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On sum-sets and product-sets of complex numbers

par József SOLYMOSI

Résumé. On donne une preuve simple que pour tout ensemble
fini de nombres complexes A, la taille de l’ensemble de sommes
A+A ou celle de l’ensemble de produits A ·A est toujours grande.

Abstract. We give a simple argument that for any finite set of
complex numbers A, the size of the the sum-set, A + A, or the
product-set, A ·A, is always large.

1. Introduction

Let A be a finite subset of complex numbers. The sum-set of A is A+A =
{a + b : a, b ∈ A}, and the product-set is given by A ·A = {a · b : a, b ∈ A}.
Erdős conjectured that for any n-element set the sum-set or the product-
set should be close to n2. For integers, Erdős and Szemerédi [7] proved the
lower bound n1+ε.

max(|A + A, |A ·A|) ≥ |A|1+ε.

Nathanson [9] proved the bound with ε = 1/31, Ford [8] improved it to
ε = 1/15 , and the best bound is obtained by Elekes [6] who showed ε = 1/4
if A is a set of real numbers. Very recently Chang [3] proved ε = 1/54 to
finite sets of complex numbers. For further results and related problems
we refer to [4, 5] and [1, 2].

In this note we prove Elekes’ bound for complex numbers.

Theorem 1.1. There is a positive absolute constant c, such that, for any
finite sets of complex numbers A,B, and Q,

c|A|3/2|B|1/2|Q|1/2 ≤ |A + B| · |A ·Q|,

whence c|A|5/4 ≤ max{|A + A|, |A ·A|}.
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2. Proof

For the proof we need some simple observations and definitions. For
each a ∈ A let us find ”the closest” element, an a′ ∈ A so that a′ 6= a and
for any a′′ ∈ A if |a − a′| > |a − a′′| then a = a′′. If there are more then
one closest elements, then let us select any of them. This way we have |A|
ordered pairs, let us call them neighboring pairs.

Definition. We say that a quadruple (a, a′, b, q) is good if (a, a′) is a neigh-
boring pair, b ∈ B and q ∈ Q, moreover∣∣{u ∈ A + B : |a + b− u| ≤ |a− a′|}

∣∣ ≤ 28|A + B|
|A|

and ∣∣{v ∈ A ·Q : |aq − v| ≤ |aq − a′q|}
∣∣ ≤ 28|A ·Q|

|A|
.

When a quadruple (a, a′, b, q) is good, then it means that the neighbor-
hoods of a + b and aq are not very dense in A + B and in A ·Q.

Lemma 2.1. For any b ∈ B and q ∈ Q the number of good quadruples
(a, a′, b, q) is at least |A|/2.

Proof. Let us consider the set of disks around the elements of A with radius
|a − a′| (i.e. for every a ∈ A we take the largest disk with center a, which
contains no other elements of A in it’s interior). A simple geometric ob-
servation shows that no complex number is covered by more then 7 disks.
Therefore ∑

a∈A

∣∣{u ∈ A + B : |a + b− u| ≤ |a− a′|}
∣∣ ≤ 7|A + B|

and ∑
a∈A

∣∣{v ∈ A ·Q : |aq − v| ≤ |aq − a′q|}
∣∣ ≤ 7|A ·Q|

providing that at least half of the neighboring pairs form good quadruples
with b and q. Indeed, if we had more then a quarter of the neighboring
pairs so that, say,∣∣{v ∈ A ·Q : |aq − v| ≤ |aq − a′q|}

∣∣ >
28|A ·Q|

|A|
then it would imply

7|A ·Q| ≥ |A|
4

∣∣{v ∈ A ·Q : |aq − v| ≤ |aq − a′q|}
∣∣ > 7|A ·Q|.
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Proof of Theorem 1 To prove the theorem, we count the good quadruples
(a, a′, b, q) twice. For the sake of simplicity let us suppose that 0 /∈ Q. Such
a quadruple is uniquely determined by the quadruple (a + b, a′ + b, aq, a′q).
Now observe that there are |A + B| possibilities for the first element, and
given the value of a + b, the second element a′ + b must be one of the
28|A + B|/|A| nearest element of the sum-set A + B. We make the same
argument for the third and fourth component to find that the number of
such quadruples is at most

|A + B|28|A + B|
|A|

|A ·Q|28|A ·Q|
|A|

.

On the other hand, by Lemma 1 the number of such quadruples is at least

|A|
2
|B||Q|

that proves the theorem.

A similar argument works for quaternions and for other hypercomplex
numbers. In general, if T and Q are sets of similarity transformations and A
is a set of points in space such that from any quadruple (t(p1), t(p2), q(p1),
q(p2)) the elements t ∈ T , q ∈ Q, and p1 6= p2 ∈ A are uniquely determined,
then

c|A|3/2|T |1/2|Q|1/2 ≤ |T (A)| · |Q(A)|,
where c depends on the dimension of the space only.
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matics; To the memory of Paul Turán. P.Erdős, L.Alpár, and G.Halász, editors. Akadémiai
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