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Counting cyclic quartic extensions

of a number field

par Henri COHEN, Francisco DIAZ Y DIAZ et Michel OLIVIER

Résumé. Nous donnons des formules asymptotiques pour le
nombre d’extensions cycliques quartiques d’un corps de nombres
général.

Abstract. In this paper, we give asymptotic formulas for the
number of cyclic quartic extensions of a number field.

1. Galois, Kummer, and Hecke Theory

1.1. Introduction. Let K be a number field, fixed once and for all, and
let G be a transitive subgroup of the symmetric group Sn on n letters. The
inverse problem of Galois theory asks whether there exists an extension
L/K of degree n such that the Galois group of the Galois closure of L is
isomorphic to G. This problem is far from being solved, although great
progress has been made by Matzat and his school, and hopes have been
raised by Grothendieck’s theory of dessins d’enfants. For specific groups G
we can even ask for the number NK,n(G, X) of such extensions L/K up to
K-isomorphism, such that the norm of the discriminant of L/K is at most
equal to X, at least in an asymptotic sense. A general conjecture due to
Malle (see [12] and [13]) states that there should exist constants aK(G),
bK(G), and cK(G) such that

NK,n(G, X) ∼ cK(G)XaK(G) log(X)bK(G)−1 ,

and gives formulas for the constants aK(G) and bK(G) (in [9], it is shown
that the formula for bK(G) cannot be correct, but the conjecture is still
believed to hold with corrected values). For a general base field K this
conjecture is known to be true in a number of cases, and in particular
thanks to the work of Wright [14], in the case of Abelian extensions, and
the constants aK(G) and bK(G) agree with the predictions. Unfortunately
it is very difficult to deduce from [14] the explicit value of the constant
cK(G) (which is not given by Malle’s conjecture), so all the subsequent
work on the subject has been done independently of Wright’s. When the
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base field is K = Q, the result is known in general: after work of many
authors, Mäki in [10] and [11] gives the value of cQ(G) for all Abelian groups
G when the base field is Q. On the other hand, for a general base field K
and Abelian group G, the only known results are due to the authors, except
for G = C2 for which the result can be deduced from [8]: G = C` for prime
` (see [4] and [5]), G = V4 = C2 × C2 (see [6]), and G = C4, which is
the object of the present paper. Note that groups such as G = Cn with
squarefree n can be treated quite easily using the methods of [4] and [5], but
the formulas are so complicated that there is not much point in doing so.
Thus the main difficulty in the C4 case is the fact that 4 is not squarefree.
As in the C` case, the main tool that we need is simple Galois and Kummer
theory, but we will also need a little local class field theory.

1.2. Galois and Kummer Theory. We first consider the Galois situa-
tion. Let L/K be a C4-extension. Then there exists a unique quadratic
subextension k/K. We will write k = K(

√
D) where for the moment D

is an arbitrary element of K∗ generating k/K. Then L = k(
√

α) for some
α ∈ k∗, and it is well known and easy to see that a necessary and sufficient
condition for L/K to be a C4-extension is that Nk/K(α) = Dz2 for some
z ∈ K. Writing α = x + y

√
D, it is clear that this immediately implies

that D is a sum of two squares in K. Conversely, if D = m2 + n2 in K,
then ω =

√
D(m +

√
D) is such that ω ∈ k∗ and Nk/K(ω) = Dn2, hence

L = k(
√

ω) defines a C4-extension of K. In other words, we have shown
the well known result that a quadratic extension k/K can be embedded in
a C4-extension if and only if its discriminant is a sum of two squares.

In a large part of this paper, we fix the intermediate quadratic extension
k/K with k = K(

√
D). We denote by τ the generator of the Galois group

of k/K, by d = d(k/K) the relative ideal discriminant, by D = D(k/K)
the different of k/K, and by T the set of prime ideals of K dividing d (i.e.,
which ramify in k/K). Finally we fix once and for all an element ω ∈ k∗

such that Nk/K(ω) = Dn2 for some n ∈ K (not necessarily the one given
above).

We will constantly use the following lemma whose trivial proof (for ex-
ample using Hilbert 90) is left to the reader.

Lemma 1.1. Let α ∈ k∗.
(1) Nk/K(α) is a square in K if and only if there exists z ∈ K and γ ∈ k

such that α = zγ2.
(2) Nk/K(α) is equal to D times a square in K if and only if there exists

t ∈ K and γ ∈ k such that α = ωtγ2.

Thus α defines a C4-extension if and only if α = ωtγ2 for some
t ∈ K∗; since α is only defined up to squares, we may in fact assume that
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α = ωt. Furthermore ωt and ωt′ define K-isomorphic C4-extensions if and
only if they define k-isomorphic quadratic extensions, hence if and only if
t′/t ∈ k∗2. Since t′/t ∈ K∗, this means that t′/t ∈ K∗2 ∪DK∗2.

Thus, if we consider extensions L = k(
√

ωt) for t ∈ K∗/K∗2 (note
that the unit class must not be excluded), we will obtain exactly twice all
C4-extensions of K up to isomorphism. We have thus shown:

Proposition 1.2. Let k = K(
√

D) be a quadratic extension of K which is
embeddable in a C4-extension, in other words such that there exists ω ∈ k∗

such that Nk/K(ω) = Dn2 for some n ∈ K∗. Then the set of isomorphism
classes of C4-extensions L/K containing k/K is in a noncanonical one-
to-two correspondence with the group K∗/K∗2. The isomorphism class of
C4-extensions corresponding to t ∈ K∗/K∗2 is k(

√
ωt), and this is the same

extension as the one corresponding to tD.

Definition. Recall that T is the set of prime ideals of K ramified in k/K.
We denote by < T > the subgroup of the group of fractional ideals of K
generated by the elements of T .

(1) The T -class group ClT (K) is the quotient group of the group of frac-
tional ideals by the subgroup of ideals of the form βb, where β ∈ K∗

and b ∈< T >. In other words ClT (K) = Cl(K)/ < T >, the quo-
tient of the ordinary class group by the subgroup generated by the
ideal classes of elements of T .

(2) The T -Selmer group ST (K) of K is the set of classes of elements
u ∈ K∗ such that uZK = q2b for some ideal q of K and some ideal
b ∈< T >, modulo squares of elements of K∗

We will also use this definition either for T = ∅, in which case we re-
cover the notions of ordinary class and Selmer groups, which we will denote
respectively by Cl(K) and S(K).

We will need the following lemma, whose easy proof is left to the reader:

Lemma 1.3. The natural map from S(K) to S(k) induces an isomorphism
from ST (K) to S(k)τ , where as usual S(k)τ is the subgroup of elements of
S(k) stable by τ .

The following lemma is well known in the case T = ∅ (see for example
[2]), and its proof is the same.

Lemma 1.4. There exists a noncanonical one-to-one correspondence be-
tween K∗/K∗2 and pairs (a, u), where a is a squarefree1 ideal of K co-
prime to d whose ideal class is a square in the T -class group ClT (K), and
u ∈ ST (K). If aq2

0b = t0ZK for some b ∈< T > and t0 ∈ K∗, the element
of K∗/K∗2 corresponding to (a, u) is the class modulo squares of t0u.

1We will only use the term “squarefree” to mean integral and squarefree
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Note for future reference that by the approximation theorem q0 and u
(but of course not t0 in general) can be chosen coprime to 2ZK .

1.3. Kummer and Hecke Theory. Important notation. In this pa-
per, the notation Q will be used to denote a generic fractional ideal of k
which need not be the same from one line to another. In addition, we recall
the following notation introduced above:
• K is a number field, the base field fixed in the whole paper.
• k is a quadratic extension of K, which will be fixed in the first three

sections of the paper, D ∈ K is an element such that k = K(
√

D), d and
D are the relative discriminant and different of k/K, τ is the generator of
Gal(k/K), and ω is an element of k∗ such that Nk/K(ω) = Dn2 for some
n ∈ K.
• T is the set of prime ideals of K which ramify in k/K, in other words

dividing d.
• L is a quartic C4-extension of K containing k.

Definition. If M is any fractional ideal of k, we denote by s(M) the square-
free part of M, i.e., the unique squarefree ideal such that M = s(M)Q2 for
some (fractional) ideal Q. If M = αZk for some element α, we write s(α)
instead of s(αZk).

Note the following trivial but important lemma:

Lemma 1.5. For two squarefree ideals a1 and a2 define

a1 Ma2 =
a1a2

(a1, a2)2
,

the “symmetric difference” of a1 and a2. Then for any two ideals M1 and
M2 we have s(M1M2) = s(M1)Ms(M2).

Lemma 1.6. Let C be an ideal of k and let M be a fractional ideal of k.
The following two conditions are equivalent:

(1) There exists an ideal Q of k such that (MQ2,C) = 1.
(2) We have (s(M),C) = 1.

If, in addition, M comes from K (i.e., M = mZk for some ideal m of K),
then in (1) we may choose Q2 of the form bq2Zk for q an ideal of K and
b ∈< T >.

Proof. Since M = s(M)Q2, we have (2) =⇒ (1). Conversely, assume
(1). If P is a prime ideal dividing C then vP(MQ2) = 0 hence vP(M) ≡ 0
(mod 2), so vP(s(M)) = 0, proving (2).

Finally, assume that M = mZk, and write m = aq2b where a is squarefree
coprime to d and b ∈< T >. It is clear that s(M) = aZk, so a is coprime
to C by (2), hence if we take Q = q−1B−1, where B2 = bZk, we have
MQ2 = aZk, so Q is suitable. �
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Definition. Let C be an ideal of k dividing 2Zk.
(1) We will denote by Q(C2) the group of elements α ∈ k∗ satisfying the

following two conditions:
• (s(α),C) = 1 or equivalently, by the above lemma, there exists

an ideal Q of k such that (αQ2,C) = 1.
• The multiplicative congruence α/x2 ≡ 1 (mod ∗C2) has a solu-

tion in k.
(2) We will denote by QK(C2) the group of elements z ∈ K∗ satisfying

the following two conditions:
• There exists an ideal b ∈< T > such that (zb,C) = 1.
• The multiplicative congruence z/x2 ≡ 1 (mod ∗C2) has a solu-

tion in k (not necessarily in K).

Remarks.
(1) When α (or z) is already coprime to C this means that α ≡ x2

(mod ∗C2) has a solution. We will see that it is essential to have also
the coprimeness condition.

(2) We clearly have QK(C2) ⊂ Q(C2) ∩K, but we do not have equality
in general, since by Lemma 1.6 if z ∈ Q(C2) ∩ K there exists q and
b ∈< T > such that (zq2b,C) = 1, not necessarily with q = 1. What
is true by the approximation theorem is that if z ∈ Q(C2)∩K, there
exists n ∈ K∗ such that zn2 ∈ QK(C2).

Since C1 | C2 | 2Zk implies trivially that Q(C2
2) ⊂ Q(C2

1), the following
definition is reasonable:

Definition. With the above notations, for α ∈ k∗ we denote by C(α) the
largest ideal (for divisibility) dividing 2Zk and such that α ∈ Q(C2).

With these notations, we recall the following important special case of a
theorem of Hecke (see for example [2], Chapter 10):

Theorem 1.7. Let k be a number field. Then for α ∈ k∗ (including
α ∈ k∗2) the relative ideal discriminant d(k(

√
α)/k) is given by

d(k(
√

α)/k) =
4s(α)
C(α)2

.

Thanks to Proposition 1.2 and Lemma 1.4, we see that we must apply
this theorem to α = t0uω, hence must first compute s(α). Note that s(M)
will usually denote the squarefree part of the ideal M in k, even if M comes
from an ideal of K. It will be clear from the context when the notation is
used to denote the squarefree part in K.

By definition t0uZK = aq2b for some squarefree ideal a coprime to d and
some b ∈< T >. Since the elements of T ramify in k/K and a is coprime
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to d, it follows that s(t0u) = a (this is of course the whole point of using
ideals coprime to d).

Let us now compute s(ω).

Lemma 1.8. Keep the above notation. There exists a squarefree ideal aω

of K coprime to d such that s(ω) = aωs(D), where D = D(k/K) is the
different of k/K.

Furthermore, the class of aω in ClT (K)/ClT (K)2 is independent of ω,
i.e., depends only on the extension k/K.

Notation. If β is any element such that Nk/K(β) = Dz2 with z ∈ K∗,
we will write aβ for the squarefree ideal of K coprime to d such that
s(β) = aβs(D). Moreover, ideals of k will be denoted by capital gothic
letters and those of K by lowercase gothic letters.

Proof. Writing ωZk = s(ω)Q2 and taking norms from k to K, we see that
Nk/K(s(ω)) = Dq2 for some ideal q of K. Since the different satisfies
Nk/K(D) = d and since DZK = dm2 for some ideal m, it follows that
Nk/K(s(ω)/D) = q2

1 for some ideal q1 of K. By Hilbert 90 for ideals, or
trivially directly, this is equivalent to

s(ω) = Dq2Q
2 ,

for some ideal q2 of K (and as usual Q an ideal of k). Without loss of
generality we may assume that q2 is squarefree in K (include all squares in
Q) and is coprime to d (include all ramified primes in Q). The first part of
the lemma follows from the fact that s(ω) is a squarefree ideal of k.

Furthermore, since the general solution to Nk/K(α) = Dz2 is α = ωtβ2,
we have aα = s(aωt). If tZK = atq

2b for b ∈< T >, by Lemma 1.5 this is
therefore equal to aω Mat = aωat/(aω, at)2. Since the class of at is clearly a
square in ClT (K), the second part of the lemma follows. �

Since s(t0u) = a, Lemma 1.5 gives the following:

Corollary 1.9. With the above notation, we have s(ωt0u) = (aMaω)s(D).

Corollary 1.10. Keep the above notation and let L = k(
√

ωt0u). The
relative ideal discriminant of L/k is given by

d(L/k) =
4(aMaω)s(D)

C(ωt0u)2
.

2. The Dirichlet Series

As usual in this kind of investigation, we set

ΦK,4(C4, s) =
∑
L/K

1
N(d(L/K))s

,
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where the symbol N without a subscript will always indicates the abso-
lute norm from K to Q, and L/K ranges over K-isomorphism classes of
C4-extensions. When using the relative norm from k to K, we will always
write (as above) Nk/K , and when using the absolute norm from k to Q, we
will always write Nk/Q.

By the Galois description of C4-extensions and the discriminant-conduc-
tor formula d(L/K) = d(k/K)2Nk/K(d(L/k)), we can write

ΦK,4(C4, s) =
1
2

∑
k/K

1
N(d(k/K))2s

Φk(s) ,

where the sum is over isomorphism classes of quadratic extensions k/K
which are embeddable in a C4-extension, and

Φk(s) =
∑

[L:k]=2
Gal(L/K)'C4

1
Nk/Q(d(L/k))s

.

In the above, the quadratic extensions L/k are of course only taken up to
k-isomorphism, and the factor 1/2 in front comes from the fact that we
have a one-to-two correspondence in Proposition 1.2.

The goal of the following sections is to study the inner Dirichlet series
Φk(s). We will come back to the global series ΦK,4(C4, s) only in Section
4.

Thus in this section and the following, we fix a quadratic extension k
of K, an element D ∈ K∗ such that k = K(

√
D) which is a sum of two

squares in K, an element ω ∈ k∗ of relative norm D times a square, and
more generally we keep the notations of the preceding section.

To simplify notations, denote by I the set of squarefree ideals of K
which are coprime to d and whose ideal class in ClT (K) is a square. Let
n = [K : Q] be the absolute degree of the base field K, so that [k : Q] = 2n.
It follows from Proposition 1.2, Lemma 1.4 and Corollary 1.10 that we
have:

Φk(s) =
∑
a∈I

∑
u∈ST (K)

Nk/Q(4(aMaω)s(D)/C(ωt0u)2)−s

=
N(s(d))−s

42ns

∑
C|2Zk

(C,s(D))=1

Nk/Q(C)2s
∑
a∈I

(aMaω ,C)=1

gt0(C)
N(aMaω)2s

,

where
gt0(C) =

∑
u∈ST (K)
C(ωt0u)=C

1 .
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(We have used the trivial fact that Nk/K(s(D)) = s(d), where here s(d) of
course denotes the squarefree part of d in K).

For C coprime to s(D) and to aMaω (in other words to s(ωt0u)), set

ft0(C) =
∑

u∈ST (K)
C|C(ωt0u)

1 =
∑

u∈ST (K)
ωt0u∈Q(C2)

1 .

In the above notations gt0 and ft0 , we do not write the explicit dependence
on a.

We clearly have

ft0(C) =
∑
C|D|2

gt0(D) ,

where we take only the D coprime to s(D) and to aMaω. Thus, by a form
of the Möbius inversion formula we deduce that

gt0(C) =
∑
C|D|2

µK(D/C)ft0(D)

(same restrictions on D), where µK is the Möbius function on ideals of K.
It follows that

Φk(s) =
N(s(d))−s

42ns

∑
D|2Zk

(D,s(D))=1

∑
C|D

µK(D/C)Nk/Q(C)2s
∑
a∈I

(aMaω ,D)=1

ft0(D)
N(aMaω)2s

=
N(s(d))−s

42ns
×∑

C|2Zk

(C,s(D))=1

Nk/Q(C)2s
∏
P|C

(
1− 1

Nk/Q(P)2s

) ∑
a∈I

(aMaω ,C)=1

ft0(C)
N(aMaω)2s

.

To compute ft0(C), we first need the following definitions and notations.

Definition. Let C be an ideal of k dividing 2Zk, and set c = C2 ∩K.
(1) We define ClT,C2(K) as the quotient group of the group of fractional

ideals of K coprime to c by the subgroup of ideals of the form zb which
are coprime to c, where b ∈< T > and z ∈ QK(C2) (see Definition
1.3).

(2) We define ST,C2(K) as the set of elements u ∈ ST (K) such that
u ∈ QK(C2) for some lift u (hence for all lifts u such that there exists
b ∈< T > with (ub,C) = 1).

Note the important fact that although the elements z and u are in the
base field K, the congruences defining QK(C2) are still in k and not in K.
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Definition. Let C be an ideal dividing 2Zk and coprime to s(D).
(1) We will say that C satisfies condition (∗) if there exists β ≡ 1

(mod ∗C2) such that Nk/K(β) is equal to D times a square in K.
(2) Let a be an ideal of K. We will say that a satisfies condition (∗∗)C2 if

a is squarefree and coprime to d, and if there exists β ≡ 1
(mod ∗C2) with Nk/K(β) equal to D times a square such that
(aMaω)s(D) = βQ2 (or, equivalently, s(β) = (aMaω)s(D) = s(ωa)).

Lemma 2.1. (1) If a satisfies condition (∗∗)C2, then a M aω is coprime
to c (or, equivalently, to C).

(2) If a and a0 satisfy condition (∗∗)C2, then a/a0 is coprime to c.

Proof. (1). Let P be a prime ideal of k dividing C. Then by assumption
vP(s(D)) = 0 and vP(β) = 0 for β ≡ 1 (mod ∗C2). Thus condition (∗∗)C2

implies that vP(aMaω) ≡ 0 (mod 2). Since aMaω is squarefree and coprime
to d, its extension to k is also squarefree so that in fact vP(a M aω) = 0,
proving (1).

(2). Assume that s(ωa0) = s(β0) and s(ωa) = s(β) with β0 and β as
above. Including the implicit ideals Q2 of k and dividing, this implies that
(a/a0)Zk = (β/β0)Q2. As in (1), if P is an ideal dividing C, we have
vP(a/a0) ≡ 0 (mod 2). Since a and a0 are squarefree and coprime to d, we
have vP(a/a0) ∈ {−1, 0, 1}, hence vP(a/a0) = 0 as claimed. �

Proposition 2.2. Fix an ideal C dividing 2Zk, let a be an ideal of K and
let t0 be as above.

(1) We have ft0(C) 6= 0 if and only if a satisfies (∗∗)C2.
(2) There exists an ideal a0 satisfying (∗∗)C2 if and only if C satisfies

condition (∗). If β ≡ 1 (mod ∗C2) is such that Nk/K(β) is equal to
D times a square in K, we may choose a0 = aβ Maω.

(3) Let a0 be some ideal satisfying (∗∗)C2. Then a satisfies (∗∗)C2 if and
only if the class of a/a0 is a square in ClT,C2(K) or, equivalently, if
the class of (aMaω)/(a0 Maω) is a square in ClT,C2(K).

(4) The ideal a satisfies (∗∗)Zk
if and only if the class of a is a square in

ClT (K). In particular this is the case when a satisfies the stronger
condition (∗∗)C2.

(5) When ft0(C) 6= 0 (hence by (1) when a satisfies (∗∗)C2), we have

ft0(C) = |ST,C2(K)| ,
and in particular this is independent of a satisfying (∗∗)C2.

Proof. (1). Assume that ωt0u ∈ Q(C2) or, equivalently, that x2 = ωt0uβ
for some β ≡ 1 (mod ∗C2). By definition of a and u, there exists b ∈< T >
and q such that t0uZK = aq2b, so that t0uZk = aQ2, hence by Corollary
1.9

x2Zk = β(aMaω)s(D)Q2 .
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In addition, taking norms from k to K of the equality x2 = ωt0uβ, it is
clear that Nk/K(β) is equal to D times a square of K, so that a satisfies
(∗∗)C2 .

Conversely, assume that a satisfies (∗∗)C2 , so that ωt0Zk = βQ2. If we
set α = ωt0/β, this means that α ∈ S(k), the ordinary Selmer group of
k. On the other hand, taking relative norms we obtain Nk/K(α) = y2 for
some y ∈ K, so that by Lemma 1.1 we obtain as usual α = nγ2 for some
γ ∈ k and n ∈ K. Thus in S(k) we have α = n, hence n ∈ S(k)τ , and by
Lemma 1.3 this means that n ∈ ST (K). Finally, setting u = 1/n, we see
that u is an element of ST (K) such that ωt0u ∈ Q(C2), proving (1).

(2). It follows from (1) that the existence of an ideal a satisfying (∗∗)C2

implies the existence of β ≡ 1 (mod ∗C2) such that Nk/K(β) is equal to D
times a square. Conversely, if such a β exists, by Lemma 1.8 we can write
s(β) = aβs(D) for a squarefree ideal aβ prime to d, and it is clear that
aω Maβ satisfies (∗∗)C2 .

(3). Assume that a0 satisfies (∗∗)C2 for some β0 ∈ k. By construction,
we know that (a M aω)s(D) = ωaQ2, hence by dividing, it is clear that a
satisfies (∗∗)C2 if and only if (a/a0)Zk = αQ2 for some α ≡ 1 (mod ∗C2)
of square norm. Thus by Lemma 1.1 we can write α = zγ2 for some
z ∈ K and γ ∈ k, and in particular, z ∈ QK(C2). On the other hand the
fractional ideal (a/a0)/z of K extends to the square of the ideal Qγ in k,
hence is of the form q2b for some b ∈< T >, so that a/a0 = zq2b. By
the approximation theorem, by multiplying q with a suitable n ∈ K∗ and
changing z into z/n2, we may assume that q is coprime to c, hence that
z ∈ QK(C2), and since by Lemma 2.1 (2) a/a0 is coprime to c, this exactly
means that the class of a/a0 is a square in ClT,C2(K). Furthermore, since
(a M aω)/(a0 M aω) is equal to the square of an ideal times a/a0 which is
coprime to c by Lemma 2.1 (1), the second statement of (3) follows.

(4). If we take C = Zk, it is clear that a0 = Zk satisfies (∗∗)Zk
with

β = ω (since s(ω) = aωs(D)). Thus by (3) a satisfies (∗∗)Zk
if and only if

the class of a is a square in ClT (K) = ClT,Zk
(K). In particular, this is true

if a satisfies (∗∗)C2 .

(5). Assume that a satisfies condition (∗∗)C2 , so that there exists
v ∈ ST (K) such that ωt0v ∈ Q(C2). Thus ωt0u ∈ Q(C2) if and only if
u/v ∈ Q(C2), hence if and only if u/v ∈ ST,C2 . Thus the set of suitable u

is equal to vST,C2 , whose cardinality is of course equal to |ST,C2 |. �

Thanks to this proposition, we can now easily prove an important pre-
liminary formula for the Dirichlet series Φk(s).
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Theorem 2.3. To simplify notations, set GC2(K) = ClT,C2(K)/ClT,C2(K)2.
Then

Φk(s) =
N(s(d))−s

42ns
×∑

C|2Zk

(C,s(D))=1
C satisfies (∗)

|ST,C2(K)| Nk/Q(C)2s
∏
P|C

(
1− 1

Nk/Q(P)2s

)
P (C) ,

where

P (C) =
1

|GC2(K)|
∑

χ∈ ̂GC2 (K)

χ(aβ(C2))
∏
p-cd

(
1 +

χ(p)
Np2s

)
,

and β(C2) is an element of k such that β ≡ 1 (mod ∗C2) with Nk/K(β(C2))
equal to D times a square of K.

Proof. We replace ft0(C) by its value given by Proposition 2.2 in the last
formula for Φk(s) given just before Definition 2 above. In particular, we can
restrict the summation to ideals C satisfying (∗), and to ideals a satisfying
(∗∗)C2 . However, by the same proposition if a satisfies (∗∗)C2 then the class
of a is automatically a square in ClT (K). It follows that we can remove
the restriction a ∈ I and replace it by the weaker condition that a ∈ J ,
where by definition J is simply the set of squarefree ideals of K coprime
to d. Thus

Φk(s) =
N(s(d))−s

42ns
×∑

C|2Zk

(C,s(D))=1
C satisfies (∗)

|ST,C2(K)| Nk/Q(C)2s
∏
P|C

(
1− 1

Nk/Q(P)2s

)
P (C) ,

where

P (C) =
∑
a∈J

(aMaω ,C)=1
a satisfies (∗∗)C2

1
N(aMaω)2s

.

Note that the condition a ∈ J is equivalent to aMaω ∈ J , and that the
map a 7→ aMaω is an involution of J . Furthermore, aMaω is squarefree and
coprime to C and d, and by Proposition 2.2 (2) and (3), a satisfies (∗∗)C2

if and only if the class of (a M aω)/(a0(C2) M aω) is a square in ClT,C2(K),
with a0(C2) = aβ(C2) Maω, hence if and only if the class of (aMaω)/aβ(C2) is
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a square in ClT,C2 . Thus, changing a into aMaω, we obtain

P (C) =
∑
a∈J

(a,C)=1

a/aβ(C2)∈ClT,C2 (K)2

1
N(a)2s

,

where β(C2) ≡ 1 (mod ∗C2) is of relative norm D times a square. Note that
since (C, s(D)) = 1, aβ(C2) is coprime to C.

Since the class of an ideal m is a square in ClT,C2(K) if and only if for

each χ ∈ ĜC2(K), the group of characters of GC2(K), we have χ(m) = 1, we
obtain

P (C) =
1

|GC2(K)|
∑

χ∈ ̂GC2 (K)

∑
a∈J

(a,C)=1

χ(a/aβ(C2))
N(a)2s

=
1

|GC2(K)|
∑

χ∈ ̂GC2 (K)

χ(aβ(C2))
∏
p-cd

(
1 +

χ(p)
Np2s

)
,

since χ is of order 2, proving the theorem. As in Lemma 1.8, it is easily
shown that the class of aβ(C2) in GC2(K) is independent of the choice of
β(C2), so that χ(aβ(C2)) is independent of β(C2). �

It remains to compute |ST,C2(K)| and to study condition (∗).

3. Computation of |ST,C2(K)| and study of condition (∗)

We keep all the above notation. and in particular C will always be an
ideal dividing 2Zk, coprime to s(D) and satisfying condition (∗).

3.1. Reduction of the problem.

Definition. As in Definition 2, set c = C2 ∩K.
(1) We will say that an element z ∈ K∗ is T -coprime to c if there exists

b ∈< T > such that the ideal zb is coprime to c.
(2) We will denote by ZC2 the quotient by QK(C2) of the group of

elements of K∗ which are T -coprime to c, i.e., the subgroup of such
elements z for which the congruence z/x2 ≡ 1 (mod ∗C2) is soluble
in k.

Remarks.
(1) It is clear that if z is T -coprime to c, then z2 ∈ QK(C2), hence ZC2 is

an abelian group killed by 2, like all the other groups that we consider
in this section. We will compute its cardinality explicitly later (see
Corollaries 3.7 and 3.13).
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(2) If we write c = crcu where cr = (c, d∞) and (cu, d) = 1, it is clear that
z is T -coprime to c if and only if (z, cu) = 1.

The basic tool which will enable us to compute ST,C2 is the following
result. Recall that for any ideal C dividing 2Zk, we have set

GC2(K) = ClT,C2(K)/ClT,C2(K)2 .

In particular, GZk
(K) = ClT (K)/ClT (K)2.

Proposition 3.1. Let c = C2 ∩ K. There exists a natural long exact
sequence

1 −→ ST,C2(K) −→ ST (K) −→ ZC2 −→ GC2(K) −→ GZk
(K) −→ 1 ,

where the maps will be described in the proof.

Proof. Exactness at ST,C2 is trivial. If u ∈ ST (K), then uZK = q2b with
b ∈< T >, and by the approximation theorem, changing u into n2u if
necessary, we may assume that q is coprime to c, hence u is T -coprime to c.
We then send such a u to its class in ZC2 . It is clear that it does not depend
on the representative of the class u chosen T -coprime to c. Furthermore, u
is sent to the unit element of ZC2 if and only if u ∈ QK(C2), hence if and
only if u ∈ ST,C2 , proving exactness at ST (K).

Let z ∈ ZC2 . Since z is T -coprime to c, there exists a b ∈< T > such
that (zb, c) = 1, hence also (zb,C) = 1. We will send z to the class of
zb. By definition of ClT,C2(K), this class is independent of the choice of b.
Furthermore, it is independent of the representative z of the class: indeed,
if z′ is another representative, then z′ = zn where n is such that there
exists b′ ∈< T > with (nb′, c) = 1 and n/x2 ≡ 1 (mod C2) soluble in k. It
follows that z′bb′ = (zb)(nb′), and the class of nb′ is trivial since n/x2 ≡ 1
(mod C2) is soluble in k. This shows that the map is well defined.

To show exactness at ZC2 , let z be T -coprime to c, let b ∈< T > with
(zb, c) = 1, and assume that the class of zb is trivial in GC2(K). This
means that there exists an ideal q coprime to c, an ideal b′ ∈< T > and an
element n such that (nb′, c) = 1 and n/x2 ≡ 1 (mod C2) soluble in k, with
zb = nb′q2, in other words (z/n)ZK = q2(b′/b). Since n ∈ QK(C2), the
class of z/n in ZC2 is equal to the class of z. Thus choosing z/n instead
of z as representative of its class, and noting that z/n ∈ ST (K), we have
shown exactness at ZC2 .

Let a be an ideal coprime to c, and assume that its class as an element
of GZk

(K) is trivial. This means that a = zq2b for some z ∈ K∗, some
ideal q and some b ∈< T >. Using as usual the approximation theorem, we
may assume that we have chosen q coprime to c, so that (zb, c) = 1. Since
(q, c) = 1, the class of a in GC2(K) is equal to that of a/q2 = zb, and since
z is T -coprime to c, this proves exactness at GC2(K). Note that QK(C2) is
of course sent to the unit element of GC2(K).
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Finally, if a is an ideal of K, by the approximation theorem we can
find β such that (βa, c) = 1, and the class of βa in GZk

(K) is equal to
that of a, proving exactness at that group and finishing the proof of the
proposition. �

The second much simpler exact sequence that we need is the following.

Proposition 3.2. There exists a natural short exact sequence

1 −→ UT (K)
UT (K)2

−→ ST (K) −→ ClT (K)[2] −→ 1 ,

where UT (K) denotes the group of T -units of K (i.e., elements ε ∈ K∗

such that vp(ε) = 0 for all prime ideals p /∈ T ), and for any group G, G[2]
denotes the subgroup of elements of G whose square is the unit element of
G.

Proof. Let u ∈ ST (K), so that uZK = q2b for some b ∈< T >. We send
u to the class of q in ClT (K). By definition, this class indeed belongs to
ClT (K)[2]. Conversely, if q ∈ ClT (K)[2] then q2 = zb for some b ∈< T >,
so clearly z ∈ ST (K) proving exactness at ClT (K)[2]. Finally, if u ∈ ST (K)
is sent to the unit element of ClT (K), this means that uZK = q2b and
that q = zb′ for some b′ ∈< T >. Hence uZK = z2b′′ for still another
b′′ ∈< T >, so u/z2 (whose class in ST (K) is the same as that of u) is an
T -unit, proving the proposition. �

Corollary 3.3. Let (r1, r2) be the signature of K. We have

|ST,C2(K)| = 2r1+r2+|T ||GC2(K)|
|ZC2 |

.

Proof. By Proposition 3.1, we have

|ST,C2(K)| = |ST (K)||GC2(K)|
|ZC2 ||GZk

(K)|
,

and by Proposition 3.2 we have

|ST (K)| =
∣∣∣∣ UT (K)
UT (K)2

∣∣∣∣ |ClT (K)[2]| .

It is well known that UT (K) is isomorphic to the group of roots of unity
of K times a free abelian group of rank r1 + r2 − 1 + |T |. Since the group
of roots of unity is cyclic of even order, it follows that |UT (K)/UT (K)2| =
2r1+r2+|T |. On the other hand, for any finite abelian group G we have
|G/G2| = |G[2]| (look at the kernel and cokernel of squaring), so that
|ClT (K)[2]| = |GZk

(K)|. Putting everything together, we obtain the given
formula. �
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By Theorem 2.3, the term |GC2(K)| will cancel. It thus remains to com-
pute |ZC2 |. By the Chinese remainder theorem, it is immediately checked
on the definition that this is multiplicative in the following sense. Let C1

and C2 be two ideals of Zk, and set ci = C2
i ∩ K for i = 1, 2. Then if

(c1, c2) = 1, we have |Z(C1C2)2 | = |ZC2
1
||ZC2

2
|. Note that this coprimeness

condition is stronger than the simple coprimeness condition (C1,C2) = 1,
but is necessary since we work in K.

A similar result is also true for condition (∗): if (C1,C2) = 1, then (∗) is
true for C1C2 if and only if it is true for C1 and C2.

Thus we can work individually for each prime ideal p of K dividing 2ZK .
We will denote by e = e(p) the absolute ramification index of p over 2.

Recall that the ideals C which occur are coprime to s(D). In other
words, the ideals p of K which we consider are the ideals above 2 such that
vp(d) ≡ 0 (mod 2).

Lemma 3.4. (1) We can choose D defining k/K such that for all p | 2
we have vp(D) = vp(d).

(2) For such a choice of D, there exist a and b such that D = a2 + 4b,
where vp(a) = vp(d)/2 and vp(b) = 1 for every prime ideal p | 2 such
that vp(d) > 0, and vp(a) = 0, vp(b) ≥ 0 for every prime ideal p | 2
such that vp(d) = 0.

(3) We may choose ω coprime to all ideals C dividing 2 which are coprime
to s(D) (which are the only ideals C that we use), and such that
Nk/K(ω) = Dz2 for some z ∈ K∗.

Proof. (1). We know that DZK = dm2 for some ideal m of K. By the
approximation theorem, multiplying if necessary m by a suitable z ∈ K to
make it coprime to 2 (which changes D into Dz2, hence does not change
k = K(

√
D)), we may assume that m is coprime to 2, proving (1).

(2). Let p be a prime ideal above 2 such that vp(d) ≡ 0 (mod 2),
hence vp(D) ≡ 0 (mod 2). By Hecke’s theorem, there exists xp such that
x2

p/D ≡ 1 (mod ∗pk) for k = 2e(p) + 1− vp(d) and for no larger value of k
if vp(d) > 0, and for k = 2e(p) if vp(d) = 0 (and possibly for larger values
of k). Since vp(D) = vp(d), for vp(d) > 0 we have x2

p ≡ D (mod ∗p2e(p)+1),
and this congruence is not soluble modulo any higher power of p, while
x2

p ≡ D (mod ∗p2e(p)) for vp(d) = 0. By the Chinese remainder theorem,
we can find a ∈ K such that for each p | 2 for which vp(d) ≡ 0 (mod 2) we
have a ≡ xp (mod ∗p2e(p)+1) or a ≡ xp (mod ∗p2e(p)) respectively, so that
vp((D − a2)/4) = 1 for all such p with vp(d) > 0, and vp((D − a2)/4) ≥ 0
otherwise, proving (2).

(3). Recall that by Lemma 1.8 we have ωZk = aωs(D)Q2. By the
approximation theorem, multiplying ω by a square in k, and also by an
element of K (which does not change the property that Nk/K(ω) is equal
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to D times a square of K) we may assume that Q and aω are coprime to
2. Since the ideals C divide 2Zk and are coprime to s(D), it follows that ω
is coprime to C. �

In the sequel, we fix a and b satisfying the above lemma, and we always
assume that ω is chosen satisfying (3). We will set ρ = (a +

√
D)/2.

Before separating the unramified and ramified cases, note the following
lemma which is common to both.

Lemma 3.5. Assume D chosen as above. Let p be an ideal of K above
2 such that vp(d) ≡ 0 (mod 2), and let P be an ideal of k above p. Then
α = u + vρ is a P-integer in k if and only if u and v are p-integers of K.

Proof. Note that the relative equation of ρ in k/K is x2 − ax− b = 0, and
since a and b are p-integers, ρ is a P-integer of k. The relative discriminant
of the order ZK,p[ρ]/ZK,p is equal to D, and we have vp(D) = vp(d), hence
ZK,p[ρ] is p-maximal, proving the lemma. Of course, we could also check
this directly using trace and norm. �

3.2. Computation of |ZC2 | in the Unramified Case. We assume in
this subsection that p is unramified, so that vp(d) = 0 and vp(a) = 0. We
let P be a prime ideal of k above p.

Proposition 3.6. Keep the above notations, and let t ≤ e = e(p). If
n ∈ K∗, the congruence x2 ≡ n (mod ∗p2tZk) has a solution in k if and
only if it has a solution in K.

Proof. One direction is trivial, so assume that the congruence has a solution
x = u+vρ ∈ k with u and v in K. We claim that u2 ≡ n (mod ∗p2t), which
will prove the proposition. Indeed, we have

x2 = (u2 + v2b) + (2uv + v2a)ρ ≡ n (mod ∗p2tZk) ,

hence by Lemma 3.5 vp(v(2u + va)) ≥ 2t and vp(u2 + v2b− n) ≥ 2t. Since
t ≤ e = e(p), vp(a) = 0, and vp(u) ≥ 0, it is clear that if vp(v) < t the
first inequality leads to a contradiction, so that vp(v) ≥ t, thus proving our
claim by replacing in the second inequality. �

Corollary 3.7. (1) If p is inert in k/K so that pZk = P, and if C = Pt

with 1 ≤ t ≤ e(p), then

|ZC2 | = Npt .

(2) If p is split in k/K so that pZk = PP, and if C = Pt1P
t2 with

0 ≤ t1, t2 ≤ e(p), then

|ZC2 | = Npmax(t1,t2) .



Cyclic quartic extensions 491

Proof. Note that c = C2 ∩ K = p2t with t as given in the inert case, and
with t = max(t1, t2) in the split case. Thus

|(ZK/c)∗| = φK(p2t) = Np2t−1(Np− 1) ,

where φK is the Euler φ-function on ideals of K. Furthermore, when
(C, d) = 1, it is clear that ZC2 = (ZK/c)∗/QK(C2), where QK(C2) is the
group of classes of elements of QK(C2) modulo c. By the above proposition
QK(C2) is the group of squares in (ZK/c)∗. Since c = (pt)2 and pt | 2,
an elementary argument shows that the squaring map from (ZK/pt)∗ to
the squares in (ZK/p2t)∗ is well defined and is an isomorphism, so that
|QK(C2)| = φK(pt) = Npt−1(Np− 1), proving the corollary. �

3.3. Study of Condition (∗) in the Unramified Case. We first prove
the following proposition, which is a strengthening of Proposition 3.6.

Proposition 3.8. As above, let t ≤ e = e(p), and denote by SQ the
subgroup of elements α ∈ (Zk/p2tZk)∗ such that Nk/K(α) is a square in
(ZK/p2t)∗ (this is of course independent of the choice of the representative
α). We have a short exact sequence

1 −→ (ZK/pt)∗ −→ (Zk/ptZk)∗ × (ZK/p2t)∗ −→ SQ −→ 1 ,

where the first nontrivial map sends m to (m,m2), and the second sends
(x, n) to nx−2.

Proof. We have already mentioned that the squaring map gives an iso-
morphism from (ZK/pt)∗ to (ZK/p2t)∗2, hence the first nontrivial map is
clearly well defined and injective. Exactness in the middle is a restatement
of Proposition 3.6. Finally, it is clear that the image of the second nontrivial
map lands in SQ. We must show that it is all of SQ.

For this, we use the following well known result from local class field
theory: since p is unramified in the abelian extension k/K, the norm map
from the units of kP to those of Kp is surjective. In particular, this is also
the case at the level of p2t, in other words for any m ∈ (ZK/p2t)∗ there
exists β ∈ K such that Nk/K(β) ≡ m (mod ∗p2t). The kernel of the norm
map from (Zk/p2tZk)∗ to (ZK/p2t)∗ has cardinality φk(p2tZk)/φK(p2t). On
the other hand, SQ is the inverse image by the norm map of the squares
of (ZK/p2t)∗, whose cardinality is equal to φK(pt) as we have seen. Since
the norm is surjective, it follows that

|SQ| = φK(pt)
φk(p2tZk)
φK(p2t)

=
φk(ptZk)Nk/Q(ptZk)

Npt = φk(ptZk)Npt .
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On the other hand, the cardinality of the image of the second nontrivial
map in the above sequence is equal to

φk(ptZk)φK(p2t)
φK(pt)

= φk(ptZk)Npt = |SQ| ,

thus showing that this map is surjective. �

Corollary 3.9. Keep the above notations. There exists n ∈ K coprime to
p such that the congruence ω ≡ nx2 (mod ∗p2tZk) has a solution in k. In
other words, if C = Pt for p inert and pZk = P, or if C = Pt1P

t2 for p
split and pZk = PP (and of course C | 2Zk in both cases), then C satisfies
condition (∗).

Proof. We know that a2 ≡ D (mod p2e) with vp(a) = 0. WritingNk/K(ω) =
Dm2, where by assumption vp(m) = 0, it follows that

Nk/K(ω) = Dm2 ≡ (am)2 (mod p2e) .

Thus, Nk/K(ω) is a square modulo p2e, hence modulo p2t since t ≤ e, so
that by definition ω ∈ SQ. The surjective property that we have shown is
thus equivalent to the first part of the corollary. For the second part, note
that by Lemma 1.1, Nk/K(β) is equal to D times a square if and only if
β = ω/(nx2) for some n ∈ K, and the condition β ≡ 1 (mod ∗C2) is thus
the same as ω ≡ nx2 (mod ∗C2), so the corollary follows. �

3.4. Computation of |ZC2 | in the Ramified Case. We now treat the
ramified case, which is more delicate, both because the group ZC2 is a little
more complicated to compute, and because condition (∗) is not always
satisfied, contrary to the unramified case.

Thus we assume here that p is ramified and divides c, so that pZk = P2,
and by Lemma 3.4 we have vp(D) = vp(d) ≡ 0 (mod 2) (since (C, s(D)) =
1), D = a2 + 4b with vp(a) = vp(d)/2 > 0, and vp(b) = 1.

In this case, we have C = Pt with 1 ≤ t ≤ e(P) = 2e(p) = 2e, so that
C2 = ptZk, c = C2 ∩K = pt, but t is not necessarily even. It is clear that
any element of K∗ is T -coprime to C: indeed, if z ∈ K∗, then zp−vp(z) is
coprime to C, and p ∈< T >. We begin by the following lemma.

Lemma 3.10. Let A and B be p-integral elements of K∗ such that
vp(B) = 0, vp(A) is odd, and vp(A) < 2e. There exist u and v in K
such that vp(u2 + Av2 − B) ≥ 2e if and only if there exists u such that
vp(u2 − B) ≥ vp(A). In particular, if vp(A) = 1, this condition is always
satisfied.

Proof. By induction on k ≥ vp(A), we will show that there exist uk and vk

such that vp(u2
k +Av2

k−B) ≥ k. By assumption, this is true for k = vp(A).
Assume that it is true for some k such that vp(A) ≤ k ≤ 2e− 1, and let us
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prove that it is also true for k+1. Write uk+1 = uk +xk and vk+1 = vk +yk,
so that the inequality for k + 1 can be written

vp(u2
k + 2ukxk + x2

k + A(v2
k + 2vkyk + y2

k)−B) ≥ k + 1 .

If k is even, we choose yk = 0 (in other words vk+1 = vk). Since ZK/p is a
finite field, hence perfect, there exists x′k such that

x′k
2 ≡ (B − (u2

k + Av2
k))/πk (mod p) ,

where π is some uniformizer of p in K. We choose xk = πk/2x′k. Note
that vp(2ukxk) ≥ e + k/2 ≥ k + 1, since this last inequality is equivalent to
k + 1 ≤ 2e − 1, which is true since k + 1 is odd and less than or equal to
2e. Thus uk+1 is suitable.

If k is odd, we choose xk = 0 (in other words uk+1 = uk). As before,
there exists y′k such that

y′k
2 ≡ πvp(A)

A
·
B − (u2

k + Av2
k)

πk
(mod p) .

Since k − vp(A) is even, we can set yk = π(k−vp(A))/2y′k. Since

vp(2Avkyk) ≥ e + vp(A) + (k − vp(A))/2

= e + (k + vp(A))/2 ≥ e + (k + 1)/2 ≥ k + 1

as above, it follows that vk+1 is suitable. This proves the first part of the
lemma by induction on k.

In the special case vp(A) = 1, the condition vp(u2 − B) ≥ 1 can always
be satisfied since the field ZK/p is perfect. �

Remark. The same question can be asked for vp(A) even. In that case
the answer seems to be much more complicated, but fortunately we will
not need it.

Proposition 3.11. Let p be ramified in k/K so that pZk = P2, and let t
be such that 1 ≤ t ≤ 2e(p)− vp(d)/2. If n ∈ K∗, a necessary and sufficient
condition for the solubility in k of n/x2 ≡ 1 (mod ∗ptZk) is the following:

(1) If vp(n) is odd, then t ≤ vp(d)/2− 1.
(2) If vp(n) is even, then either t ≤ vp(d)/2 or the congruence n/x2 ≡ 1

(mod ∗p2t1+1) is soluble in K for t1 = d(t− vp(d)/2)/2e.

Proof. (1). Choose a uniformizer π of p in K. Multiplying if necessary
n by a power of π2, we may assume that vp(n) = 1, hence vP(x) = 1.
Write x = u + vρ with u and v p-integral. Since vp(Nk/K(x)) = 1, we have
vp(u2 + uva− v2b) = 1. Since vp(a) = vp(d)/2 > 0 and vp(b) = 1, it follows
that we must have vp(u) > 0, hence also that vp(v) = 0, and conversely
when these conditions are satisfied we clearly have vP(x) = 1.



494 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier

Replacing x by u + vρ in our congruence, and using Lemma 3.5, we
obtain the two inequalities vp(u2 + v2b − n) ≥ t + 1 and vp(2uv + v2a) ≥
t + 1. Since vp(v) = 0, vp(u) ≥ 1, and vp(a) = vp(d)/2 ≤ e, it follows
that vp(2uv + v2a) = vp(d)/2 for any choice of u and v satisfying the
valuation conditions, hence the second inequality can be satisfied if and
only if t ≤ vp(d)/2 − 1. Assume this is the case. The first equality is thus
satisfied if and only if vp(v2 + (π2/b)w2 − (n/b)) ≥ t has a solution, and
since vp(π2/b) = 1 and vp((n/b)) = 0, Lemma 3.10 allows us to conclude
that this can be satisfied, proving (1).

(2). In this case, once again by multiplying n by a power of π2, we may
assume that vp(n) = 0, hence vP(x) = 0, in other words vp(Nk/K(x)) = 0,
i.e., vp(u) = 0 if we replace x by u + vρ.

Here we obtain the two inequalities vp(u2 + v2b − n) ≥ t and
vp(2uv + v2a) ≥ t. If t ≤ vp(d)/2 = vp(a) ≤ e, the second inequality is
automatically satisfied, and since vp(b) = 1 and vp(n) = 0, we deduce from
Lemma 3.10 that the first inequality can be satisfied for t ≤ 2e, which is
the case. Thus, assume from now on that t > vp(d)/2 = vp(a).

Lemma 3.12. Assume vp(d)/2 ≤ t ≤ 2e − vp(d)/2. The inequality
vp(2uv + v2a) ≥ t is equivalent to vp(v) ≥ (t− vp(d)/2)/2.

Proof. If vp(v) ≥ e − vp(d)/2, then vp(2uv + v2a) ≥ 2e − vp(d)/2 ≥ t
by assumption. On the other hand, if vp(v) < e − vp(d)/2, we have
vp(2uv + v2a) = 2vp(v) + vp(d)/2, and this is greater than or equal to t
if and only if vp(v) ≥ (t− vp(d)/2)/2. �

We will see below that condition (∗) implies in particular that t ≤
2e− vp(d)/2.

Thus, set t1 = d(t − vp(d)/2)/2e and v = πt1v1, so that vp(v1) ≥ 0 by
this lemma. Our first inequality thus reads vp(u2 + v2

1A − n) ≥ t with
A = π2t1b. Since we clearly have t ≥ 2t1 +1 and that vp(A) is odd, Lemma
3.10 implies that this is soluble if and only if u2 ≡ n (mod ∗p2t1+1) is soluble
in K, proving (2). Note for future reference that by Hecke’s theorem, the
solubility for 2t1 + 1 is equivalent to that for 2t1. �

Corollary 3.13. Under the same assumptions, let C = Pt for 1 ≤ t ≤
2e(p)− vp(d)/2. Then

|ZC2 | =

{
1 if t ≤ vp(d)/2− 1
2Npd(t−vp(d)/2)/2e if t ≥ vp(d)/2 .

Proof. We first note the following easy lemma.

Lemma 3.14. There exists a noncanonical surjective map h:

(ZK/pt)∗ × (Z/2Z) −→ ZptZk
.
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Proof. Choose a uniformizer π of p in K, and define the map h by
h(n, j) = nπj , with evident meanings for the signs. This clearly does
not depend on the choice of representative of n (since n ≡ 1 (mod pt) im-
plies n ∈ QK(ptZk)), nor on the representative of j (since π2 ∈ QK(ptZk)),
hence it is clearly a well defined group homomorphism. To show surjectiv-
ity, let n ∈ ZptZk

, and let n ∈ K∗ be a representative. If v = vp(n) is even,
then (n/π−v, 0) is a preimage of n, while if v is odd then (n/π−v, 1) is a
preimage of n. �

To prove the corollary, we must compute the cardinality of the kernel of h.
By definition (n, j) ∈ Ker h if and only if nπj ∈ QK(ptZk), hence if and only
if there exists x ∈ k with nπj/x2 ≡ 1 (mod ptZk). By Proposition 3.11, if
t ≤ vp(d)/2−1 then the kernel of h is equal to all of (ZK/pt)∗×(Z/2Z), hence
is of cardinality 2φK(pt), so that |ZptZk

| = 1 in that case. If t ≥ vp(d)/2, the
kernel of h is equal to the number of elements of (ZK/pt)∗×{0} which are
squares in (ZK/p2t1)∗, hence is of cardinality equal to φK(pt1)Npt−2t1 =
φK(pt−t1) since t1 > 0 (note that this formula is also valid for t = vp(d)/2).
Thus

|ZptZk
| = 2φK(pt)/φK(pt−t1) = 2Npt1 ,

finishing the proof of the corollary. �

3.5. Study of Condition (∗) in the Ramified Case. The result is as
follows.

Proposition 3.15. Let C = Pt with t ≤ 2e. Then C satisfies condition (∗)
if and only if t ≤ tmax, with

tmax =

{
e− vp(d)/2 if vp(d) ≥ e + 1
2e + 1− 3vp(d)/2 if vp(d) ≤ e .

It is clear that, as claimed above, this implies that in all cases tmax ≤
2e− vp(d)/2.

Proof. Recall that the ideal C = Pt satisfies (∗) if and only if there exists
β ≡ 1 (mod ∗ptZk) such that Nk/K(β) is equal to D times a square of K

or, equivalently, if it is equal to D/πvp(d) times a square of K which is a
p-unit.

We first show that the values given in the proposition are upper bounds.
Note first that if γ is a P-integer then vp(Trk/K(γ)) ≥ vp(d)/2. Indeed, if
we write γ = u + vρ with u and v ∈ K p-integers, Trk/K(γ) = 2u + va and
our claim follows since e ≥ vp(d)/2.

Thus, if β = 1 + πtγ for γ a P-integer, we have

Nk/K(β) = 1 + πt Trk/K(γ) + π2tNk/K(γ) ≡ 1 (mod ∗pj) ,
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with j = min(t + vp(d)/2, 2t). Our assumption on β implies that there
exists z ∈ K such that

D/πvp(d) ≡ z2 (mod ∗pj) .

On the other hand, we know that the maximal exponent k for which
D/πvp(d) is congruent to a square modulo pk is 2e + 1 − vp(d). We thus
obtain

min(t + vp(d)/2, 2t) ≤ 2e + 1− vp(d) ,

which is easily seen to imply the upper bounds given for tmax in the propo-
sition.

Conversely, we must show that these bounds are attained. It is clear
that we may choose ω such that vp(Nk/K(ω)) = 0. Write Nk/K(ω) =
D/πvp(d)/2m2

1 and D/πvp(d) ≡ m2
2 (mod ∗p2e+1−vp(d)) (in fact with

m2 = a/πvp(d)/2). It follows that Nk/K(ω) ≡ m2 (mod ∗p2e+1−vp(d)) for
some m ∈ K such that vp(m) = 0. We consider two cases.

The Case vp(d) ≥ e + 1
In this case, we are going to show that β = ω/m satisfies the desired

conditions. It is clear that Nk/K(β) is equal to D times a square of K,
hence we must only show the congruence condition.

Set ω = m + γ, so that

Nk/K(ω)−m2 = m Trk/K(γ) +Nk/K(γ) ≡ 0 (mod ∗p2e+1−vp(d)) .

We claim that vP(γ) ≥ 2e + 1 − vp(d). Indeed, assume that we have
shown that vP(γ) ≥ en, which is true with e0 = 0. Thus, γ/πben/2c is a
P-integer, so that vp(Trk/K(γ)) ≥ ben/2c + vp(d)/2, hence vp(Nk/K(γ)) ≥
min(ben/2c + vp(d)/2, 2e + 1 − vp(d)), and since vp(Nk/K(γ)) = vP(γ), we
can thus take

en+1 = min(ben/2c+ vp(d)/2, 2e + 1− vp(d)) .

Assume first that en < 4e+2− 3vp(d), so that in particular en < vp(d)− 2,
and also en/2 < 2e + 1− 3vp(d)/2. Thus,

en+1 − en = b(vp(d)− en)/2c ≥ 1 ,

so as long as en < 4e+2−3vp(d) the sequence en is strictly increasing. Thus,
for some n0 (possibly n0 = 0) we must have en0 ≥ 4e+2−3vp(d). We then
have en = 2e + 1− vp(d) for all n ≥ n0 + 1, so that vP(γ) ≥ 2e + 1− vp(d),
proving our claim. It follows that β = ω/m ≡ 1 (mod ∗pe−vp(d)/2Zk), so
condition (∗) is satisfied for C = Ptmax with tmax = e−vp(d)/2, proving the
proposition when vp(d) ≥ e + 1.

The Case vp(d) ≤ e

We first prove the following lemma.
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Lemma 3.16. Recall that m ∈ K∗ is such that

Nk/K(ω) ≡ m2 (mod ∗p2e+1−vp(d)) .

If vp(d) ≤ e, we may choose ω = r+sρ (still coprime to P with Nk/K(ω) =
Dz2 with z ∈ K∗) so that vp(s) = vp(r −m) = vp(d)/2.

Proof. Using the same notations and reasoning as above, we obtain once
again the recursion

en+1 = min(ben/2c+ vp(d)/2, 2e + 1− vp(d)) .

However, here the situation is different, and we can only claim that vP(γ) ≥
vp(d)− 1. Indeed, assume en ≤ vp(d), otherwise there is nothing to prove.
Then en+1−en = b(vp(d)−en)/2c, so that we can assert that en+1 > en only
as long as en ≤ vp(d)− 2, so that for some n0 we will have en0 ≥ vp(d)− 1,
proving our claim. This shows that if ω = r + sρ then vp(s) ≥ vp(d)/2− 1.

We first need to go one step further. It is easily seen that vP(u+vρ) ≥ 1
if and only if v is a p integer and vp(u) ≥ 1. Since vP(γ) ≥ vp(d) − 1, we
can thus write γ = πvp(d)/2−1(πu + vρ), where u and v are p-integers. The
condition

vp(m Trk/K(γ) +Nk/K(γ)) ≥ 2e + 1− vp(d) > vp(d)

implies that vp(v(v −m(a/πvp(d)/2)(π/b))) ≥ 1. Thus, either vp(v) ≥ 1, in
which case vP(γ) ≥ vp(d) so that ω/m ≡ 1 (mod ∗pvp(d)/2). Or we have v ≡
m(a/πvp(d)/2)(π/b) (mod ∗p). In that case, γ ≡ maρ/b (mod ∗pvp(d)/2Zk),
so that

ω/m ≡ (b + aρ)/b ≡ ρ2/b (mod ∗pvp(d)/2Zk) .

Thus, changing if necessary ω into ωb/ρ2 (which clearly is still coprime to p

and has the same norm as ω), we may assume that ω/m ≡ 1 (mod ∗pvp(d)/2).
Write ω = r + sρ for some p-integral r and s. It follows from the above

that we always have vp(s) ≥ vp(d)/2− 1, and that if necessary by changing
ω we may assume that vp(s) ≥ vp(d)/2 and vp(r −m) ≥ vp(d)/2.

Note that vp(r) = 0. If we had vp(s) > vp(d)/2, then it is easily checked
that if ω′ = ω(1 + ρ)2 = r′ + s′ρ, then s′ ≡ r(a + 2) (mod ∗pvp(d)/2+1),
and since vp(d)/2 < vp(d) ≤ e, it follows that vp(s′) = vp(d)/2. Thus, by
changing if necessary once again ω into ω(1 + ρ)2 (which preserves all the
necessary properties of ω), we may assume that vp(s) = vp(d)/2. Finally,
note that

vp(Nk/K(r+sρ)−m2) = vp(r2−m2+ars−bs2) ≥ 2e+1−vp(d) ≥ vp(d)+1

and since vp(bs2) = vp(d) + 1 and vp(ars) = vp(d), we must have

vp(r2 −m2) = vp(r −m) + vp(r −m + 2m) = vp(d) .
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Since vp(r−m) ≥ vp(d)/2, it follows that vp(r−m+2m) ≥ min(vp(d)/2, e) =
vp(d)/2. Thus vp(r −m) ≤ vp(d)− vp(d)/2 = vp(d)/2, so that vp(r −m) =
vp(d)/2, proving the lemma. �

We can now finish the proof of Proposition 3.15. If we set q = (r−m)/s
and n = (q2 + b)/r, a small computation gives

ωn− (q + ρ)2 = ρ((m2 −Nk/K(ω))/(rs)) .

Thus, since by the above lemma vp(q) ≥ 0, vp(r) = 0, vp(s) = vp(d)/2, and
since

Nk/K(ω) ≡ m2 (mod ∗p2e+1−vp(d)) ,

it follows that vp(n) = 0 and that if we set

β = ωn/(q + ρ)2 ≡ 1 (mod ∗p2e+1−3vp(d)/2) ,

then Nk/K(β) is equal to D times a square of K, so condition (∗) is satisfied
for t = tmax = 2e + 1− 3vp(d)/2. This terminates the proof of Proposition
3.15. �

4. Globalization

We first recall the following results which we have seen at the beginning
of this paper.

Lemma 4.1. Let K be a number field, and k = K(
√

D) be a quadratic
extension of K. The following conditions are equivalent.

(1) There exists a quadratic extension L/k such that the quartic extension
L/K is abelian with Galois group isomorphic to C4 (in other words,
k is embeddable in a C4-extension).

(2) There exists ω ∈ k∗ such that Nk/K(ω) is equal to D times a square
of K∗

(3) There exist m and n in K such that D = m2 + n2.

We will denote by LK the set of isomorphism classes of such quadratic
extensions k of K.

4.1. A Preliminary Formula for cK(C4). We can then summarize the
results of the preceding sections (in particular Theorem 2.3 and all of the
results of Section 3) in the following theorem.

Theorem 4.2. Let K be a number field of signature (r1, r2) and absolute
degree n = r1 + 2r2. We have

ΦK,4(C4, s) =
1
2

∑
k∈LK

1
N(d(k/K))2s

Φk(s)
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where, if we write d instead of d(k/K), and if we denote by ωK(d) = |T |
the number of distinct prime ideals dividing d, we have

Φk(s) =
2r1+r2+ωK(d)

42nsN(s(d))s

∑
C|2Zk

(C,s(D))=1
C satisfies (∗)

Nk/Q(C)2s

|ZC2 |
∏
P|C

(
1− 1

Nk/Q(P)2s

)
P1(C) .

Here

P1(C) =
∑

χ∈ ̂GC2 (K)

χ(aβ(C2))
∏
p-cd

(
1 +

χ(p)
Np2s

)
,

and β(C2) is an element of k such that β(C2) ≡ 1 (mod ∗C2) with
Nk/K(β(C2)) equal to D times a square of K.

In the above, condition (∗) is satisfied for C if and only if for every
ramified prime ideal P dividing C we have vP(C) ≤ tmax, with tmax given by
Proposition 3.15, |ZC2 | is equal to the product of its local components, these
being given by Corollaries 3.7 and 3.13, GC2(K) = ClT,C2(K)/ClT,C2(K)2,
and finally aβ is the unique squarefree ideal of K coprime to d such that
βZk = s(D)aβQ2.

To rearrange terms in this formula, we first introduce the following no-
tations.

Definition. For any ideal c of K dividing 4ZK , we set

G(c) = Clc(K)/Clc(K)2.

Then for any character χ on G(c) we define LK(χ) as being the subset of
elements k ∈ LK satisfying the following conditions, where as usual we set
d = d(k/K).

(1) If p | c and p - d then 2 | vp(c).
(2) If p | c and p | d then 2 | vp(d) and vp(c) ≤ tmax.
(3) If p - c and p | d then χ(p) = 1.
(4) More generally if z ∈ QK(cZk) (see Definition 1.3) and b ∈< T > are

such that (zb, c) = 1, then χ(zb) = 1.

Theorem 4.3. With the above notations, we have

ΦK,4(C4, s) =
2r1+r2−1

42nsζK(4s)

∑
c|4ZK

N c2s
∑

χ∈ dG(c)

LK(χ, 2s)Fc,χ(s) ,

where ζK(s) is the Dedekind zeta function of K, LK(χ, s) is the standard
abelian L-function,

Fc,χ(s) =
∑

k∈LK(χ)

χ(aβ(c))
|ZC2 |

2ωK(d)

N(d)2sN(s(d))s
∏

p|d(1 + 1/Np2s)
,
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and C is any ideal of k such that C2 ∩K = c.

Proof. It is clear that GC2(K) is a quotient of G(c), and that χ is a character
of GC2(K) if and only if χ can be considered as a character of G(c) such that
χ(zb) = 1 for any pair (z, b) with z ∈ QK(C2), b ∈< T >, and (zb, c) = 1.

In addition, we note that by Corollary 3.7, |ZC2 | does not depend on
the ideal C such that C2 ∩K = c. Similarly, by Corollary 3.9, there exists
β ≡ 1 (mod C2) such that Nk/K(β) is equal to D times a square of K
if and only if such a β exists with β ≡ 1 (mod cZk), so we may assume
that we choose β(C2) = β(cZk). Finally, by the same corollaries we have
QK(C2) = QK(cZk). Thus the only term which still depends explicitly on
the ideal C such that C2 ∩K = c is the following sum:

T (c) =
∑

C|2Zk

Nk/Q(C)2s
∏
P|C

(
1− 1

Nk/Q(P)2s

)
.

This is given by the following lemma.

Lemma 4.4. We have

T (c) = N c2s
∏
p|c

(
1− 1

Np2s

) ∏
p|c, p-d

(
1 +

1
Np2s

)
.

Proof. It is clear that T (c) is multiplicative. If c = p2t with p inert then
C = ptZk, and if c = pt with p ramified then C = Pt, and the given
formula is clear. So assume that c = p2t with p split as pZk = PP. Then
C = Pt1P

t2 with max(t1, t2) = t. By separating the terms (t1, t2) = (0, t),
(t1, t2) = (t1, t) with 1 ≤ t1 ≤ t − 1, (t1, t2) = (t, 0), and (t1, t2) = (t, t2)
with 1 ≤ t2 ≤ t, we find that

T (c) = Np4ts

(
1− 1

Np4s

)
,

corresponding to the formula given in the lemma. �

Finally, it is easy to check that we have

∏
p|c

(
1− 1

Np2s

) ∏
p|c, p-d

(
1 +

1
Np2s

)
∏

p|d, p-c

(
1 +

1
Np2s

)∏
p-c

(
1 +

χ(p)
Np2s

)
=

LK(χ, 2s)
ζK(4s)

∏
p|d(1 + 1/Np2s)

,

hence using the above lemma and rearranging terms with c and χ fixed is
easily seen to give the formula of the theorem. �
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Corollary 4.5. (1) The function ΦK,4(C4, s) converges absolutely for
Re(s) > 1/2 and extends analytically to Re(s) > 1/3 into a mero-
morphic function with a simple pole at s = 1/2 having a residue
equal to cK(C4)/2, where

cK(C4) =
1

2n+r2+1

ζK(1)
ζK(2)

∑
c|4ZK

N c
∏
p|c

(
1− 1

Np

)
Fc,1(1/2) ,

with

Fc,1(1/2) =
∑

k∈LK(1)

1
|ZC2 |

2ωK(d)

N(d)N(s(d))1/2
∏

p|d(1 + 1/Np)
.

(2) The number of C4-extensions of K up to isomorphism whose ideal
discriminant has norm less than or equal to X satisfies

NK,4(C4, X) = cK(C4) ·X1/2 + O(X1/3+ε)

for all ε > 0.

Proof. Note first that by Hecke’s theorem we have d = d(k/K) = 4a/c2

for a suitable squarefree ideal a of K, hence d/s(d) = 4/c2 so that
N(d)/N(s(d)) ≤ N(4ZK) = 4n. Thus, for any ε > 0 the Dirichlet se-
ries Fc,χ(s) is termwise bounded from above by Aε

∑
k∈LK

N(d)−(3s−ε) for
a suitable constant Aε depending on ε, and it is well known and easy that
this series converges absolutely for 3s−ε > 1, proving that Fc,χ(s) converges
absolutely for Re(s) > 1/3. On the other hand, the L-functions LK(χ, 2s)
extend to the whole complex plane to holomorphic functions if χ is not
the trivial character, and to meromorphic functions with a simple pole at
s = 1/2 of residue (1/2)ζK(1)

∏
p|c(1 − 1/Np) if χ is the trivial character

modulo c. Since ΦK,4(C4, s) is a finite linear combination of expressions of
the form LK(χ, 2s)Fc,χ(s), the first part of the corollary follows. The sec-
ond part is an immediate consequence of the first, using standard contour
integration techniques. �

Remark. It is not difficult to prove that Fc,χ(s) extends to a meromorphic
function to Re(s) > 1/4 with a simple pole at s = 1/3 whose residue can be
computed. Thus, in the case K = Q only, it is possible to prove a refined
formula of the form

NQ,4(C4, X) = cQ(C4) ·X1/2 + c′Q(C4)X1/3 + O(X1/4+ε) ,

see [7] for the value of the constants.
The formula given above for cK(C4) can be considerably simplified.

Corollary 4.6. We have

cK(C4) =
1

2r2+1

ζK(1)
ζK(2)

∑
k∈LK

2ωK(d)

N(d)3/2
∏

p|d(1 + 1/Np)
.



502 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier

Proof. First note that by Hecke’s theorem, if p | 2 we have either vp(d) ≡ 0
(mod 2) or vp(d) = 2e(p) + 1. Thus

N(s(d))−1/2 = N(d)−1/2
∏
p|2

vp(d)≡0 (mod 2)

Npvp(d)/2
∏
p|2

vp(d)≡1 (mod 2)

Npe(p) .

On the other hand, thanks to Corollary 4.5 we have

cK(C4) =
1

2n+r2+1

ζK(1)
ζK(2)

∑
k∈LK

2ωK(d)

N(d)N(s(d))1/2
∏

p|d(1 + 1/Np)
Uk

with

Uk =
∑

c|4ZK

(c,s(d))=1
p|c and p-d =⇒ vp(c)≡0 (mod 2)

N c

|ZC2 |
∏
p|c

(
1− 1

Np

)
.

It is clear that Uk =
∏

p|2 Uk,p, where the sums Uk,p are the same as Uk but
restricted to ideals c | 4 which are powers of a single prime ideal p.

When p is inert or split, we know from Corollary 3.7 that for c = p2t

we have |ZC2 | = Npt, and since t varies between 0 and e(p), a trivial
computation gives Uk,p = Npe(p).

When p is ramified, we consider two cases.
• If vp(d) ≥ e(p) + 1, then tmax = e(p)− vp(d)/2 ≤ vp(d)/2, hence using

Corollary 3.13, another trivial computation gives Uk,p = Npe(p)−vp(d)/2.
• If vp(d) ≤ e(p), then tmax = 2e(p) + 1 − 3vp(d)/2. Using Corollary

3.13 and separating the term t = 0, the terms with 1 ≤ t ≤ vp(d)/2 − 1
and the terms with vp(d)/2 ≤ t ≤ tmax, a small computation gives again
Uk,p = Npe(p)−vp(d)/2. It follows that this formula is valid for any prime p
dividing 2, ramified or not, so that

Uk =
∏
p|2

vp(d)≡0 (mod 2)

Npe(p)

Npvp(d)/2
.

Putting everything together, we obtain the formula of the corollary. �

4.2. Computation of cK(C4). We will now start the computation of the
final formula for cK(C4), which does not involve the intermediate quadratic
extensions k/K. To simplify notations, we denote by Q2(K) the subgroup
of elements of K∗ which are sums of two squares of K∗, and s(a) will denote
the squarefree part of an ideal a in K.

We begin by the following proposition.
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Proposition 4.7. Let a be a fractional ideal of K. The following conditions
are equivalent.

(1) There exists an ideal A of K(i) such that a = NK(i)/K(A).
(2) If p is a prime ideal dividing s(a), then p is not inert in K(i)/K (no

condition if K(i) = K).
Furthermore, if there exists an ideal q and an element D ∈ Q2(K) such
that aq2 = DZK then these conditions are satisfied.

Proof. If p is inert in K(i)/K then if a = NK(i)/K(A) we have vp(a) =
2vpZK(i)

(A) ≡ 0 (mod 2), hence p - s(a). Conversely, if this is the case for
all inert primes p, we can write a = s(a)b2 and it is clear that if we set

A = bZK(i)

∏
p|s(a)

P ,

where for each p | s(a), P denotes an ideal of K(i) above p, then
NK(i)/K(A) = a, proving the equivalence of (1) and (2).

Finally, if aq2 = DZK with D = m2 + n2, we clearly have

a = NK(i)/K((m + in)q−1) ,

proving the last statement. �

Definition. Let c | 2ZK .
(1) We denote by Iq the group of fractional ideals a of K satisfying the

equivalent conditions of the above proposition.
(2) We set

Clq
c2

(K) =
{a ∈ Iq, (a, c) = 1}

{βZK , β ∈ Q2(K), β ≡ 1 (mod ∗c2)}

(note that when β ∈ Q2(K) we indeed have βZK ∈ Iq by the above
proposition).

(3) We set

Dq
c2

(K) =
{q2β, (q, c) = 1, β ∈ Q2(K), β ≡ 1 (mod ∗c2)}

{βZK , β ∈ Q2(K), β ≡ 1 (mod ∗c2)}

and Gq(c2) = Clq
c2

(K)/Dq
c2

(K).
(4) We define Sq

c2
(K) as the subgroup of elements u in the Selmer group

S(K) such that for any lift u ∈ K∗ we have u ∈ Q2(K) and u/x2 ≡ 1
(mod ∗c2) soluble in K.

(5) In all the above notations, we omit the subscript c2 when c = ZK .

Note that in this section all the Hecke congruences will be in K, not in
any larger field.
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We will set

ΨK(s) = 1 +
∑

k∈LK

2ωK(d)

N(d)s
∏

p|d(1 + 1/Np)
.

The aim of this section is to compute ΨK(s), once again using Hecke’s
description of discriminants of relative quadratic extensions. This will give
us the following theorem.

Theorem 4.8. For any ideal c | 2ZK , denote by h(c) the number of prime
ideals dividing 2ZK/c which are either unramified in K(i)/K or which di-
vide c and are ramified in K(i)/K (thus no additional condition if i ∈ K).
Set rz = 1 if i /∈ K and rz = 0 otherwise. We then have

cK(C4) =
1

2r2+1

ζK(1)
ζK(2)

(ΨK(3/2)− 1) ,

with

ΨK(s) =
2r2+rz

4ns

∑
c|2ZK

2h(c)N(c)2s−1P (c, s)S(c, s) ,

where

P (c, s) =
1∏

p|2/c(1 + 1/Np)

∏
p|(c,2/c)

(
1− 1

Np2s

)

×
∏

p|c, p-2/c

(
1− 2

Np2s(1 + 1/Np)

)
,

S(c, s) =
∑

χ∈Ĝq(c2)

∏
p|2, p-c, p∈Iq

(
1 +

χ(p)
Nps

)

×
∏

Np≡1 (mod 4)

(
1 +

2χ(p)
Nps(1 + 1/Np)

)
.

Proof. We follow quite closely Section 2, but in a different context, hence
we are brief.

Proposition 4.9. There exists a noncanonical one-to-one correspondence
between elements of LK together with the trivial extension K/K and pairs
(a, u), where a is a squarefree ideal whose class belongs to Dq and
u ∈ Sq(K). The (isomorphism class of) extension k ∈ LK correspond-
ing to (a, u) is k = K(

√
D0u), where aq2

0 = D0ZK with D0 ∈ Q2(K) fixed.

Proof. Clear from the definitions. �

Denote by I the set of squarefree ideals whose class belongs to Dq(K)
(this conflicts with the notation used in Section 2, which will not be used
anymore), so that I ⊂ Iq by Proposition 4.7. By the above proposition
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and Hecke’s theorem, we have with an evident notation analogous to that
used in Section 2

ΨK(s) =
∑
a∈I

∑
u∈Sq(K)

2ωK(4a/c(D0u)2)

N(4a/c(D0u)2)s
∏

p|4a/c(D0u)2(1 + 1/Np)

=
1

4ns

∑
c|2ZK

N(c)2s 2ωK(2/c)∏
p|2/c(1 + 1/Np)

∑
a∈I

(a,c)=1

gD0(c)2
ωK(aodd)

N(a)s
∏

p|aodd
(1 + 1/Np)

where aodd denotes the part of the ideal a coprime to 2 (i.e., a/(a, 2ZK)
since a is squarefree), and

gD0(c) =
∑

u∈Sq(K)
c(D0u)=c

1 .

Similarly to what we did in Section 2, we set

fD0(c) =
∑

u∈Sq(K)
c(D0u)|c

1 =
∑

u∈Sq(K)
∃x, D0u/x2≡1 (mod c2)

1 ,

and once again a version of the Möbius inversion formula gives

gD0(c) =
∑

c1, c|c1|2ZK

(c1,a)=1

µK(c1/c)fD0(c1) .

Replacing in our formula for ΨK(s), we obtain

ΨK(s) =
1

4ns

∑
c1|2ZK

N(c1)2sQ(c1, s)
∑
a∈I

(a,c)=1

fD0(c)
N(a)s

,

with

Q(c1, s) =
∑
c|c1

µK(c1/c)2ωK(2/c)

N(c1/c)2s
∏

p|2/c(1 + 1/Np)
.

A small computation gives

Q(c, s) =
2ωK(2/c)∏

p|2/c(1 + 1/Np)

∏
p|(c,2/c)

(
1− 1

Np2s

)

×
∏

p|c, p-2/c

(
1− 2

Np2s(1 + 1/Np)

)
.

On the other hand, we have the following result.

Proposition 4.10. We have fD0(c) 6= 0 if and only if the class of a belongs
to Dq

c2
(K). In that case, we have fD0(c) = |Sq

c2
(K)|.
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Proof. Assume that there exists u ∈ Sq(K) and x ∈ K∗ such that D0u/x2 ≡
1 (mod ∗c2), in other words βx2 = D0u with β ≡ 1 (mod ∗c2). Since D0

and u are in Q2(K), it follows that β ∈ Q2(K). Thus, we have a = βq2 for
some ideal q, which we may assume coprime to c by changing x if necessary,
and this exactly means that the class of a belongs to Dq

c2
(K). Similarly, it

is easy to show that this condition implies that fD0(c) 6= 0.
Finally, assume that fD0(c) 6= 0, and let v ∈ Sq(K) such that D0v = x2

0β0

with β0 ≡ 1 (mod ∗c2) and β0 ∈ Q2(K). Clearly D0u = x2β if and only
if u/v = (x/x0)2(β/β0) hence if and only if u ∈ vSq

c2
(K), proving the

proposition. �

Recall that we have set Gq(c2) = Clq
c2

(K)/Dq
c2

(K). If we denote by J
the set of squarefree ideals belonging to Iq, we have thus

ΨK(s) =
1

4ns

∑
c|2ZK

|Sq
c2

(K)| N(c)2sQ(c, s)
∑
a∈I

a∈Dq

c2
(K)

2ωK(aodd)

N(a)s
∏

p|aodd
(1 + 1/Np)

=
1

4ns

∑
c|2ZK

|Sq
c2

(K)|
|Gq(c2)|

N(c)2sQ(c, s)S(c, s) ,

where Q(c, s) is given above and

S(c, s) =
∑

χ∈Ĝq(c2)

∑
a∈J

χ(a)2ωK(aodd)

N(a)s
∏

p|aodd
(1 + 1/Np)

=
∑

χ∈Ĝq(c2)

∏
p|2, p-c, p∈Iq

(
1 +

χ(p)
Nps

) ∏
p-2, p∈Iq

(
1 +

2χ(p)
Nps(1 + 1/Np)

)

=
∑

χ∈Ĝq(c2)

∏
p|2, p-c, p∈Iq

(
1 +

χ(p)
Nps

) ∏
Np≡1
(mod 4)

(
1 +

2χ(p)
Nps(1 + 1/Np)

)
,

since it is easily shown that if p - 2, then p is not inert in K(i) (i.e., is split)
if and only if x2 ≡ −1 (mod ∗p) is soluble in K, hence if and only if Np ≡ 1
(mod 4).

Finally, we need to compute |Sq
c2

(K)|. For this, we first need the following
definitions and results.

Definition. We define (ZK/c2)q as the subgroup of elements γ ∈ (ZK/c2)∗

such that γ ∈ Q2(K) for at least one representative γ of the class, and we
set Zq

c2
= (ZK/c2)q/(ZK/c2)∗2.

Note that this strongly depends on the chosen representative γ, and that
(ZK/c2)q is not equal to the group of elements of (ZK/c2)∗ which are sums
of two squares of ZK/c2.
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Proposition 4.11. We have the following natural exact sequences:

1 −→ Sq
c2

(K) −→ Sq(K) −→ Zq
c2
−→ Gq(c2) −→ Gq(ZK) −→ 1 .

In particular, we have
|Sq

c2
(K)|

|Gq(c2)|
=

1
|Zq

c2
|
|Sq(K)|
|Gq(ZK)|

.

Proof. All the maps are clear and well defined. To show exactness, we use
the fact that if α ∈ Q2(K) then by Proposition 4.7 we have αZK ∈ Iq. The
details are left to the reader. The last equality immediately follows. �

We thus need to compute separately |Zq
c2
| and |Sq(K)|/|Gq(ZK)|. The

first is given as follows:

Lemma 4.12. We have

|Zq
c2
| = N(c)/2ωK((c,d(K(i)/K))) .

Proof. With evident notation, we can write

|(ZK/c2)∗/(ZK/c2)q| =
∏
p|c

|Z∗p/Zq
p|

=
∏
p|c

[Z∗p : NK(i)/K(Zp(i)∗)]

=
∏
p|c

e(P/p)

by local class field theory, where P is any ideal of K(i) above p. Thus
prime ideals p of K which are unramified in K(i) do not contribute to the
product, and each ramified p dividing c contributes a factor 2. Thus

|(ZK/c2)∗/(ZK/c2)q| = 2ωK((c,d(K(i)/K))) .

On the other hand, since the map x 7→ x2 is a bijection from (ZK/c)∗

to (ZK/c2)∗2, it is clear that |(ZK/c2)∗/(ZK/c2)∗2| = N(c), proving the
lemma. �

Finally, we note that |Sq(K)|/|Gq(ZK)| can also be computed using local
class field theory, but the computation is rather long and given in a sequel
to this paper kindly written for us by S. Bosca [1]. We state the result:

Theorem 4.13 (Bosca). If i /∈ K, we have
|Sq(K)|
|Gq(ZK)|

= 2r2+1−ωK(d(K(i)/K)) ,

while if i ∈ K then
|Sq(K)|
|Gq(ZK)|

= 2r2 .
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Corollary 4.14. Denote by j(c) the number of prime ideals p such that
p | 2ZK/c, p - c and p ramified in K(i)/K. Then if i /∈ K we have

|Sq
c2

(K)|
|Gq(c2)|

=
2r2+1−j(c)

N(c)
,

while if i ∈ K then
|Sq

c2
(K)|

|Gq(c2)|
=

2r2

N(c)
.

Proof. Indeed, from the two lemmas above we obtain the given formula
when i ∈ K, and also when i /∈ K with

j(c) = ωK(d(K(i)/K))− ωK((c, d(K(i)/K))) ,

which is equal to the number of prime ideals of K which do not divide c
and which are ramified in K(i)/K. �

Putting everything together, it is clear that this corollary implies Theo-
rem 4.8. �

4.3. Examples. It is not difficult to give explicit and efficient algorithms
to compute the quantities which enter in the formula for cK(C4) given in
Theorem 4.8, and in particular the groups Gq(c2). In this subsection, we
give three examples. The numerical values that we give (which can easily
be computed to thousands of decimal places if desired) are computed using
methods analogous to those of [3], together with Euler–MacLaurin type
methods for computing the Hurwitz zeta function.

4.3.1. K = Q. In this case we have h(ZK) = h(2ZK) = 0, P (ZK , 3/2) =
2/3, P (2ZK , 3/2) = 5/6, the groups Gq(c2) are both trivial, S(ZK , 3/2) =
(1+

√
2/4)Π, S(2ZK , 3/2) = Π with Π =

∏
p≡1 (mod 4)(1+2/(p3/2 + p1/2)),

hence Theorem 4.8 gives the known formula

cQ(C4) =
3
π2

(1 +
√

2
24

) ∏
p≡1 (mod 4)

(
1 +

2
p3/2 + p1/2

)
− 1

 .

Numerically, we find that

cQ(C4) = 0.12205267325139676092260805289651294225790522361498 . . .

4.3.2. K = Q(
√
−7). In this case we can write 2ZK = pp, and we have

h(ZK) = h(p) = h(p) = h(2ZK) = 0, P (ZK , 3/2) = 4/9, P (p, 3/2) =
P (p, 3/2) = 5/9, P (2ZK , 3/2) = 25/36, the groups Gq(c2) are all triv-
ial, S(ZK , 3/2) = (1 +

√
2/4)2Π, S(p, 3/2) = S(p, 3/2) = (1 +

√
2/4)Π,
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S(2ZK) = Π with Π =
∏
Np≡1 (mod 4)(1 + 2/(Np3/2 +Np1/2)), hence The-

orem 4.8 gives the formula

cK(C4) =
π

4
√

7ζK(2)

(1 +
√

2
24

)2

P1P
2
2 − 1

 , with

P1 =
∏

p≡3,5,6 (mod 7)

(
1 +

2
p3 + p

)

P2 =
∏

p≡1,9,25 (mod 28)

(
1 +

2
p3/2 + p1/2

)
.

Numerically, we find that

cK(C4) = 0.050662427769023991400258159542923689261782184751142 . . .

4.3.3. K = Q(i). In this case we can write 2ZK = p2, and we have
h(ZK) = h(p) = 1, h(2ZK) = 0, P (ZK , 3/2) = 2/3, P (p, 3/2) = 7/12,
P (2ZK , 3/2) = 5/6, the groups Gq(ZK) and Gq(2ZK) are both trivial but
the group Gq(4ZK) is of order 2. It is easy to find explicitly the non-
trivial character of this group, and we obtain S(ZK , 3/2) = (1 +

√
2/4)Π,

S(p, 3/2) = Π, S(2ZK) = Π + Π′ with Π =
∏
Np≡1 (mod 4)(1 + 2/(Np3/2 +

Np1/2)) and Π′ =
∏
Np≡1 (mod 4)(1+(−1)(Np−1)/42/(Np3/2+Np1/2). Note

that any p not dividing 2 satisfies Np ≡ 1 (mod 4), and that if p ≡ 3
(mod 4), N(pZK) ≡ 1 (mod 8). Thus Theorem 4.8 gives the formula

cK(C4) =
π

16ζK(2)

((
58 +

√
2

96

)
P1P

2
2 +

5
12

P1P
2
3 − 1

)
, with

P1 =
∏

p≡3 (mod 4)

(
1 +

2
p3 + p

)
,

P2 =
∏

p≡1 (mod 4)

(
1 +

2
p3/2 + p1/2

)
,

P3 =
∏

p≡1 (mod 4)

(
1 + (−1)(p−1)/4 2

p3/2 + p1/2

)
.

Numerically, we find that

cK(C4) = 0.061069841370300740313195371382169248514199663473965 . . .
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