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Résumé. Dans cet article, nous étudions le problème de trou-
ver des groupes finis tels que les formes modulaires associées aux
éléments de ces groupes au moyen de certaines représentations
fidèles appartiennent à des classes particulières de formes modu-
laires (appelées produits η multiplicatifs). Ce problème est ouvert.

Nous trouvons des groupes métacycliques ayant cette propriété
et décrivons les p-sous-groupes de Sylow, p 6= 2, de tels groupes.
Nous donnons également un aperçu des résulats reliant les pro-
duits η multiplicatifs et les éléments d’ordre fini de SL(5, C).

Abstract. In this article we study the problem of finding such
finite groups that the modular forms associated with all elements
of these groups by means of a certain faithful representation be-
long to a special class of modular forms (so-called multiplicative
η−products). This problem is open.

We find metacyclic groups with such property and describe
the Sylow p-subgroups, p 6= 2, for such groups. We also give a
review of the results about the connection between multiplicative
η-products and elements of finite orders in SL(5, C).

1. Introduction.

The investigation of connections between modular forms and represen-
tations of finite groups is an interesting modern aspect of the theory of
modular forms.

In this article we study the problem of finding such finite groups that
the modular forms associated with all elements of these groups by means
of a certain faithful representation belong to a special class of modular
forms (so-called multiplicative η-products). This problem is open: all such
groups have not been found. It will be interesting to find the complete
classification. G.Mason gave an example of such a group: the group M24.
This group is unsolvable and large but it is possible to find groups associated
with multiplicative η-products which are not subgroups in M24. So we have
a non-trivial problem of classification. Also sometimes for the same group
we can find several faithful representations with our property. And it is the
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second aspect of classification. The author has shown that all groups of
order 24 have this property. The representation in this case is the regular
one [17].

The present paper continues the author’s investigations of metacyclic
groups which has been started in the articles [19],[22]. In particular we
have studied completely the case of dihedral groups. We find all metacyclic
groups with such property with genetic code < a, b : am = e, bs = e, b−1ab =
ar > in the case when the cyclic groups < a > and < b > have no nontrivial
intersection.

We consider the groups and their representations in detail and we write
explicitly such representations that the associated modular forms are mul-
tiplicative η-products. Sometimes for the same group we find distinct such
faithful representations.

We use our theorem about such abelian groups which is also formulated.
It was proved in [21]. Also we describe the Sylow p-subgroups, p 6= 2,
for such groups. In conclusion we give a review of the results about the
connection between multiplicative η-products and elements of finite orders
in SL(5, C).

2. Multiplicative η-products.

The Dedekind η-function η(z) is defined by the formula

η(z) = q1/24
∞∏

n=1

(1− qn), q = e2πiz,

z belongs to the upper complex half-plane.
In this article we consider the modular forms which can be completely

described by the following conditions:
1. They are cusp forms of integral weight (with characters);
2. they are eigenforms with respect to all Hecke operators;
3. they have zeroes only in the cusps and every zero has multiplicity 1.
A priori we don’t suppose that these functions are modified products of

Dedekind η-functions. But in fact it is so, there are 28 such functions. It
was proved in [18].

Let us give the complete list.
Forms of the weight 1:

η(23z)η(z), η(22z)η(2z), η(21z)η(3z), η(20z)η(4z),

η(18z)η(6z), η(16z)η(8z), η2(12z).
Forms of the weight 2:

η(15z)η(5z)η(3z)η(z), η(14z)η(7z)η(2z)η(z), η(12z)η(6z)η(4z)η(2z),

η2(11z)η2(z), η2(10z)η2(2z), η2(9z)η2(3z), η2(8z)η2(4z), η4(6z).
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Forms of the weight 3:

η2(8z)η(4z)η(2z)η2(z), η3(7z)η3(z), η3(6z)η3(2z), η6(4z).

Forms of the weight 4:

η4(5z)η4(z), η4(4z)η4(2z), η2(6z)η2(3z)η2(2z)η2(z), η8(3z).

Form of the weight 5: η4(4z)η2(2z)η4(z).
Forms of the weight 6: η6(3z)η6(z), η12(2z).
Form of the weight 8: η8(2z)η8(z).
Form of the weight 12: η24(z).

We add to this list two cusp forms of half-integral weight, η(24z), η3(8z).
These functions we shall call multiplicative η-products because they have

multiplicative Fourier coefficients.
D.Dummit, H.Kisilevskii and J. McKay obtained the same list of cusp

forms from another point of view: they showed that among functions of
the kind

f(z) =
s∏

k=1

ηtk(akz),

where ak and tk ∈ N, only these 30 functions had multiplicative coeffi-
cients. They checked it by computer calculations [3]. Yves Martin found
all η-quotients. But the quotients cannot be used in our case. From var-
ious points of view these functions have been studied in recent works of
American and Japanese mathematicians [1], [3], [4], [6] to [14].

3. Representations of finite groups and modular forms.

We assign modular forms to elements of finite groups by the following
rule. Let Φ be such a representation of a finite group G by unimodular
matrices in a space V whose dimension is divisible by 24 that for any
element g ∈ G the characteristic polynomial of the operator Φ(g) is of the
form:

Pg(x) =
s∏

k=1

(xak − 1)tk , ak ∈ N, tk ∈ Z.

With each g ∈ G we can associate the function

ηg(z) =
s∏

k=1

ηtk(akz).

The function ηg(z) is a cusp form of a certain level N(g) and of the weight
k(g) = 1

2

∑s
k=1 tk, with the character equal to the character of the quadratic

field Q(
√∏s

k=1(iak)tk).
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We shall consider an interesting problem:
the problem of finding such finite groups that all modular forms assigned

to all elements of the group by means of a faithful representation are mul-
tiplicative η-products.

Now this problem is open: all such groups have not been found.
G.Mason has shown that all functions associated with elements of the

Mathieu group M24 by means of the representation on the Leech lattice are
multiplicative η-products. There are 21 functions of this kind.

It is possible to find groups associated with multiplicative η-products
which are not subgroups in M24.

Theorem 3.1. Let g be such an element in G that the function ηg(z)
associated with g by a representation (as described above) is a multiplica-
tive η-product then the functions ηh(z), h = gk, are also multiplicative
η-products.

In Table 1 we list all the possible assignments of multiplicative η-pro-
ducts to elements of cyclic groups. It is very useful in our proofs.

Theorem 3.2. For any cyclic group Zn, 1 ≤ n ≤ 23, there are such repre-
sentations T1 and T2, dim T1 = n1, dim T2 = n2, n1·n2 = 24, that the cusp
forms ηg(z) associated with all elements ∈ Zn by means of representations
n2T1, n1T2, T1 ⊗ T2 are also multiplicative η-products.

These theorems are proved in [19], [20].
A representation of a group will be called desired or of permissible type

if, by means of this representation, the multiplicative η-products are asso-
ciated with all elements of this group. We shall not call these groups and
representations ”admissible” because the word ”admissible” has another
sense in the theory of automorphic representations.

In this paper we shall list the metacyclic groups with faithful represen-
tations of this kind. Permissible groups are listed up to isomorphism.

The desired groups can contain only elements whose orders do not exceed
24 and are not equal to 13, 17, 19. Due to Theorem 3.1. it is sufficient
to consider the representations only for elements that do not belong to the
same cyclic group. The identity element of the group corresponds to the
cusp form η24(z).

If a permissible group is a subgroup of another permissible group then
it is sufficient to study in detail the larger group only. The result for the
subgroup immediately follows.

We shall use the following theorem which is proved in [21].

Theorem 3.3. Let G be an abelian group and T a faithful representation
such that for every g ∈ G the characteristic polynomial of the operator
T (g) is of the form Pg(x) =

∏s
k=1(x

ak − 1)tk , the corresponding cusp form
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ηg(z) =
∏s

k=1 ηtk(akz) being a multiplicative η-product. Then G is a sub-
group of one (or several) of the following groups:

Z3×Z3, Z14, Z15, Z2×Z2×Z2×Z2×Z2, Z4×Z2×Z2, Z4×Z4, Z8×Z2,

Z16, Z6 ×Z3, Z18, Z10 ×Z2, Z20, Z22, Z23, Z12 ×Z2, Z6 ×Z2 ×Z2, Z24.

We include only the maximal abelian groups.
Table 1.

Group Modular forms
Z24 η(24z), η2(12z), η3(8z), η4(6z), η6(4z), η8(3z), η12(2z), η24(z)
Z23 η(23z)η(z), η24(z)
Z22 η(22z)η(2z), η2(11z)η2(z), η12(2z), η24(z)
Z21 η(21z)η(3z), η3(7z)η3(z), η8(3z), η24(z)
Z20 η(20z)η(4z), η2(10z)η2(2z), η4(5z)η4(z),

η6(4z), η12(2z), η24(z)
Z18 η(18z)η(6z), η2(9z)η2(3z), η3(6z)η3(2z),

η6(3z)η6(z), η12(2z), η24(z)
Z16 η(16z)η(8z), η2(8z)η2(4z), η4(4z)η4(2z), η8(2z)η8(z), η24(z)
Z15 η(15z)η(5z)η(3z)η(z), η4(5z)η4(z), η6(3z)η6(z), η24(z)
Z14 η(14z)η(7z)η(2z)η(z), η3(7z)η3(z), η8(2z)η8(z), η24(z)
Z12 η(12z)η(6z)η(4z)η(2z), η2(6z)η2(3z)η2(2z)η2(z), η6(3z)η6(z),

η4(4z)η2(2z)η4(z), η8(2z)η8(z), η24(z)
Z12 η2(12z), η4(6z), η6(4z), η8(3z), η12(2z), η24(z)
Z11 η2(11z)η2(z), η24(z)
Z10 η2(10z)η2(2z), η4(5z)η4(z), η12(2z), η24(z)
Z9 η(18z)η(6z), η2(9z)η2(3z), η6(3z)η6(z), η12(2z), η24(z)
Z8 η2(8z)η2(4z), η4(4z)η4(2z), η8(2z)η8(z), η24(z)
Z8 η3(8z), η6(4z), η12(2z), η24(z)
Z8 η2(8z)η(4z)η(2z)η2(z), η4(4z)η2(2z)η4(z), η8(2z)η8(z), η24(z)
Z7 η3(7z)η3(z), η24(z)
Z6 η2(6z)η2(3z)η2(2z)η2(z), η6(3z)η6(z), η8(2z)η8(z), η24(z)
Z6 η4(6z), η8(3z), η12(2z), η24(z)
Z6 η3(6z)η3(2z), η6(3z)η6(z), η12(2z), η24(z)
Z5 η4(5z)η4(z), η24(z)
Z4 η4(4z)η4(2z), η8(2z)η8(z), η24(z)
Z4 η6(4z), η12(2z), η24(z)
Z4 η4(4z)η2(2z)η4(z), η8(2z)η8(z), η24(z)
Z3 η8(3z), η24(z)
Z3 η6(3z)η6(z), η24(z)
Z2 η8(2z)η8(z), η24(z)
Z2 η12(2z), η24(z)
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4. Metacyclic groups and modular forms.

Metacyclic group is, by definition, a finite group with a cyclic normal
subgroup such that the corresponding factor-group is also cyclic.

The genetic code of a metacyclic group is < a, b : am = e, bs = e,
b−1ab = ar > .

In this paper we completely analyze the cases when m = 6, 8, 9, 12,
16, 18, 24 and the cyclic groups < a > and < b > have no nontrivial
intersection. The cases m = 3, 4, 5, 7, 11, 23 were considered in the
article [19], the cases m = 10, 14, 15, 20, 21, 22 can be found in the
article [22]. The result can be stated in the form of the following theorem.

Theorem 4.1. Let G be a metacyclic group with the following genetic code

< a, b : am = e, bs = e, b−1ab = ar >, m = 6, 8, 9, 12, 16, 18, 24,

such that the modular form associated with each element of this group by
means of a faithful representation is a multiplicative η-product and the
cyclic groups < a > and < b > have the trivial intersection. Then the
possible values of m, s, r (up to isomorphism) are listed in the Table 2.

Table 2.

m 6 6 6 8 8 8 8 8 8 9 9 12 12 12 16 16 16 18 24
s 2 4 6 2 2 2 4 4 4 2 4 2 2 2 2 2 2 2 2
r 5 5 5 3 5 7 3 5 7 8 8 5 7 11 7 9 15 17 17

The dihedral groups of permissible types were studied in detail by the
author in the previous paper [15].

4.1. Metacyclic groups of the kind < a, b : a6 = e, bs = e,
b−1ab = a5 > .

4.1.1. The group < a, b : a6 = e, b6 = e, b−1ab = a5 >.
The desired representation is the direct sum of all the irreducible repre-

sentations with the multiplicity one.
The cusp form η3(6z)η3(2z) corresponds to the elements a, a5, the cusp

form η4(6z) corresponds to the other elements of order 6. The cusp form
η6(3z)η6(z) corresponds to the elements a2, a4, the cusp form η8(3z) cor-
responds to all the other elements of order 3. The cusp form η12(2z) cor-
responds to the elements of order 2.

This group contains D6 as a subgroup. Therefore the group D6 is also
permissible.

4.1.2. The group < a, b : a6 = e, b4 = e, b−1ab = a5 >.
This group is permissible. The desired representation is the regular
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representation. The cusp forms η4(6z), η6(4z), η8(3z) , η12(2z), , η24(z)
correspond to elements of the group.

Let us consider the groups whose elements have admissible orders but
the groups have no representations of the desired type. The genetic code
of such a group is < a, b : a6 = e, bs = e, b−1ab = a5 >, s = 8, 12, 16, 24. If
s = 12, then the group contains Z6×Z6. If s = 16, then the group contains
Z16 × Z2. If s = 18, then the group contains Z18 × Z2. If s = 24, then the
group contains Z24 × Z2. But these abelian subgroups are not permissible.

The case s = 8 is more difficult.
Let T be a desired representation, T1 be a trivial representation (T1(g) =

1,∀g ∈ G). Let denote as χT and χ1 their characters. It has been proved
in [21] that if the group Z12 × Z2 is of a desired type, then all elements
of the order 12 correspond to the cusp form η2(12z), all elements of order
6 correspond to η4(6z), all elements of order 4 correspond to η6(4z), all
elements of order 3 correspond to η8(3z), all elements of order 2 correspond
to η12(2z). Therefore χT (g) = 0, g 6= e, χT (e) = 24.

Using this fact it is easy to show that in our metacyclic group the cusp
forms

η2(12z), η3(8z), η4(6z), η6(4z), η8(3z), η12(2z), η24(z) correspond to
elements of the group.

Consider the scalar product < χT , χ1 >= 1
48 · 24 = 1

2 . Since this number
must be an integer, we obtain a contradiction and the desired representation
T cannot be constructed.

4.2. Metacyclic groups of the kind < a, b : a8 = e, bs = e,
b−1ab = ar > .

4.2.1. The group < a, b : a8 = e, b2 = e, b−1ab = a3 >.
This group has the following irreducible representations:
Tk(a) = 1, Tk(b) = (−1)k, k = 1, 2, Tk(a) = −1, Tk(b) = (−1)k, k = 3, 4,

T5(a) =
(

ζ8 0
0 ζ3

8

)
, T6(a) =

(
ζ5
8 0
0 ζ7

8

)
,

T7(a) =
(

ζ2
8 0
0 ζ6

8

)
, T5(b) = T6(b) = T7(b) =

(
0 1
1 0

)
.

The desired representation is the direct sum

2(T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6)⊕ 4T7.

All elements of order 8 correspond to the cusp form η2(8z)η2(4z), all
elements of order 4 correspond to the cusp form η4(4z)η4(2z), the element
a4 corresponds to η8(2z)η8(z), all the other elements of order 2 correspond
to the cusp form η12(2z).
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4.2.2. The group < a, b : a8 = e, b2 = e, b−1ab = a5 >.
The desired representation is the direct sum of all irreducible representa-

tions with the multiplicity 2. The correspondence between modular forms
and elements of the group is as in 4.2.1.

4.2.3. The group < a, b : a8 = e, b2 = e, b−1ab = a7 >.
This group has the following irreducible representations:
Tk(a) = 1, Tk(b) = (−1)k, k = 1, 2; Tk(a) = −1, Tk(b) = (−1)k, k = 3, 4,

T5(a) =
(

ζ8 0
0 ζ7

8

)
, T6(a) =

(
ζ3
8 0
0 ζ5

8

)
,

T7(a) =
(

ζ2
8 0
0 ζ6

8

)
, T5(b) = T6(b) = T7(b) =

(
0 1
1 0

)
.

The desired representation is the direct sum

2(T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6)⊕ 4T7.

The correspondence between modular forms and elements of the group
is as in 4.2.1.

We can consider another desired representation:

3(T1 ⊕ T2 ⊕ T7)⊕ 2(T3 ⊕ T4 ⊕ T5 ⊕ T6).

All elements of order 8 correspond to the cusp form η2(8z)η(4z) ×
η(2z)η2(z), the elements of order 4 correspond to the cusp form η4(4z) ×
η2(2z)η4(z), the element a4 corresponds to η8(2z)η8(z), all other elements
of order 2 correspond to the cusp form η12(2z).

4.2.4. The group < a, b : a8 = e, b4 = e, b−1ab = a3 >.
This group has the following irreducible representations:
Tk(a) = 1, Tk(b) = ik, k = 1, 2, 3, 4; Tk(a) = −1, Tk(b) = ik, k = 5, 6, 7, 8,

T9(a) = T10(a) =
(

ζ8 0
0 ζ3

8

)
, T11(a) = T12(a) =

(
ζ5
8 0
0 ζ7

8

)
,

T13(a) = T14(a) =
(

ζ2
8 0
0 ζ6

8

)
, T9(b) = T11(b) = T13(b) =

(
0 1
1 0

)
,

T10(b) = T12(b) = T14(b) =
(

0 1
−1 0

)
.

The desired representation is the direct sum that contains T13, T14 with
the multiplicity 2, all other representations with the multiplicity 1.

All elements of order 8 correspond to the cusp form η2(8z)η2(4z), the
elements a2, a6, a2b2, a6b2 correspond to the cusp form η4(4z)η4(2z), all
other elements of order 4 correspond to the cusp form η6(4z), the element
a4 corresponds to η8(2z)η8(z), elements b2 and a4b2 correspond to the cusp
form η12(2z).
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4.2.5. The group < a, b : a8 = e, b4 = e, b−1ab = a5 >.
The desired representation is the direct sum of all the irreducible repre-

sentations with the multiplicity one. The correspondence between modular
forms and elements of the group is as in 4.2.4.

4.3. Metacyclic groups of the kind < a, b : am = e, bs = e,
b−1ab = ar >, m = 9, 18.

The group Z18×Zk is not permissible if k > 1. The group Z9×Zk is not
permissible if k > 2.

So we must consider for m = 9 the variants:

s = 2, r = 8; s = 3, r = 4, 7; s = 4, r = 8; s = 6, r = 2, 5

and for m = 18

s = 2, r = 17; s = 3, r = 7, 13; s = 6, r = 5, 11.

The groups D9 and D18 are permissible [15].

4.3.1. The group < a, b : a9 = e, b3 = e, b−1ab = a4 >.
This group is of the order 27 and has 8 elements of order 3.
Let T be a desired representation, u elements correspond to η6(3z)η6(z).

The number u can be equal to 2,4,6,8. The scalar product

< χT , χ1 >=
1
27
· (24 + 6u) =

1
9
· (8 + 2u),

where χ1 is the character of the trivial representation.
This number must be an integer, but it is not an integer if u = 2, 4, 6, 8.

We obtain a contradiction and the desired representation T cannot be con-
structed.

This group is isomorphic to the group G1
∼=< a, b : a9 = e, b3 =

e, b−1ab = a7 > . So the group G1 is not permissible. G1 is a subgroup in
the group

G2
∼=< a, b : a18 = e, b3 = e, b−1ab = a7 > .

G2
∼= G3

∼=< a, b : a18 = e, b3 = e, b−1ab = a13 > .

So the groups G2 and G3 are not permissible.

4.3.2. The group < a, b : a9 = e, b6 = e, b−1ab = a2 >.
This group contains a subgroup < a, c : a9 = e, c3 = e, b−1ab = a4 > (c =

b2) which is not permissible.
Our group is isomorphic to the group G1

∼=< a, b : a9 = e, b6 = e, b−1ab =
a5 > . So the group G1 is not permissible. G1 is a subgroup in the group

G2
∼=< a, b : a18 = e, b6 = e, b−1ab = a5 > .

G2
∼= G3

∼=< a, b : a18 = e, b3 = e, b−1ab = a11 > .

So the groups G2 and G3 are not permissible.
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4.3.3. The group < a, b : a9 = e, b4 = e, b−1ab = a8 >.
This group is of order 36 and has 12 conjugacy classes. This group is per-

missible. The desired representation contains two irreducible 2-dimensional
representations which send the element a to the matrix of order 3 with
multiplicity 2, other irreducible representations are included with multi-
plicity 2. The cusp forms η(18z)η(6z), η2(9z)η2(3z), η3(6z)η3(2z), η6(4z),
η6(3z)η6(z), η12(2z), η24(z) correspond to elements of the group.

4.4. Metacyclic groups of the kind < a, b : a12 = e, bs = e,
b−1ab = ar > .

This group contains a subgroup which is generated by the elements a2

and b. This subgroup has a genetic code: < c, d : c6 = e, ds = e, d−1cd =
cr > . Taking into account the results of 4.1., we see that our group is not
permissible if s 6= 2, 4, 6. The group < a, b : a12 = e, b6 = e, b−1ab = ar >
is not permissible because it contains the subgroup Z12 × Z3 which is not
permissible.

4.4.1. The groups < a, b : a12 = e, b2 = e, b−1ab = ar >.
The number r can be equal to 5, 7, 11. In all these cases the regular

representation is the desired one. It has been proved in [17] that the regular
representation for any group of order 24 is permissible. The cusp forms
η2(12z), η4(6z), η6(4z), η8(3z), η12(2z), η24(z) correspond to elements of
the group.

4.4.2. The groups < a, b : a12 = e, b4 = e, b−1ab = ar >.
In this case the number r is equal to one of the values 5,7 or 11. The

subgroup H ∼=< a > × < b > is isomorphic to Z12×Z2. It has been proved
in [21] that if the group Z12 × Z2 is permissible then there is the single
possibility for the correspondence between elements of the group and cusp
forms: η2(12z), η4(6z), η6(4z), η8(3z), η12(2z), η24(z) correspond to the
elements of the group Z12 × Z2. In our group of order 48 each element
conjugate to an element in H. So if T is a permissible representation of our
group then χT (g) = 0, if g 6= e. Consider the scalar product < χT , χtr >=
24
48 = 1

2 . But this number must be an integer. We obtain a contradiction.

4.5. Metacyclic groups of the kind < a, b : a16 = e, bs = e,
b−1ab = ar > .

Because the group Z16×Zm is not permissible if m > 1 we must consider
only the cases s = 2, r = 7, 9, 15; s = 4, r = 3, 5, 11, 13.

The dihedral group D16 is permissible. It was considered in [15].
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4.5.1. The group < a, b : a16 = e, b2 = e, b−1ab = a7 >.
This group has the following irreducible representations:

Tk(a) =
(

ζk
16 0
0 ζ7k

16

)
, k = 1, 2, 3, 4, T5(a) =

(
ζ6
16 0
0 ζ10

16

)
,

T6(a) =
(

ζ9
16 0
0 ζ15

16

)
, T7(a) =

(
ζ11
16 0
0 ζ13

16

)
,

Tk(b) =
(

0 1
1 0

)
, k = 1, . . . 7,

Tk(a) = 1, Tk(b) = (−1)k, k = 8, 9,

Tk(a) = −1, Tk(b) = (−1)k, k = 10, 11.

The desired representation is the direct sum

T1 ⊕ 2T2 ⊕ T3 ⊕ 2T4 ⊕ 2T5 ⊕ T6 ⊕ T7 ⊕ T8 ⊕ T9 ⊕ T10 ⊕ T11.

All elements of order 16 correspond to the cusp form η(16z)η(8z), all
elements of order 8 correspond to the cusp form η2(8z)η2(4z), the ele-
ments a4, a12 correspond to the cusp form η4(4z)η4(2z), the element a8 cor-
responds to η8(2z)η8(z), all other elements of order 2 correspond to the cusp
form η12(2z).

4.5.2. The group < a, b : a16 = e, b2 = e, b−1ab = a9 >.
The desired representation is the direct sum of all the irreducible repre-

sentations with multiplicity 1. The correspondence between modular forms
and elements of the group is as in 4.5.1.

4.5.3. The groups < a, b : a16 = e, b4 = e, b−1ab = ar, r = 3, 5, 11, 13 >.
The subgroup H ∼=< a2 > × < b2 >∼= Z8 × Z2. It has been proved in

[21] that the representation of the group Z8 × Z2
∼=< f > × < h > is

permissible only in the following three cases:
(1) all elements of order 8 correspond to the cusp form η2(8z)η2(4z), all

elements of order 4 correspond to the cusp form η4(4z)η4(2z), the
element f4 corresponds to η8(2z)η8(z), two other elements of order 2
correspond to the cusp form η12(2z).

(2) all elements of order 8 correspond to the cusp form η2(8z)η2(4z), all
elements of the order 4 correspond to the cusp form η4(4z)η4(2z), all
elements of order 2 correspond to η8(2z)η8(z).

(3) all elements of order 8 correspond to the cusp form η3(8z), all ele-
ments of order 4 correspond to the cusp form η6(4z), the element h
corresponds to η8(2z)η8(z), two other elements of order 2 correspond
to the cusp form η12(2z).

Let us consider the case r = 3.
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Let T be a desired representation, Φ be such one-dimensional represen-
tation that Φ(a) = 1,Φ(b) = i. Let denote as χT and χΦ their charac-
ters. Because the element a corresponds to η(16z)η(8z) the element a2

corresponds to the cusp form η2(8z)η2(4z), the element a4 corresponds to
the cusp form η4(4z)η4(2z), the element a8 corresponds to the cusp form
η8(2z)η8(z). So for the group H the third variant is excluded. If an element
g 6= e, b2, a8, a8b2 then we have χT (g) = 0 or χΦ(g) + χΦ(g3) = 0. The
elements b2, a8b2 are conjugate and correspond to the same cusp form. So
we see that the scalar product

< χT , χΦ >=
1
64
· (χT (e)χ̄Φ(e) + χT (a8)χ̄Φ(a8) + 2χT (b2)χ̄Φ(b2)).

If the elements b2, a8b2 correspond to η12(2z) then χT (b2) = 0 and the
scalar product is equal to < χT , χΦ > = 1

64 · (24 + 8) = 1
2 . But this number

must be an integer. We obtain a contradiction and the desired representa-
tion T cannot be constructed.

If the elements b2, a8b2 correspond to η8(2z)η8(z) then χT (b2) = 8 and
the scalar product is equal to < χT , χΦ > = 1

64 · (24 + 8− 2 · 8) = 1
4 . Since

this number must be an integer, we obtain a contradiction.
The group < a, b : a16 = e, b4 = e, b−1ab = a3 > is isomorphic to

< a, b : a16 = e, b4 = e, b−1ab = a11 > .
The group < a, b : a16 = e, b4 = e, b−1ab = a5 is not permissible. It can

be proved similarly. This group is isomorphic to < a, b : a16 = e, b4 = e,
b−1ab = a13 > .

4.6. Metacyclic groups of the kind < a, b : a24 = e, bs = e,
b−1ab = ar > .

The group Z24 × Zm is not permissible if m > 1. So we have the single
possibility:s = 2.

The group < a, b : a24 = e, b2 = e, b−1ab = a17 > is permissible.
The desired representation contains all irreducible representations with

multiplicity 1 except such one-dimensional representations Φ that Φ(b) =
−1. The cusp form η(24z) corresponds to all elements of order 24, the cusp
form η2(12z) corresponds to all elements of order 12, the cusp form η3(8z)
corresponds to all elements of order 8, the cusp form η4(6z) corresponds to
all elements of order 6, the cusp form η6(4z) corresponds to all elements of
order 4, the cusp form η8(3z) corresponds to all elements of order 3, the cusp
form η12(2z) corresponds to a12, the cusp form η8(2z)η8(z) corresponds to
b, a12b.

All other groups < a, b : a24 = e, b2 = e, b−1ab = ar > are not per-
missible. Let us prove it. If T is a permissible representation of such
metacyclic group then χT (g) = 0, if g 6= e. Then the scalar product
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< χT , χtr >= 24
48 = 1

2 . But this number must be an integer. We obtain
a contradiction. The theorem is proved.

4.7. Metacyclic groups and multiplicative η-products. Main
theorem.

Now we can formulate the following result.

Theorem 4.2. Let G be such a metacyclic group with the following genetic
code

< a, b : am = e, bs = e, b−1ab = ar >,

such that a modular form associated with each element of this group by
means of a faithful representation is a multiplicative η-product and the
cyclic groups < a > and < b > have no nontrivial intersection. Then
for m, s, r (up to an isomorphism) there are only the following possibilities:

m = 3, s = 2, 4, 6, 8, 12, 18, r = 2.
m = 4, s = 2, 4, 6, 8, 10, 24, r = 3.
m = 5, s = 4, 8, 12, r = 2; s = 2, 4, 6, 8, r = 4.
m = 6, s = 2, 4, 6, r = 5.
m = 7, s = 3, 6, r = 2; s = 6, 12, r = 3; s = 2, 4, 6, r = 6.
m = 8, s = 2, 4, r = 3; s = 2, 4, r = 5; s = 2, 4, r = 7.
m = 9, s = 2, r = 8; s = 4, r = 8.
m = 10, s = 4, 8, r = 3; s = 2, 4, r = 9.
m = 11, s = 2, 4, r = 10; s = 10, 20, r = 2; s = 10, r = 4; s = 5, r = 5.
m = 12, s = 2, r = 5, 7, 11.
m = 14, s = 4, r = 3; s = 6, r = 3; s = 3, r = 9; s = 2, r = 13.
m = 15, s = 4, r = 2; s = 2, r = 4, 14.
m = 16, s = 2, r = 7, 9, 15.
m = 18, s = 2, r = 17.
m = 20, s = 2, r = 9, 19; s = 4, r = 17.
m = 21, s = 2, r = 8, 20; s = 3, r = 4; s = 6, r = 2.
m = 22, s = 2, r = 21; s = 5, r = 3; s = 10, r = 7.
m = 23, s = 2, r = 22; s = 11, r = 10; s = 22, r = 5.
m = 24, s = 2, r = 17.

It has been proved in this article and in the works [19], [22].
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5. Sylow subgroups of permissible groups

Theorem 5.1. Let G be a finite group such that there is a faithful repre-
sentation T with the following property. For every g ∈ G the characteristic
polynomial of the operator T (g) is of the form Pg(x) =

∏s
k=1(x

ak − 1)tk ,
and the corresponding cusp form ηg(z) =

∏s
k=1 ηtk(akz) is a multiplicative

η-product.
Then for the Sylow p-subgroups, p 6= 2, there are only the following

possibilities:

S(3) ∼= Z3, S(3) ∼= Z3 × Z3, S(3) ∼= Z9,

S(3) ∼=< a, b, c : a3 = e, b3 = 3, c3 = e, ab = bac, ac = ca, bc = cb >,

S(5) ∼= Z5, S(7) ∼= Z7, S(11) ∼= Z11.

Proof.
The Sylow 3-subgroups.

We shall describe all the cases in detail.
A permissible 3-group can contain only elements of order 1, 3 and 9.
Let T be a desired representation, T1 be the trivial representation

(T1(g) = 1,∀g ∈ G.)
The group Z3 × Z3.

We must consider three cases.
(1) All elements of order 3 correspond to the cusp form η8(3z). Then

χT (e) = 24, χT (g) = 0, ord(g) 6= 3. The scalar product

< χT , χ1 >=
24
9

=
8
3
.

But this number must be an integer. We obtain a contradiction and
the desired representation T cannot be constructed.

(2) All elements of order 3 correspond to the cusp form η6(3z)η6(z).
In this case the group is permissible. The desired representation
contains T1 with multiplicity 8, all other irreducible representations
with multiplicity 2.

(3) In this case u elements correspond to the cusp form η6(3z)η6(z), and
v elements correspond to the cusp form η8(3z), where u and v are
positive integers. The group is permissible. Since g and g2 correspond
to the same modular form, then u and v are even. The scalar product

< χT , χ1 >=
1
9
· (24 + 6u) =

1
3
· (8 + 2u).

Since this number must be an integer we have u = 2. This vari-
ant is suitable. Let f and f2 be the elements which correspond to
η6(3z)η6(z). Let Tk be an one-dimensional representation of our group
and mk be its multiplicity in T. If Tk(f) = 1 then mk = 4. For other
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one-dimensional representation mk = 2. The representation T is per-
missible.

The group Z3 × Z3 × Z3.
Let us prove that this group is not permissible. We must consider two

cases.

(1) All elements of order 3 correspond to the cusp form η6(3z)η6(z). The
scalar product

< χT , χ1 >=
1
27
· (24 + 26 · 6) =

20
3

.

But this number must be an integer. We obtain a contradiction.
(2) In this case u elements correspond to the cusp form η6(3z)η6(z), and

v elements correspond to the cusp form η8(3z), where u and v are
positive integers. The numbers u and v are even. The scalar product

< χT , χ1 >=
1
27
· (24 + 6u) =

1
9
· (8 + 2u).

Since this number must be an integer we have u = 14, m1 = 4. Let
Tk be an one-dimensional representation of our group and mk be its
multiplicity in T.
Let u1 be the number of elements g which correspond to the cusp
form η6(3z)η6(z) and Tk(g) = 1; let u2 be the number of elements g
which correspond to the cusp form η6(3z)η6(z) and Tk(g) = ζ3; let
u3 be the number of elements g which correspond to the cusp form
η6(3z)η6(z) and Tk(g) = ζ2

3 . Then u2 = u3, u1 + 2u2 = 14.

< χT , χk > =
1
27
· (24 + 6(u1 + ζ3 · u2 + ζ2

3 · u3))

=
1
27
· (24 + 6u1 − 6u2)

=
1
9
· (8 + 2(u1 − u2)).

If Tk is not trivial then u1 6= 14, and u1 − u2 = 5. We obtain u1 =
8, u2 = 3, and Ker(Tk) does not contain elements corresponding to
the cusp form η8(3z). It contains 8 elements which correspond to the
cusp form η6(3z)η6(z) and the element e. Its order is equal to 9. If
an element h corresponds to the cusp form η8(3z) then Tk(h) 6= 1 for
any k 6= 1. Then among eigenvalues of the operator T (h) there are
only 4 eigenvalues equal to 1 and the characteristic polynomial of the
operator T (h) cannot be (x3 − 1)8. We obtain a contradiction.
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The group Z9 × Z3.
Let us prove that this group is not permissible.
In this group there are 8 elements of the order 3, 18 elements of the order

9 and the element e.

χT (e) = 24; χT (g) = 0, ord(g) = 9; χT (g) = 6, ord(g) = 3.

The number < χT , χ1 >= 8
3 . But this number must be an integer. We

obtain a contradiction.
The group S(3) ∼=< a, b, c : a3 = e, b3 = e, c3 = e, ab = bac, ac = ca,
bc = cb > .

This group is of order 27 and it has 11 conjugacy classes. They are:

1.e 2.c 3.c2 4.a, ac, ac2 5.b, bc, bc2 6.ab, abc, abc2 7.a2b, a2bc, a2bc2

8.a2, a2c, a2c2 9.b2, b2c, b2c2 10.ab2, ab2c, ab2c2 11.a2b2, a2b2c, a2b2c2.

The commutant is generated by the element c.

G/G′ ∼= Z3 × Z3.

This group has the following irreducible representations:

Tk(a) = ζ3
k, Tk(b) = ζ3, Tk(c) = 1, k = 1, 3,

Tk(a) = ζ3
k, Tk(b) = ζ3

2, Tk(c) = 1, k = 4, 6,

Tk(a) = ζ3
k, Tk(b) = 1, Tk(c) = 1, k = 7, 9,

T10(a) = T11(b) =

 ζ3 0 0
0 ζ2

3 0
0 0 1

 , T10(b) = T11(a) =

 0 0 1
1 0 0
0 1 0

 ,

T10(c) =

 ζ3 0 0
0 ζ3 0
0 0 ζ3

 , T11(c) = T10(c2).

The desired representation is the direct sum

2(T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T7 ⊕ T8 ⊕ T9)⊕ T10 ⊕ T11.

The elements a, b, a2, b2, ac, bc, a2c, b2c, ac2, bc2, a2c2, b2c2 correspond to
the cusp form η8(3z), all other elements of the order 3 correspond to the
cusp form η6(3z)η6(z).

The group < a, b : a9 = e, b3 = e, b−1ab = a4 > is not permissible. This
has been proved in 4.3.1.
The Sylow p-subgroups, p = 5, 7, 11.

Let us prove that the group Z5 × Z5 is not permissible. In this group
there are 24 elements of the order 5.

χT (e) = 24; χT (g) = 4, ord(g) = 5.
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The number < χT , χ1 >= 120
25 = 24

5 . But this number must be an integer.
We obtain a contradiction. The elements of order 25 do not correspond to
the multiplicative η-products. So we have the only possibility: S(5) ∼= Z5.

We consider the cases p = 7, 11 by an analogous way. Now we can prove
the following result.

Theorem 5.2. There is no finite solvable group G such that a faithful
representation assigns to every element of G a multiplicative η-product,
every product being assigned to some element.

Proof.
The order of this group will be equal to 2k ·3m ·5 ·7 ·11. According to the

theorem of Ph.Hall [5] there is a subgroup of order 35 in this group. It is
known that there is only one group of order 35. It is Z35. But elements of
order 35 do not correspond to the multiplicative η-products. The theorem
is proved.

In conclusion we shall formulate an open problem. It will be very inter-
esting

to find an algebraic structure such that all multiplicative η-products, and
only them, are associated with its elements in a natural way.

6. Multiplicative η-products and the adjoint
representations SL(5, C).

In this section we give some results about the connection between mul-
tiplicative η-products and elements of finite order in SL(5, C) by means of
the adjoint representation. They were proved in [16] and [22].

Theorem 6.1. All multiplicative η-products of weight greater than 1 can
be associated, by the adjoint representation, with elements of finite order
in the group SL(5, C). The eigenvalues of the element g ∈ SL(5, C) that
corresponds to a given cusp form can be found uniquely, up to a permutation
of the values, up to raising eigenvalues to a power coprime with the order
of the element g, and up to the multiplying each eigenvalue by the same
fifth root of unity.

Theorem 6.2. The maximal finite subgroups of SL(5, C), whose elements g
have such characteristic polynomials Pg(x) =

∏s
k=1(x

ak − 1)tk that the cor-
responding cusp forms ηg(z) =

∏s
k=1 ηtk(akz) are multiplicative η-products,

are the direct products of the group Z5 (which is generated by the scalar
matrix) and one of the following groups: S4, A4×Z2, Q8×Z3, D4×Z3, D6,
the binary tetrahedral group, the metacyclic group of order 21, the group of
order 12 : < a, b : a3 = b2 = (ab)2 >, all groups of order 16,
Z3 × Z3, Z9, Z10, Z11, Z14, Z15.
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Theorem 6.3. Let Ad be the adjoint representation of the group SL(5, C)
and g ∈ SL(5, C), ord(g) 6= 3, 6, 9, 21, is such that the characteristic poly-
nomial of the operator Ad(g) is of the form

Pg(x) =
s∏

k=1

(xak − 1)tk , ak ∈ N, tk ∈ N.

Then the corresponding cusp form ηg(z) =
∏s

k=1 ηtk(akz) is a multiplicative
η-product of the weight k(g) > 1, and all multiplicative η-products of the
weight k(g) > 1 can be obtained by this way.

If ord(g) = 3, 6, 9, 21 then by this way we can obtain all multiplicative
η-products of the weight k(g) > 1. Moreover in this correspondence there
are five modular forms which are not multiplicative η-products:

η4(3z)η12(z), η7(3z)η3(z), η2(6z)η6(2z), η2(9z)η(3z)η3(z), η(21z)η3(z).

Sketch of the proof.
We shall express in this sketch all main ideas of the proof.
Let T : SL(5, C) → GL(V ) be a natural representation of SL(5, C) in a

five-dimensional vector space V ; T ∗ : SL(5, C) → GL(V ∗) is the conjugate
representation.

Let us consider the representation T ⊗ T ∗ : SL(5, C) → GL(V ⊗ V ∗).
This representation can be decomposed into the direct sum T1⊕ T2, where
T1 is the adjoint representation Ad of the group SL(5, C) in 24-dimensional
space, T2 is one-dimensional identity representation. Let λ1, λ2, λ3, λ4, λ5

be the eigenvalues of the operator T (g).The elements λk/λm, 1 ≤ l, m ≤ 5,
are the eigenvalues of the operator T ⊗ T ∗(g). Excluding one eigenvalue
equal to 1, we obtain the set of eigenvalues of the operator Ad(g).

Since there are four or more values equal to 1 among the eigenvalues of
the operator Ad(g), the weight of the modular form ηg(z) associated with
g is greater than 1.

The number equal to 1 eigenvalues of the operator Ad(g) is determined by
the number of equal eigenvalues of the operator T (g). This correspondence
is described in the table next page. We denote identical values by identical
symbols and different values by different symbols.

Let us consider the problem for each order from 1 to 24. The identity
element corresponds to η24(z). Let us denote the characteristic polynomial
of the operator Ad(g) by Pg(x), the primitive root of unity of degree m by
ζm, the m-th cyclotomic polynomial by Φm. We shall denote the number
of units among eigenvalues of the operator Ad(g) by s.
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Table 3.

Eigenvalues of T (g) Number of units
among the eigenvalues
of the operator Ad(g)

(a, b, c, d, e) 4
(a, a, b, c, d) 6
(a, a, b, b, c) 8
(a, a, a, b, c) 10
(a, a, a, b, b) 12
(a, a, a, a, b) 16
(a, a, a, a, a) 24

The case ord(g) = 2.
We have

Pg(x) = (x2 − 1)k(x− 1)m, 2k + m = 24, s = k + m, 0 < k, 0 ≤ m.

The values s from the table which satisfy these conditions are s = 12, 16.
So k = 12,m = 0; k = 8,m = 8. The modular form η12(2z) corresponds
to the set (1, 1, 1,−1,−1) of eigenvalues of the operator T (g), the form
η8(2z)η8(z) corresponds to the set (1,−1,−1,−1,−1) of eigenvalues of the
operator T (g).

The case ord(g) = 3.
We have

Pg(x) = (x3 − 1)k(x− 1)m, 3k + m = 24, s = k + m, 0 < k, 0 ≤ m.

The values from the table which satisfy these conditions are s = 8, 10, 12,
16. We have k = 8,m = 0; k = 7,m = 3; k = 6,m = 6; k = 4,m = 12.
The modular form f1 = η8(3z) corresponds to the set of eigenvalues of the
operator T (g): (ζ3, ζ3, ζ

2
3 , ζ2

3 , 1), the form f2 = η6(3z)η6(z) corresponds to
(ζ3, ζ3, ζ3, 1, 1). These two functions are multiplicative η-products.

The functions f3 = η7(3z)η3(z) and f4 = η4(3z)η12(z) are not mul-
tiplicative η-products. The function f3 corresponds to the set of eigen-
values (ζ3, ζ

2
3 , 1, 1, 1), the function f4 corresponds to the set of eigenvalues

(ζ2
3 , ζ3, ζ3, ζ3, ζ3). We note the interesting relations:

f2
3 = f1f2, f2

2 = f1f4.
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The case ord(g) = 4.
We have

Pg(x) = (x4−1)k(x2−1)m(x−1)l, 4k+2m+l = 24, s = k+m+l, 2|(k+m).

The characteristic polynomial can be written as the product of cyclo-
tomic polynomials,namely, Pg = Φk

4Φ
k+m
2 Φk+m+l

2 .
Let us consider the characteristic polynomial of the operator Ad(g2) :

Pg2 = Φ2k
2 Φ2k+2m+l

1 . There are two possibilities : Pg2(x) = (x2 − 1)12 or
Pg2(x) = (x2− 1)8(x− 1)8. In this case 2k = 12, 2k +2m++l = 12, in the
second case 2k = 8, 2k + 2m + +l = 16. The following values satisfy to the
conditions:

k = 6, m = 0, l = 0; k = 4, m = 4, l = 0;

k = 4, m = 2, l = 4; k = 4, m = 0, l = 8.

In the latter case the set of eigenvalues must be of type (a, a, a, b, b). But
in this case there are at most two distinct values not equal to 1 among
the quotients λk

λm
. Since the set of eigenvalues of the operator Ad(g) must

contain i,−i and −1,we obtain a contradiction. The three other possibil-
ities correspond to multiplicative η-products. The modular form η6(4z)
corresponds to the set (i,−i,−1,−1, 1) of eigenvalues of the operator T (g),
the form η4(4z)η4(2z) corresponds to the set (i,−i, 1, 1, 1) of eigenvalues
of the operator T (g), the form η4(4z)η2(2z)η4(z) corresponds to the set
(i,−i, i,−i, 1) of eigenvalues of the operator T (g).

The case ord(g) = 5.
We have

Pg(x) = (x5 − 1)k(x− 1)m, 5k + m = 24, s = k + m, 0 < k ≤ 4, 0 ≤ m.

We obtain s = 24 − 4k; therefore, 4|s. Since there are four or more dis-
tinct values not equal to 1 among the the quotients λk

λm
, we have s ≤ 10.

Taking these conditions into account, we obtain the unique possibility
k = 4,m = 4. The form η4(5z)η4(z) corresponds to (ζ4

5 , ζ2
5 , ζ2

5 , ζ5, ζ5).
We consider the other cases by the analogous way.
In conclusion we write the table of the eigenvalues of the elements in

SL(5, C) which correspond to multiplicative η-products by the described
way.
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Table 4.

Eigenvalues Cusp forms
1,1,1,1,1 η24(z)

-1,-1,-1,-1,1 η8(2z)η8(z)
-1,-1,1,1,1 η12(2z)

ζ3, ζ3, ζ3, 1,1 η6(3z)η6(z)
ζ2
3 , ζ2

3 , ζ3, ζ3,1 η8(3z)
ζ3
4 , ζ2

4 , ζ4, ζ4, ζ4 η4(4z)η2(2z)η4(z)
ζ3
4 , ζ3

4 , ζ4, ζ4,1 η4(4z)η4(2z)
ζ3
4 , ζ2

4 , ζ2
4 , ζ4,1 η6(4z)

ζ3
5 , ζ5, ζ5, 1,1 η4(5z)η4(z)

ζ4
6 , ζ3

6 , ζ3
6 , ζ6, ζ6 η2(6z)η2(3z)η2(2z)η2(z)

ζ5
6 , ζ3

6 , ζ2
6 , ζ2

6 ,1 η3(6z)η3(2z)
ζ5
6 , ζ4

6 , ζ2
6 , ζ6,1 η4(6z)

ζ7
8 , ζ5

8 , ζ3
8 , ζ8,1 η2(8z)η2(4z)

ζ5
8 , ζ5

8 , ζ3
8 , ζ2

8 , ζ8, η2(8z)η(4z)η(2z)η2(z)
ζ8
9 , ζ5

9 , ζ3
9 , ζ2

9 ,1 η2(9z)η2(3z)
ζ8
10, ζ

6
10, ζ

5
10, ζ10,1 η2(10z)η2(2z)

ζ9
11, ζ

5
11, ζ

4
11, ζ

3
11, ζ11 η2(11z)η2(z)

ζ9
12, ζ

7
12, ζ

4
12, ζ

3
12, ζ12, η(12z)η(6z)η(4z)η(2z)

ζ11
14 , ζ9

14, ζ
7
14, ζ14, ζ14, η(14z)η(7z)η(2z)η(z)

ζ12
15 , ζ10

15 , ζ7
15, ζ15,1 η(15z)η(5z)η(3z)η(z)
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