specializa-
tion of Galois covers of P1

Q with Galois group G, by Hilbert’s irreducibility
Theorem. Roughly, the present paper considers “what kind” of G-extensions
of Q arise by specialization of such a cover. More precisely, in Section 2, we
consider various G-covers of P1

Q and we look for rational G-specializations
which satisfy some extra prescribed local conditions at finitely many primes,
such as non-ramification or tameness. The groups we treat comprise, among
others, symmetric and alternating groups, small Mathieu groups and finite
central extensions for all of them. It is known that, for some particu-
lar groups G, there always exist G-covers which admit some specialization
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with “arbitrary” prescribed local behavior at finitely many primes. For
instance, if there exists a generic G-extension over Q (see [24] or [11]), as
for the symmetric group G = Sn, then it suffices to specialize at a line
through two well-chosen points: one giving the prescribed behavior (weak
approximation) and the other one to ensure regularity. Of course, the only
“admissible” local behaviors at a prime p are those corresponding to Ga-
lois extensions of Qp with Galois group contained in G. Even then, given
a finite group G, not every “admissible” local behavior must be globally
realizable, as shown by Wang’s counterexample to Grunwald’s Theorem
(see, for example, [24, Thm. 5.11]).

Most of the covers we treat are obtained by the so-called rigidity method
with three rational branch points, deduced from a rigid triple of rational
conjugacy classes in G (see [14]). At the outset, this means that some local
behaviors cannot occur. Actually, if G is a (centerless) group with more
than 6 elements, then such a cover never admits totally real specializations
(cf. [25]). On the other hand, in this rigid case, it follows from a result
of Beckmann [2] that there are always specializations unramified at an
arbitrary prefixed finite prime p, provided p does not divide the order of
G. However, Birch [4] suggests that specializations of these rigid covers are
likely to be wildly ramified.

In Section 3 we report on some results concerning the existence of
G-covers of P1

Q with a (global) prescribed G-specialization. In other words,
we consider the arithmetic lifting property for G over Q.

Let us briefly introduce the basic terminology.
Let G be a finite group and let XQ be a geometrically irreducible, non-

singular, projective curve over Q. A finite dominant morphism XQ → P1
Q

over Q will be called a G-cover of P1
Q over Q, or simply a G-cover, when-

ever the corresponding function field extension Q(XQ)/Q(T ) is a Galois
extension and an isomorphism G ∼= Gal(Q(XQ)/Q(T )) has been fixed.

The specialization of a G-cover XQ → P1
Q at an unramified rational point

t ∈ P1(Q) will be the field extension Xt/Q, where Xt can be defined as the
compositum of all residue fields of XQ at the points over t. This is a Galois
extension of Q with Galois group isomorphic to some subgroup of G.

Note that, in order to study the ramification at finite primes in number
fields, we will freely make use of Ore’s basic results on Newton polygons
and associated polynomials, which can be found in [20] or [17]. In addition,
we use standard Atlas [1] notations for conjugacy classes of finite groups.

2. Specializations with prescribed local behavior

Let G be a finite group and let XQ → P1
Q be a G-cover. Let p be a

rational prime. The specializations of XQ → P1
Q at two unramified points

t1, t2 ∈ P1(Q) are locally (at p) isomorphic, provided t1 and t2 are p-adically
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close enough. This follows from Krasner’s Lemma (cf. [24, Lemma 5.5]).
Then, since Hilbert’s Irreducibility Theorem is known to be compatible with
the weak approximation Theorem (and also with the strong approximation
Theorem, see [19] or [10]), the next proposition follows.

Proposition 2.1. Let G be a finite group and let XQ → P1
Q be a G-cover

over Q. Let S be a finite set of rational primes (possibly including p =
∞). Assume that, for each p ∈ S, a finite extension Lp/Qp has been fixed
(Q∞ = R). Then, the following properties are equivalent:

(i) For each p ∈ S, there exists tp ∈ P1(Q) such that Lp is isomorphic to
the completion at p of Xtp.

(ii) There exists t ∈ P1(Q) such that Gal(Xt/Q) ∼= G and, for every
p ∈ S, Lp is isomorphic to the completion at p of Xt.

Hence, in order to prove (or disprove) the existence of specializations
with Galois group G and with prescribed local behavior at finitely many
primes, we may look at one prime at a time and we do not have to worry
about the corresponding Galois group.

Let us begin with the symmetric and alternating groups. It is well known
that, if (n, k) = 1, then (nA, 2A,C(k)) is a rigid triple of (rational) conju-
gacy classes of the symmetric group Sn (cf. [28]).

Proposition 2.2. Let k < n be coprime positive integers and let XQ → P1
Q

be an Sn-cover obtained from the rigid triple (nA, 2A,C(k)). Let S be a finite
set of prime numbers. Then, there exist rational points t ∈ P1(Q) such that
the specialized field extension Xt/Q is unramified at S and Gal(Xt/Q) ∼=
Sn.

Proof. We can assume that the branch points are ∞, kk(k−n)n−k

nn , 0. Once
these have been fixed, the Sn-cover of P1

Q is unique (by rigidity). Hence, it
suffices to consider the Galois closure of the following cover (see [26, 8.3.1])

P1
Q → P1

Q , X 7→ Xk(X − 1)n−k,

which has the appropriate ramification description. It is easy to check that
there exist a, b ∈ Z such that no prime in S divides the discriminant of
Xk(X − a)n−k + b. The result then follows from Proposition 2.1. �

Let H ⊂ G be a subgroup of index 2. For every G-cover XQ → P1
Q

with only three branch points, all of them being Q-rational, the fixed field
Q(XQ)H must be purely transcendental over Q. This follows from Riemann-
Hurwitz’s formula (see, for example, [26, Lemma 4.5.1]). One thus obtains
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an H-cover YQ → P1
Q. However, the existence of specializations with some

prescribed local behavior is not necessarily preserved in this process. For
example, we have:

Proposition 2.3. Let k < n be coprime positive integers and assume that
n ≡ 4 (mod 8). Let XQ → P1

Q be an Sn-cover obtained from the rigid triple
(nA, 2A,C(k)) and let YQ → P1

Q be the corresponding An-cover. Then, the
specializations Yt/Q are wildly ramified at p = 2, for every (unramified)
t ∈ P1(Q).

Proof. It suffices to prove that, for every polynomial of type

f(X) := Xk(X − a)n−k + b ∈ Z[X]

with non-zero square discriminant in Q, its splitting field Qf/Q is wildly
ramified at p = 2.

Up to rational squares, the discriminant D(f) of f(X) is ankk(k−n)n−k+
bnn. Since kk(k−n)n−k ≡ 5 (mod 8) and D(f) is a non-zero square integer,
it must be v2(bnn) ≤ v2(an). This allows us to assume that v2(b) < n. Note
that v2(a) ≥ 2.

Let us first consider the case b even. The Newton polygon (at p =
2) of f(X) has only one side in this case, with slope −v2(b)

n . Hence, if
v2(v2(b)) < 2, then p = 2 is wildly ramified in Qf/Q. From now on we
assume v2(v2(b)) ≥ 2. Let θ ∈ Q2 be a n

4 -th root of 2 and let us define

g(X) :=
1

2v2(b)
f(θ

v2(b)
4 X) = Xk

(
X − a

θ
v2(b)

4

)n−k

+
b

2v2(b)
.

Under our present assumptions, it must be v2(bnn)+4 ≤ v2(an). It follows
that

v2

(
a

θ
v2(b)

4

)
> 2 and

b

2v2(b)
≡ 1 (mod 8).

Hence, we obtain that g(X + 1) ≡ (X + 1)n + 1 (mod 4) and the Newton
polygon of g(X + 1) has only one side, with slope −1

4 . Thus, the extension
(Q2(θ))g/Q2 is wildly ramified. Since (Q2(θ))g = Q2(θ) · (Q2)f and the
extension Q2(θ)/Q2 is tamely ramified, we conclude that p = 2 is wildly
ramified in Qf/Q.

Finally, we consider the remaining case b odd. In this case, the con-
gruence f(X + 1) ≡ (X + 1)n + b (mod 4) forces the Newton polygon of
f(X + 1) to be of one of the following types
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Both cases ensure that Qf/Q is wildly ramified at p = 2. �

Remark. An analogous result holds for An-extensions of Q obtained as
splitting fields of degree n trinomials (cf. [23]).

From other suitable An-covers of P1
Q one obtains that, for every n, there

always exist An-extensions of Q unramified at all primes in an arbitrary
prefixed finite set; more restrictive local behaviors can also be forced to
occur (see [12] and [22]). In this direction, the best possible situation
would be that every (admissible) prescribed local behavior at finitely many
primes actually occurs in some An-extension of Q. This Grunwald-Wang
type result for An over Q is known to hold only for n ≤ 5, as a consequence
of an affirmative answer to Noether’s problem for these groups (see [24]
and [11]). For arbitrary n, even though no such an affirmative answer is
known, nor even the existence of a generic An-extension over Q, one can
still obtain partial results such as the following one.

Proposition 2.4. Let n be a positive integer and let S be a finite set of
rational primes. Assume that, for each p ∈ S, a local Galois extension
Lp/Qp has been fixed. If all the Galois groups {Gal(Lp/Qp)}p∈S are em-
beddable in Sn−2, then there exists an An-extension of Q whose completion
at every p ∈ S is isomorphic to Lp/Qp.

Proof. Let An act on the affine n-space An
Q by permutation of coordinates

and let π : An
Q → An

Q/An be the corresponding projection. Mestre [15]
showed that there exists a nonempty Zariski open subset U ⊂ An

Q with the
following property:

For every α = (α1, . . . , αn) ∈ U(Q) such that π(α) is a
Q-rational point, there exists an An-cover CQ → P1

Q whose
specialization at some t ∈ P1(Q) is Ct = Q(α1, . . . , αn).

Since Sn−2 can be embedded into An, every Sn−2-extension of Q can be
obtained as Q(α), for some α ∈ An(Q) such that π(α) is a Q-rational point.
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We can assume, moreover, that α ∈ U(Q) (see, for example, [27, Lemma
4.5]). The result then follows from Proposition 2.1, taking into account
that a Grunwald-Wang type result for the symmetric group Sn−2 over Q
always holds (cf. [24]). �

Remark. The above result obviously also holds if one replaces Sn−2 by a
subgroup G ⊂ An, provided a Grunwald-Wang type result holds for G.

Let us remark that the given proof is based on the fact that, as a conse-
quence of Mestre’s result, the general form of the arithmetic lifting property
for An over Q holds (see Section 3).

We next consider the Mathieu group M22 and its automorphism group
Aut(M22). The situation is formally similar to the first examples of this
section, in the sense that Aut(M22) admits a rigid triple of rational con-
jugacy classes and M22 is a subgroup of index 2 (and Sn = Aut(An), if
n 6= 2, 6). More precisely, (2B, 4C, 11A) is such a triple in Aut(M22) (cf.
[14]).

Proposition 2.5. Let XQ → P1
Q be an Aut(M22)-cover obtained from the

rigid triple (2B, 4C, 11A) and let YQ → P1
Q be the corresponding M22-cover.

Then:
(a) There exist tamely ramified Aut(M22)-specializations Xt/Q. More-

over, one can also require Xt/Q being unramified at all prime num-
bers in an arbitrary prescribed finite set not containing p = 11.

(b) The specializations Yt/Q are wildly ramified at p = 2, for every (un-
ramified) t ∈ P1(Q).

Proof. As above, it suffices to consider a concrete Aut(M22)-cover with the
right ramification type. Following [14] we take the Galois closure of the
cover

P1
Q → P1

Q, X 7→ p(X)4q(X)2

r(X)11
,

where p(X) = 5X4 +34X3− 119X2 +212X − 164, q(X) = 19X3− 12X2 +
28X + 32 and r(X) = X2 −X + 3.

In terms of function fields, we consider the splitting field over Q(T ) of
the polynomial F (T,X) := p(X)4q(X)2 − T · r(X)11 or, equivalently, the
splitting field of the monic polynomial

f(T,X) := a21F

(
T,

X

a

)
∈ Z[X, T ],

where a ∈ Z[T ] is the leading coefficient of F (T,X).
In statement (a), we only have to study the local behavior at p = 2 and

p = 11, since these are the only common prime factors of D(f(2, X)) and
D(f(3, X)).
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The specialization at t = 1 is not ramified at p = 2, since the reduction
modulo 2 of X22f(1, 1

X ) is a (degree 22) separable polynomial in F2[X].
For p = 11, we have that f(114, X) ≡ (X + 9)22 (mod 11) and the

(X + 9)-Newton polygon of f(114, X) has two sides with slopes −3
4 and

−2
3 . In particular, this means that, for every root θ ∈ Q of f(114, X), the

ramification index in Q(θ)/Q at every prime over p = 11 must be divisible
by either 3 or 4. Hence, p = 11 is tamely ramified in Q(θ)/Q, so also in the
splitting field over Q of f(114, X).

In order to obtain statement (b), we will prove that p = 2 is wildly
ramified in the splitting field over Q of f(t, X), for every t ∈ Q such that
the discriminant D(f(t, X)) is a non-zero rational square. It can be checked
that, up to squares in Q(T ), the discriminant of f(T,X) is 11T (222 − T ).
Hence, D(f(t, X)) is a rational square if and only if t = 222

11s2+1
, for some

s ∈ Q. This forces v2(t) ≥ 20. As a consequence, f(t, X) ≡ X14(X − 1)8

(mod 2) and the (X−1)-Newton polygon (p = 2) of f(t, X) must be of one
of the following types

L
L
L
L
L
L
L
L
L
L
LL

L
L
L
L
L
L
L
L
L
L
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L
L
L
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L
L
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L
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A
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A

•20

•
8

•21

•
8

•22

•
8

·
·
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•−11

p
4

•
8

In each of these cases there is a side whose slope has negative 2-adic valua-
tion. Hence, p = 2 must be wildly ramified in the splitting field of f(t, X)
over Q. �

We will now consider the smallest Mathieu groups M11 and M12. The
covers considered below can be found in [14]. The triple (4A, 4A, 10A) in
M12 is known to be rational. Even though it is not rigid in a strict sense,
it also appears as the ramification type of an M12-cover XQ → P1

Q ramified
only at three (non-rational) points. More concretely, one can obtain such
a cover as the Galois closure of the morphism π : P1

Q → P1
Q given by
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X 7→ h(X)
X2 , with

h(X) = X12 + 20.5X11 + 162.52X10 + 3348.52X9 + 35559.52X8

+5832.54X7 − 84564.53X6 − 857304.53X5 + 807003.53X4

+1810836.54X3 − 511758.54X2 + 2125764.54X + 531441.54.

In a natural way, this also defines an M11-cover YQ → P1
Q.

Proposition 2.6. Let XQ → P1
Q be the above M12-cover and let YQ → P1

Q
be the corresponding M11-cover. Then:
(a) There exist tamely ramified M12-specializations Xt/Q. Moreover, one

can also require Xt/Q to be unramified at all prime numbers in an
arbitrary prescribed finite set not containing p = 5.

(b) There exist tamely ramified M11-specializations Yt/Q. Moreover, one
can also require Yt/Q to be unramified at all prime numbers in an
arbitrary prescribed finite set not containing p = 5.

Proof. Rational specializations of the M11-cover YQ → P1
Q are nothing but

specializations of XQ → P1
Q at points in π(P1(Q)). Hence, by Proposition

2.1, statement (a) follows from statement (b).
It suffices to prove that, for every prime number p 6= 5 (resp. p = 5),

there exists t ∈ Q such that the polynomial

f(t, X) := h(X)− h(t)
t2

X2

has non-zero discriminant and splitting field over Q unramified at p (resp.
tamely ramified at p = 5).

The only common prime factors of D(f(1, X)) and D(f(−1, X)) are
p = 2, 3, 5.

Modulo p = 3, the factorization of f(1, X) is

X2(2 + X)(2 + X + X2 + X3)(1 + 2X + X2 + 2X3 + X5 + X6).

The Newton polygon (p = 3) of f(1, X) with respect to (X + 36) has only
one side S, whose first and last points are (0, 12), (2, 0); hence S has integer
slope. The polynomial associated to S is 2 + Y + Y 2 ∈ F3[Y ], so it has no
multiple roots. We conclude that p = 3 does not ramify in the splitting
field of f(1, X) over Q.

Now take p = 5. We have f(1, X) ≡ X2(1 + X)5(4 + X)5 (mod 5).
As we already know that X = 1 is a root of f(1, X), wild ramification at
p = 5 in the splitting field of f(1, X) over Q can only “come” from the
factor (1 + X)5. It follows that there is no wild ramification at all, since
the Newton polygon (p = 5) of f(1, X) with respect to (1 + X) has two
sides (whose slopes are −1 and −1/4).

Finally, we must consider p = 2. In order to prove that 2 does not ramify
when we specialize at t = 1

2 , we define f(X) := 212.f
(

1
2 , X

2

)
∈ Z[X] and
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we note that it has X = 1 as a root. The factorization of f(X) modulo 2 is
X2(1+X)2(1+X +X2 +X3 +X4)2. To finish the proof, we check that the
Newton polygons (p = 2) with respect to (X+26) and (1+X+X2+X3+X4)
are, respectively,

C
C
C
C
C
C
C
C
C
CC
B
B
B
B
B
B
B
B

A
A
A
A
AA
@

@
@

•

•

•

•

•

•
1
p

2

7 −

18

1
p

2

1 −

3

�

From the above results, various finite groups G can be realized as Ga-
lois groups of tamely ramified extensions of Q. Moreover, if such a tame
G-extension of Q gives rise to a solvable finite central embedding problem,
then we can deduce tame realizations over Q for the extension group too.
To do so, we use class field theory in order to obtain these realizations by
suitable twist of an arbitrary solution (cf. [21]). In some cases, we can even
ensure that a realization of this type arises by specialization of a Galois
cover of P1

Q with the same Galois group. Among the groups treated above,
the easiest case corresponds to the Mathieu group M11. It is a perfect (sim-
ple) group with trivial Schur multipliers; therefore its realizations always
give rise to solvable finite central embedding problems.

Proposition 2.7. (cf. [21]) Let G be a finite central extension group of
one of the following groups:

• the symmetric group Sn, n ≥ 5.
• the alternating group An, n ≥ 5.
• the Mathieu groups M11 and M12.
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Then, there exists a G-cover XQ → P1
Q whose specialization at some t ∈

P1(Q) is a tamely ramified G-extension of Q.

Remark. For central extension groups of Sn, one can also require that all
prime numbers in an arbitrary prefixed finite set S do not ramify. From
Proposition 2.6, we can prove the analogous result for M11 and M12, with
the obvious additional hypothesis 5 /∈ S. For central extensions of the
alternating group An, n 6= 6, 7, we have even stronger results, similar to
Proposition 2.4 (following from Proposition 3.2 below).

3. Globally prescribed specializations

Black [6] conjectures that, for every finite group G and every field K, all
G-extensions of K arise by specialization of G-covers of P1

K . This is also
currently known as the Beckmann-Black problem. Whenever this holds for
a pair (G, K), we say that G has the arithmetic lifting property over K.

Dèbes [9] proved that, from an affirmative answer to the Beckmann-Black
problem for a finite group G over every field, it follows that there exists
some G-cover of P1

K for every field K.
The arithmetic lifting property has been proved for the following pairs

(G, K), among others.
• G finite abelian and K a number field (cf. [3]) and, more generally,

K an arbitrary field (cf. [8]).
• G = Sn the symmetric group and K = Q (cf. [3]) and, more generally,

if there exists a generic extension for G over K (cf. [5]).
• G an arbitrary finite group and K a PAC field (cf. [9]) and, more

generally, K a large field (cf. [7], [18]).
• G = PSL2(F7) and K an arbitrary field of characteristic 0 (cf. [16]).

Black [6] also remarked that the alternating group An has the arithmetic
lifting property over every field K of characteristic 0. This follows from
a general construction of An-covers of P1

K given by Mestre [15], as in the
proof of Proposition 2.4. Moreover, Mestre’s An-extensions of K(T ) have
the following remarkable property: given a finite central extension group
G of An, the corresponding embedding problem (over K(T )) has constant
obstruction, provided 3 does not divide the order of the kernel. For almost
every n, An is a perfect group and 3 does not divide the order of its Schur
multipliers. Hence, Mestre’s construction gives a natural starting point
when trying to “lift” the arithmetic lifting property from An to its finite
central extensions. Taking advantage of the fact that, generically, the order
of the Schur multipliers of An is precisely 2, we proved:

Proposition 3.1. (cf. [21]) Let G be a finite central extension group of
An, with n 6= 4, 6, 7. Then, the arithmetic lifting property holds for G over
every field of characteristic 0.
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Most of the above pairs (G, K) even satisfy the following general form of
the arithmetic lifting property: given a subgroup H ⊆ G, every H-extension
of K arises by specialization of a G-cover of P1

K .

Remark. This general form can be rephrased to say that every G-extension
of algebras L/K arises by specialization of a G-cover of P1

K . To do so, one
has to define the specialization of a G-cover XK → P1

K at an unramified
point t ∈ P1(K) merely as the (algebra) extension of K corresponding to
the fiber over t. It is always a Galois extension with group G.

For finite central extension groups of An we have:

Proposition 3.2. (cf. [21]) Let G be a finite central extension group of An,
with n 6= 4, 6, 7. Then, the general form of the arithmetic lifting property
holds for G over every hilbertian field of characteristic 0.

Remark. Note that the general form of the arithmetic lifting property for
G over Q directly leads to partial Grunwald-Wang type results for G over
Q (as in Proposition 2.4).
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Universitat Politècnica de Catalunya

Av. Diagonal, 647
08028 Barcelona, Spain

E-mail : bernat.plans@upc.edu
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