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On the use of explicit bounds on residues of

Dedekind zeta functions taking into account

the behavior of small primes

par Stéphane R. LOUBOUTIN

Résumé. Nous donnons des majorants explicites des résidus au
point s = 1 des fonctions zêta ζK(s) des corps de nombres tenant
compte du comportement des petits nombres premiers dans K.
Dans le cas où K est abélien, de telles majorations sont déduites
de majorations de |L(1, χ)| tenant compte du comportement de χ
sur les petits nombres premiers, pour χ un caractère de Dirichlet
primitif. De nombreuses applications sont données pour illustrer
l’utilité de tels majorants.

Abstract. Lately, explicit upper bounds on |L(1, χ)| (for prim-
itive Dirichlet characters χ) taking into account the behaviors
of χ on a given finite set of primes have been obtained. This
yields explicit upper bounds on residues of Dedekind zeta func-
tions of abelian number fields taking into account the behavior of
small primes, and it as been explained how such bounds yield im-
provements on lower bounds of relative class numbers of CM-fields
whose maximal totally real subfields are abelian. We present here
some other applications of such bounds together with new bounds
for non-abelian number fields.

1. Introduction

Let K be a number field of degree n = r1 + 2r2 > 1. Let dK , wK , RegK ,
hK and Ress=1(ζK(s)) be the absolute value of its discriminant, the number
of complex roots of unity in K, the regulator, class number, and residue at
s = 1 of the Dedekind zeta function ζK(s) of K. Recall the class number
formula:

hK =
wK

√
dK

2r1(2π)r2RegK

Ress=1(ζK(s)).
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In order to obtain bounds on hK we need bounds on Ress=1(ζK(s)). The
best general upper bound is (see [Lou01, Theorem 1]):

Ress=1(ζK(s)) ≤
(

e log dK

2(n− 1)

)n−1

.

If K is totally real cubic, then we have the better upper bound (see [Lou01,
Theorem 2]):

Ress=1(ζK(s)) ≤ 1
8

log2 dK .

Finally, if K is abelian, then we have the even better general upper bound

Ress=1(ζK(s)) ≤
(

log dK

2(n− 1)
+ κ

)n−1

,

where κ = (5− 2 log 6)/2 = 0.70824 · · · , by [Ram01, Corollary 1].
However, from the Euler product of ζK(s) we expect to have better upper

bounds for Ress=1(ζK(s)), provided that the small primes do not split in
K. For any prime p ≥ 1, we set

ΠK(p) :=
∏
P|p

(1− (N(P))−1)−1 ≥ 1,

where P runs over all the primes ideals of K above p. A careful analysis of
the proofs of all the previous bounds suggests that we should expect that
there exists some κ′ > 0 such that

Ress=1(ζK(s)) ≤


ΠK(2)
Πn

Q(2)

(
e log dK

2(n−1) + κ′
)n−1

in general,
1
8

ΠK(2)
Πn

Q(2) (log dK + κ′)2 if K is a totally real cubic field,

ΠK(2)
Πn

Q(2)

(
log dK

2(n−1) + κ′
)n−1

if K is abelian.

Notice that the factor ΠK(2)/Πn
Q(2) is always less than or equal to 1, but is

equal to 1/(2n−1), hence small, if the prime p = 2 is inert in K. Combined
with lower bounds for Ress=1(ζK(s)) depending on the behavior of the small
primes in K (see [Lou03, Theorem 1]), we would as a consequence obtain
better lower bounds for relative class number of CM-fields. The aim of this
paper is to illustrate on various examples the use of such better bounds on
Ress=1(ζK(s)).
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To begin with, we recall:

Theorem 1. (See [Ram04] 1; see also [Lou04a] and [Lou04d]). Let S be a
given finite set of pairwise distinct rational primes. Set κS := #S · log 4 +
2
∑

p∈S
log p
p−1 . Then, for any primitive Dirichlet character χ of conductor

qχ > 1 such that p ∈ S implies that p does not divide qχ, we have

|L(1, χ)| ≤ 1
2

(∏
p∈S

p− 1
|p− χ(p)|

)(
log qχ + κS + 5− 2 log 6 +

3π

qχ

∏
p∈S

p2 − 1
4p2

)
if χ is odd, and

|L(1, χ)| ≤ 1
2

(∏
p∈S

p− 1
|p− χ(p)|

)(
log qχ + κS

)
if χ is even and qχ ≥ 6.2 · 4#S.

We refer the reader to [BHM], [Le], [MP], [Mos], [MR], [SSW] and [Ste]
for various applications of such explicit bounds on L-functions. They are
not the best possible theoretically. However, if such better bounds are
made explicit, we end up with useless ones in a reasonable range for qχ

(see [Lou04a] and [Boo]). Therefore, applications of these better bounds to
practical problems are not yet possible.

2. Upper bounds for relative class numbers

Corollary 2. Let q ≡ 5 (mod 8), q 6= 5, be a prime, let χq denote any-
one of the two conjugate odd quartic characters of conductor q and let h−q
denote the relative class number of the imaginary cyclic quartic field Nq of
conductor q. Then,

h−q =
q

2π2
|L(1, χq)|2 ≤

q

Aχπ2

(
log q + 5− 2 log 6 + log Bχ +

9π

16q

)2
,

which implies h−q < q for q ≤ Cχ, where Aχ, Bχ and Cχ are as follows:

Values of (Aχ, Bχ, Cχ)

χq(3) = +1 χq(3) = −1 χq(3) = ±i

χq(5) = +1 (40, 16, 6450000) (160, 192, 2 · 1014) (100, 192, 5 · 1010)

χq(5) = −1 (90, 64
√

5, 1010) (360, 768
√

5, 1022) (225, 768
√

5, 4 · 1016)

χq(5) = ±i (65, 64
√

5, 108) (260, 768
√

5, 1018) (325/2, 768
√

5, 3 · 1013)

1Note however the misprint in [Ram04, Top of page 143] where the term
3πφ(hk)

2hkq

Q
p|hk

p2−1
4p2

should be
3πφ(hk)

2hk4ω(h)q

Q
p|hk

p2−1
p2 .
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Proof. Since q ≡ 5 (mod 8), we have χq(2)2 = (2
q ) = −1 and χq(2) = ±i.

Set S = {p ∈ {2, 3, 5}; χ(p) 6= +1}. Then 2 ∈ S and according to Theo-
rem 1 we may choose

Aχ = 8
∏
p∈S

∣∣∣∣p− χ(p)
p− 1

∣∣∣∣2 = 40
∏

2 6=p∈S

∣∣∣∣p− χ(p)
p− 1

∣∣∣∣2
and

log Bχ = #S · log 4 + 2
∑
p∈S

log p

p− 1
= (#S + 1) log 4 + 2

∑
2 6=p∈S

log p

p− 1
.

�

Remarks 3. Using Corollary 2 to alleviate the amount of required rela-
tive class number computation, several authors have been trying to solve in
[JWW] the open problem hinted at in [Lou98]: determine the least (or at
least one) prime q ≡ 5 (mod 8) for which h−q > q. Indeed, according to
Corollary 2, for finding such a q in the range q < 5 · 1010, we may assume
that χq(3) = +1, which amounts to eliminating three quarters of the primes
q in this range. In the same way, in the range q < 3 · 1013 we may assume
that χq(3) = +1 or χq(5) = +1, which amounts to eliminating 9/16 of the
primes q in this range.

3. Real cyclotomic fields of large class numbers

In [CW], G. Cornell and L. C. Washington explained how to use simplest
cubic and quartic fields to produce real cyclotomic fields Q+(ζp) of prime
conductor p and class number h+

p > p. They could find only one such real
cyclotomic field. We explain how to use our bounds on L-functions to find
more examples of such real cyclotomic fields. However, it is much more
efficient to use simplest quintic and sextic fields to produce real cyclotomic
fields of prime conductors and class numbers greater than their conductors
(see [Lou02a] and [Lou04c]).

3.1. Using simplest cubic fields. The simplest cubic fields are the
real cyclic cubic number fields associated with the Q-irreducible cubic poly-
nomials

Pm(x) = x3 −mx2 − (m + 3)x− 1
of discriminants dm = ∆2

m where ∆m := m2 +3m+9. Since −x3Pm(1/x) =
P−m−3(x), we may assume that m ≥ −1. We let

(1) ρm =
1
3

(
2
√

∆m cos
(1

3
arctan(

√
27

2m + 3
)
)
+m

)
=
√

∆m−
1
2
+O(

1√
∆m

)

denote the only positive root of Pm(x). Moreover, we will assume that
the conductor of Km is equal to ∆m, which amounts to asking that (i)
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m 6≡ 0 (mod 3) and ∆m is squarefree, or (ii) m ≡ 0, 6 (mod 9) and
∆m/9 is squarefree (see [Wa, Prop. 1 and Corollary]). In that situation,
{−1, ρm,−1/(ρm +1)} generate the full group of algebraic units of Km and
the regulator of Km is

(2) RegKm
= log2 ρm − (log ρm)(log(1 + ρm)) + log2(1 + ρm),

which in using (1) yields

(3) RegKm
=

1
4

log2 ∆m − log ∆m√
∆m

+ O(
log ∆m

∆m
) ≤ 1

4
log2 ∆m.

Lemma 4. The polynomial Pm(x) has no root mod 2, has at least one root
mod 3 if and only if m ≡ 0 (mod 3), and has at least one root mod 5 if and
only if m ≡ 1 (mod 5). Hence, if ∆m is square-free, then 2 and 3 are inert
in Km, and if m 6≡ 1 (mod 5) then 5 is also inert in Km.

As in [Lou02a, Section 5.1], we let χKm
be the primitive, even, cubic

Dirichlet characters modulo ∆m associated with Km satisfying

χKm
(2) =

{
ω2 if m ≡ 0 (mod 2),
ω if m ≡ 1 (mod 2).

Since the regulators of these Km’s are small, they should have large class
numbers. In fact, we proved (see [Lou02c, (12)]):

(4) hKm
=

∆m

4RegKm

|L(1, χKm
)|2 ≥ ∆m

e log3 ∆m

Corollary 5. Assume that m ≥ −1 is such that ∆m = m2 + 3m + 9 is
squarefree. Then,

hKm
≤

{
∆m/60 if m > 16,
∆m/100 if m 6≡ 1 (mod 5) and m > 37.

Proof. If a prime l ≥ 2 is inert in Km then χKm
(l) ∈ {exp(2iπ/3),

exp(4iπ/3)}. According to Lemma 4 and to Theorem 1 (with S = {2, 3}
and S = {2, 3, 5}), we have

|L(1, χKm
)|2 ≤

{
(log ∆m + log(192))2/91,

16(log ∆m + log(768
√

5))2/2821 if m 6≡ 1 (mod 5).

Now, according (4) and (3), the desired results follow for m ≥ 95000. The
numerical computation of the class numbers of the remaining Km provides
us with the desired bounds (see [Lou02a]). �

From now on, we assume (i) that p = ∆m = m2 + 3m + 9 is prime
(hence m 6≡ 0 (mod 3)) and (ii) that p ≡ 1 (mod 12), which amounts to
asking that m ≡ 0, 1 (mod 4). In that case, both Km and km := Q(

√
∆m)

are subfields of the real cyclotomic field Q+(ζp) and the product h2h3 of
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the class numbers h2 := hkm
and h3 := hKm

of km and Km divides the
class number h+

p of Q+(ζp). Now, h3 ≤ ∆m/60 and h2h3 ≥ ∆m imply
h2 ≥ 60, hence h2 ≥ 61 (for h2 is odd), and Cohen-Lenstra heuristics
predict that real quadratic number fields of prime conductors with class
numbers greater than or equal to 61 are few and far between. Hence, such
simplest cubic fields Km of prime conductors ∆m = m2 + 3m + 9 ≡ 1
(mod 4) with h2h3 > ∆m are few and far between. As we have at hand a
very efficient method for computing class numbers of real quadratic fields
(see [Lou02b] and [WB]), we used this explicit necessary condition h2 ≥
61 to compute (using [Lou02a]) the class numbers of only 584 out of the
46825 simplest cubic fields Km of prime conductors ∆m ≡ 1 (mod 12)
with −1 ≤ m ≤ 1066285 to obtain the following Table. (Using the fact
that h2 ≥ 61, the class number formula for km and Theorem 1 for S = ∅
imply Reg2 ≤

√
∆m(log ∆m)/244, where Reg2 denotes the regulator of the

real quadratic field km = Q(
√

∆m), and taking into account the fact that
Reg2 is much faster to compute than h2, we could still improve the speed of
the required computations). Notice that the authors of [CW] and [SWW]
only came up with one such Km, the one for m = 106253.

Least values of m ≥ −1 for which ∆m = m2 + 3m + 9 is prime and h2h3 ≥ ∆m

m |θ(χKm
)| arg W (χKm

) h2 h3 h2h3/∆m

102496 20.268 · · · 1
3

arctan( 3
√

3
2m+3

) + π
3

891 13152913 1.115 · · ·
106253 34.364 · · · 1

3
arctan( 3

√
3

2m+3
) 2685 6209212 1.476 · · ·

319760 202.162 · · · 1
3

arctan( 3
√

3
2m+3

) 1887 57772549 1.066 · · ·
554869 88.861 · · · 1

3
arctan( 3

√
3

2m+3
) + π

3
7983 93739324 2.430 · · ·

726845 20.938 · · · 1
3

arctan( 3
√

3
2m+3

) 13533 176702419 4.526 · · ·
791021 129.812 · · · 1

3
arctan( 3

√
3

2m+3
) 1737 445142272 1.235 · · ·

796616 357.252 · · · 1
3

arctan( 3
√

3
2m+3

) 1155 696739264 1.268 · · ·
839401 293.373 · · · 1

3
arctan( 3

√
3

2m+3
) + π 1575 554491633 1.239 · · ·

906437 93.697 · · · 1
3

arctan( 3
√

3
2m+3

) 1955 469911916 1.118 · · ·
1066285 140.662 · · · 1

3
arctan( 3

√
3

2m+3
) + π

3
5389 473034223 2.242 · · ·

3.2. Using simplest quartic fields. The so called simplest quartic
fields (dealt with in [Laz1], [Laz2] and [Lou04b]) are the real cyclic quartic
number fields associated with the quartic polynomials

Pm(x) = x4 −mx3 − 6x2 + mx + 1

of discriminants dm = 4∆3
m where ∆m := (m2 + 16)3. Since Pm(−x) =

P−m(x), we may and we will assume that m ≥ 0. The reader will easily
check (i) that Pm(x) has no rational root, (ii) that Pm(x) is Q-irreducible,
except for m = 0 and m = 3, and (iii) that Pm(x) has a only one root
ρm > 1. Set βm = ρm − ρ−1

m > 0. Then, β2
m − mβm − 4 = 0 and
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βm = (m+
√

∆m)/2. In particular, km = Q(
√

∆m) is the quadratic subfield
of the cyclic quartic field Km. It is known that hkm

divides hKm
, and we

set h∗Km
= hKm

/hkm
. Since ρm > 1 and ρ2

m − βmρm − 1 = 0, we obtain

ρm =
1
2

(m +
√

∆m

2
+

√
∆m + m

√
∆m

2

)
=
√

∆m

(
1− 3

∆m
+ O(

1
∆2

m

)
)

(use m =
√

∆m − 16),

ρ′m :=
1
2

(m−
√

∆m

2
+

√
∆m −m

√
∆m

2

)
= 1− 2√

∆m
+ O(

1
∆m

),

and
(5)

Reg∗ρm
= log2 ρm + log2 ρ′m =

1
4

log2 ∆m − 3 log ∆m

∆m
+ O(

1
∆m

) ≤ 1
4

log2 ∆m

for m ≥ 1.

Proposition 6. Assume that m ≥ 1 is odd and that ∆m = m2+16 is prime.
Then, the discriminant of the real quadratic subfield km = Q(

√
∆m) of Km

is equal to ∆m, the discriminant of Km is equal to ∆3
m, its conductor is

equal to ∆m, the class numbers of Km and km are odd, RegKm
/Regkm

=
Reg∗ρm

and (see [Lou04b, Theorem 9])

(6) h∗Km
=

∆m

4Reg∗Km

|L(1, χKm
)|2 ≥ 2∆m

3e(log ∆m + 0.35)4
,

where χKm
is anyone of the two conjugate primitive, even, quartic Dirichlet

characters modulo ∆m associated with Km. Moreover, χKm
(2) = −1, and

m ≥ 5 implies
h∗Km

< ∆m/26.

Proof. According (6), to Theorem 1 (with S = {2}) which yields

|L(1, χKm
)|2 ≤ (log ∆m + log(16))2/36,

and to (5), we have h∗Km
≤ ∆m/(36+o(1)) and h∗Km

< ∆m/26 for m ≥ 3000.
The numerical computation of the class numbers of the remaining Km

provides us with the desired bound (see [Lou02a]). �

Now, hKm
= hkm

h∗Km
≥ ∆m and h∗Km

< ∆m/26 imply hkm
≥ 27 (for hkm

is odd), and Cohen-Lenstra heuristics predict that real quadratic number
fields of prime discriminants with class numbers greater than or equal to 27
are few and far between. Hence such simplest quartic fields Km of prime
conductors ∆m = m2 + 16 with hKm

> ∆m are few and far between. As
we have at hand a very efficient method for computing rigorously class
numbers of real quadratic fields (see [Lou02b] and [WB]), we used this
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explicit necessary condition hkm
≥ 27 to compute only 1687 of the class

numbers of the 86964 simplest quartic fields Km of prime conductors ∆m =
m2 +16 ≡ 1 (mod 4) with 1 ≤ m ≤ 1680401 to obtain the following Table.
Notice that G. Cornell and L. C. Washington did not find any such Km

(see [CW, bottom of page 268]).

Least values of m ≥ 1 for which ∆m = m2 + 16 is prime and hKm
≥ ∆m

m ∆m hkm
h∗Km

hKm
/∆m

524285 274874761241 1911 181442581 1.261 · · ·
1680401 2823747520817 1537 1878644993 1.022 · · ·

4. The imaginary cyclic quartic fields with ideal class groups of
exponent ≤ 2

We explain how one could alleviate the determination in [Lou95] of all
the non-quadratic imaginary cyclic fields of 2-power degrees 2n = 2r ≥ 4
with ideal class groups of exponents ≤ 2 (the time consuming part bieng the
computation of the relative class numbers of the fields sieved by Proposition
8 or Remark 9 below). To simplify, we will now only deal with imaginary
cyclic quartic fields of odd conductors.

Theorem 7. Let K be an imaginary cyclic quartic field of odd conductor
fK , Let k, fk and χK denote the real quadratic subfield of K, the conductor
of k, and anyone of the two conjugate primitive quartic Dirichlet characters
modulo fK associated with K. Then,

(7) h−K ≥ CKfK

eπ2(log fk + κk) log(fkf
2
K)

,

where

CK =
32

|2− χK(2)|2
=


32 if χK(2) = +1,
32/9 if χK(2) = −1,
32/5 if χK(2) = ±i,

and

κk =

{
0 if fk ≡ 1 (mod 8),
4 log 2 = 2.772 · · · if fk ≡ 5 (mod 8).

Proof. Use [Lou03, (34)], [Lou03, (31)] with [Ram01, Corollary 1] and
[Ram01, Corollary 2]’s values for κk = κχ, where χ is the primitive even
Dirichlet character of conductor dk associated with k, and ΠK/k({2}) =
4/|2− χK(2)|2. �

Proposition 8. Assume that the exponent of the ideal class group of an
imaginary cyclic quartic field K of odd conductor fK is less than or equal
to 2. Then, fk ≤ 1889 and fK ≤ 107 (where k is the real quadratic subfield
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of K). Moreover, whereas there are 1 377 361 imaginary cyclic fields K of
odd conductors fK ≤ 107 and such that fk ≤ 1889, only 400 out of them
may have their ideal class groups of exponents ≤ 2, the largest possible
conductor being fK = 5619 (for fk = 1873 and fK/k := fK/fk = 3).

Proof. It is known that if the exponent of the ideal class group of K of odd
conductor fK is ≤ 2, then fk ≡ 1 (mod 4) is prime and

(8) h−K = 2tK/k−1,

where tK/k denotes the number of prime ideals of k which are ramified
in K/k (see [Lou95, Theorems 1 and 2]). Conversely, for a given real
quadratic field k of prime conductor fk ≡ 1 (mod 4), the conductors fK of
the imaginary cyclic quartic fields K of odd conductors and containing k
are of the form fK = fkfK/k for some positive square-free integer fK/k ≥ 1
relatively prime with fk and such that

(9) (fk − 1)/4 + (fK/k − 1)/2 is odd

(in order to have χK(−1) = −1, i.e. in order to guarantee that K is
imaginary). Moreover, for such a given k and such a given fK/k, there exists
only one imaginary cyclic quartic field K containing k and of conductor
fK = fkfK/k, and for this K we have

(10) tK/k = 1 +
∑

p|fK/k

(3 + (
p

fk
))/2,

where ( ·
fk

) denote the Legendre’s symbol. Finally, if we let φk denote any-
one of the two conjugate quartic characters modulo a prime fk ≡ 1 (mod 4),
then χK(n) = φk(n)( n

fK/k
), where ( ·

fK/k
) denote the Jacobi’s symbol, and

(11)

χK(2) =


φk(2) = 1 if fk ≡ 1 (mod 8) and 2

fk−1

4 ≡ 1 (mod fk),

φk(2) = −1 if fk ≡ 1 (mod 8) but 2
fk−1

4 6≡ 1 (mod fk),
−φk(2) = ±i if fk ≡ 5 (mod 8).

Hence, we may easily compute κk, cK and tK/k from fk and fK/k. In
particular, we easily obtain that there are 1 377 361 imaginary cyclic fields
K of odd conductors fK ≤ 107 and such that fk ≤ 1889, and that cK = 32
for 149 187 out of them, cK = 32/5 for 938 253 out of them, and cK = 32/9
for 289 921 out of them. Now, let Pn denote the product of the first n odd
primes 3 = p1 < 5 = p2 < · · · < pn < · · · (hence, P0 = 1, P1 = 3, P2 = 15,
· · · ). There are two cases to consider:

(1) If χk(2) = +1. Then, fk ≡ 1 (mod 8) is prime, κk = 0, cK ≥ 32/9,
fK = fkfK/k where fK/k is a product of n ≥ 0 distinct odd primes.
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Hence, fK/k ≥ Pn, tK/k ≤ 1 + 2n, h−K = 2tK/k−1 ≤ 4n and using (7)
we obtain

Fk(n) :=
32fkPn

9eπ24n(log fk) log(f3
kP 2

n)
≤ 1.

Assume that fk ≥ 36. Then 3f
3/2
k ≥ 54 and for n ≥ 1 we have

pn+1 ≥ p2 = 5, Pn ≥ P1 = 3 and

Fk(n + 1)
Fk(n)

=
pn+1 log(f3/2

k Pn)

4 log(pn+1f
3/2
k Pn)

≥
5 log(f3/2

k Pn)

4 log(5f
3/2
k Pn)

≥
5 log(3f

3/2
k )

4 log(15f
3/2
k )

≥ 1.

Since we clearly have Fk(1) ≤ Fk(0), we obtain minn≥0 Fk(n) = Fk(1)
and

8fk

3eπ2(log fk) log(9f3
k )

= Fk(1) ≤ Fk(n) ≤ 1,

which implies fk ≤ 1899, hence fk ≤ 1889 (for fk ≡ 1 (mod 8) must
be prime). Hence, using (7), we obtain

h−K ≥ 32fK

9eπ2(log(1889)) log(1889f2
K)

.

Let now n denote the number of distinct prime divisors of fK . Then
fK ≥ Pn, tK/k ≤ 2(n−1)+1 and h−K = 2tK/k−1 ≤ 4n−1. Hence, using
(7), we obtain

4n−1 ≥ 32Pn

9eπ2(log(1889)) log(1889P 2
n)

,

which implies n ≤ 7, h−K ≤ 46,

46 ≥ 32fK

9eπ2(log(1889)) log(1889f2
K)

and yields fK ≤ 107.
(2) If χk(2) = −1. Then fk ≡ 5 (mod 8) is prime, κk ≤ 2.78, cK ≥

32/5 and we follow the previous case. We obtain fk ≤ 1329, hence
fk ≤ 1301 (for fk ≡ 5 (mod 8) must be prime), n ≤ 7, h−K ≤ 46 and
fK ≤ 7 · 106.

Hence, the first assertion Proposition 8 is proved. Now, for a given odd
prime fk ≤ 1889 equal to 1 modulo 4, and for a given odd square-free
integer fK/k ≤ 107/fk relatively prime with fk, we compute κk, tK/k (using
(10)), cK (using (11)) and use (7) and (8) to deduce that if the exponent
of the ideal class group of K is less than or equal to 2, then

(12) 2tK/k−1 ≥
cKfkfK/k

eπ2(log fk + κk) log(f3
kf2

K/k)
.
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Now, an easy calculation yields that only 400 out of 1 377 361 imaginary
cyclic fields K of odd conductors and such that fk ≤ 1889 and fK ≤ 107

satisfy (12), and the second assertion of the Proposition is proved. �

Remarks 9. Our present lower bound (7) should be compared with the
bound

h−K ≥ 2fK

eπ2(log fk + 0.05) log(fkf
2
K)

obtained in [Lou97]. If we used this worse lower bound for h−K then we
would end up with the worse following result: If the exponent of the ideal
class group of an imaginary cyclic quartic field K of odd conductor fK is
less than or equal to 2, then fk ≤ 4053 and fK ≤ 2 ·107. Moreover, whereas
there are 2 946 395 imaginary cyclic fields of odd conductors fK ≤ 2 · 107

and such that fk ≤ 4053, only 1175 out of them may have their ideal class
groups of exponents ≤ 2, the largest possible conductor being fK = 11667
(for fk = 3889 and fK/k = 3).

5. The non-abelian case

We showed in [Lou03] how taking into account the behavior of the prime
2 in CM-fields can greatly improve upon the upper bounds on the root num-
bers of the normal CM-fields with abelian maximal totally real subfields of
a given (relative) class number. We now explain how we can improve upon
previously known upper bounds for residues of Dedekind zeta functions of
non-necessarily abelian number fields by taking into accound the behavior
of the prime 2:

Theorem 10. Let K be a number field of degree m ≥ 3 and root discrim-
inant ρK = d

1/m
K . Set vm = (m/(m − 1))m−1 ∈ [9/4, e), and E(x) :=

(ex − 1)/x = 1 + O(x) for x → 0+. Then,
(13)

Ress=1(ζK(s)) ≤ (e/2)m−1vm
ΠK(2)
Πm

Q(2)

(
log ρK + (log 4)E(

log 4
log ρK

)
)m−1

.

Moreover, 0 < β < 1 and ζK(β) = 0 imply
(14)

Ress=1(ζK(s)) ≤ (1− β)(e/2)m ΠK(2)
Πm

Q(2)

(
log ρK + (log 4)E(

log 4
log ρK

)
)m

.

Proof. We only prove (13), the proof of (14) being similar. We set

ΠK(2, s) :=
∏
P|2

(1− (N(P))−s)−1
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(which is ≥ 1 for s > 0). According to [Lou01, Section 6.1] but using the
bound

ζK(s) ≤ ΠK(2, s)
Πm

Q(2, s)
ζm(s)

instead of the bound ζK(s) ≤ ζm(s), we have

Ress=1(ζK(s)) ≤ ΠK(2)
Πm

Q(2)

(
e log dK

2(m− 1)

)m−1

g(sK)

= (e/2)m−1vm
ΠK(2)
Πm

Q(2)
(log ρK)m−1g(sK),

where sK = 1 + 2(m− 1)/ log dK ∈ [1, 6] and

g(s) :=
ΠK(2, s)/ΠK(2)
Πm

Q(2, s)/Πm
Q(2)

≤ h(s) := Πm
Q(2)/Πm

Q(2, s)

(for ΠK(2, s) ≤ ΠK(2, 1) = ΠK(2) for s ≥ 1). Now, log h(1) = 0 and
(h′/h)(s) = m log 2

2s−1 ≤ m log 2 for s ≥ 1. Hence,

log h(sK) ≤ (sK − 1)m log 2 =
(m− 1) log 4

log ρK
,

g(sK) ≤ h(sK) ≤
(

exp(
log 4

log ρK
)
)m−1

,

and (13) follows. �

Corollary 11. (Compare with [Lou01, Theorems 12 and 14] and [Lou03,
Theorems 9 and 22]). Set c = 2(

√
3 − 1)2 = 1.07 · · · and vm :=

(m/(m − 1))m−1 ∈ [2, e). Let N be a normal CM-field of degree 2m > 2,
relative class number h−N and root discriminant ρN = d

1/2m
N ≥ 650. Assume

that N contains no imaginary quadratic subfield (or that the Dedekind zeta
functions of the imaginary quadratic subfields of N have no real zero in the
range 1− (c/ log dN ) ≤ s < 1). Then,

(15) h−N ≥ c

2mvmec/2−1

(
4
√

ρN

3πe
(
log ρN + (log 4)E( log 4

log ρN
)
))m

.

Hence, h−N > 1 for m ≥ 5 and ρN ≥ 14610, and for m ≥ 10 and ρN ≥ 9150.
Moreover, h−N → ∞ as [N : Q] = 2m → ∞ for such normal CM-fields N
of root discriminants ρN ≥ 3928.

Proof. To prove (15), follow the proof of [Lou01, Theorems 12 and 14] and
[Lou03, Theorems 9 and 22], but now make use of Theorem 10 instead of



Applications of bounds taking into account the behavior of small primes 571

[Lou01, Theorem 1] and finally notice that

ΠN (2)
ΠK(2)/Πm

Q(2)
= 2mΠN (2)/ΠK(2) = 2m

∏
P|(2)

(
1− χ(P)

N(P)
)−1 ≥ (4/3)m

(χ is the quadratic character associated with the quadratic extension N/K,
and P ranges over all the primes ideals of K lying above the rational prime
2). �

We also refer the reader to [LK] for a recent paper dealing with upper
bounds on the degrees and absolute values of the discriminants of the CM-
fields of class number one, under the assumption of the generalized Riemann
hypothesis. The proof relies on a generalization of Odlyzko ([Odl]), Stark
([Sta]) and Bessassi’s ([Bes]) upper bounds for residues of Dedekind zeta
functions of totally real number fields of large degrees, this generalization
taking into account the behavior of small primes. All these bounds are
better than ours, but only for numbers fields of large degrees and small
root discriminants, whereas ours are developped to deal with CM-fields of
small degrees.

6. An open problem

Let k be a non-normal totally real cubic field of positive discriminant dk.
It is known that (see [Lou01, Theorem 2]):

Ress=1(ζk(s)) ≤
1
8

log2 dk.

This bound has been used in [BL02] to try to solve the class number one
problem for the non-normal sextic CM-fields K containing no quadratic
subfields. However, to date this problem is in fact not completely solved
for we had a much too large bound dK ≤ 2 · 1029 on the absolute values
dK of their discriminants (see [BL02, Theorem 12]). In order to greatly
improve upon this upper bound, we would like to prove that there exists
some explicit constant κ such that

Ress=1(ζk(s)) ≤
1
8

Πk(2)
Π3

Q(2)
(log dk + κ)2

holds true for any non-normal totally real cubic field k. However, adapting
the proof of [Lou01, Theorem 2] is not that easy and we have not come up
yet with such a result, the hardest cases to handle being the cases (2) = P
or P1P2 in k, where we would expect bounds of the type

Ress=1(ζk(s)) ≤

{
(log dk + κ′′′)2/24 if (2) = P1P2 in k,
(log dk + κ′′′′)2/56 if (2) = P in k.
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At the moment, we can only prove the following result which already yields
a 1000-fold improvement on our previous bound dK ≤ 2 · 1029:

Theorem 12. Let k be a totally real cubic number field. Then,

Ress=1(ζk(s)) ≤


(log dk − κ)2/8 if (2) = P1P2P3 in k,
(log dk − κ′)2/16 if (2) = P1P2

2 , P1P2 or P in k,
(log dk + κ′′)2/32 if (2) = P3 in k,

where κ = 2 log(4π)− 2γ − 2 = 1.90761 · · · ,
κ′ = 2 log(2π)− 2γ − 2 = 0.52132 · · · ,
κ′′ = 2 + 2γ − 2 log π = 0.86497 · · · .

As a consequence, if K is a non-normal sextic CM-field containing no qua-
dratic subfield and if the class number of K is equal to one, then dK ≤
2 · 1026.
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