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PAC fields over number fields

par Moshe JARDEN

Résumé. Soient K un corps de nombres et N une extension ga-
loisienne de Q qui n’est pas algébriquement close. Alors N n’est
pas PAC sur K.

Abstract. We prove that if K is a number field and N is a
Galois extension of Q which is not algebraically closed, then N is
not PAC over K.

1. Introduction

A central concept in Field Arithmetic is “pseudo algebraically closed
(abbreviated PAC) field”. Since our major result in this note concerns
number fields, we focus our attention on fields of characteristic 0. If K is a
countable Hilbertian field, then K̃(σ) is PAC for almost all σ ∈ Gal(K)e

[1, Thm. 18.6.1]. Aharon Razon observed that the proof of that theorem
yields that the fields K̃(σ) are even “PAC over K”. Moreover, if K is the
quotient field of a countable Hilbertian ring R (e.g. R = Z and K = Q),
then for almost all σ ∈ Gal(K)e the field K̃(σ) is PAC over R [4, Prop. 3.1].

Here K̃ denotes the algebraic closure of K and Gal(K) = Gal(K̃/K) is
its absolute Galois group. This group is equipped with a Haar measure
and the close “almost all” means “for all but a set of measure zero”. If
σ = (σ1, . . . , σe) ∈ Gal(K)e, then K̃(σ) is the fixed field in K̃ of σ1, . . . , σe.

Recall that a field M is said to be PAC if every nonempty absolutely
irreducible variety V over M has an M -rational point. One says that M
is PAC over a subring R if for every absolutely irreducible variety V
over M of dimension r ≥ 0 and every dominating separable rational map
ϕ : V → Ar

M there exists a ∈ V (M) with ϕ(a) ∈ Rr.
When K is a number field, the stronger property of the fields K̃(σ)

(namely, being PAC over the ring of integers O of K) has far reaching arith-
metical consequences. For example, Õ(σ) (= the integral closure of O in
K̃(σ)) satisfies Rumely’s local-global principle [5, special case of Cor. 1.9]:
If V is an absolutely irreducible variety over K̃(σ) with V (Õ) 6= ∅, then V

has an Õ(σ)-rational point. Here Õ is the integral closure of O in K̃.
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For an arbitrary countable Hilbertian field K of characteristic 0 we fur-
ther denote the maximal Galois extension of K in K̃(σ) by K̃[σ]. We know
that for almost all σ ∈ Gal(K)e the field K̃[σ] is PAC [1, Thm. 18.9.3].
However, at the time we wrote [4], we did not know if K̃[σ] is PAC over
K, so much the more we did not know if K̃[σ] is PAC over O when K

is a number field. Thus, we did not know if Õ[σ] (= the integral closure
of O in K̃[σ]) satisfies Rumely’s local global principle. We did not even
know of any Galois extension of Q other than Q̃ which is PAC over Q.
We could only give a few examples of distinguished Galois extensions of Q
which are not PAC over Q: The maximal solvable extension Qsolv of Q,
the compositum Qsymm of all symmetric extensions of Q, and Qtr(

√
−1)

(Qtr is the maximal totally real extension of Q). The proof of the second
statement relies, among others, on Faltings’ theorem about the finiteness
of K-rational points of curves of genus at least 2. Note that Qsymm is PAC
[1, Thm. 18.10.3 combined with Cor. 11.2.5] and Qtr[

√
−1] is PAC [2, Re-

mark 7.10(b)]. However, it is a major problem of Field Arithmetic whether
Qsolv is PAC [1, Prob. 11.5.8]. Thus, it is not known whether every abso-
lutely irreducible equation f(x, y) = 0 with coefficients in Q can be solved
by radicals.

The goal of the present note is to prove that the above examples are only
special cases of a general result:

Main Theorem. No number field K has a Galois extension N which is
PAC over K except Q̃.

The proof of this theorem relies on a result of Razon about fields which
are PAC over subfields, on Frobenius density theorem, and on Neukirch’s
recognition of p-adically closed fields among all algebraic extensions of Q.
The latter theorem has no analog for finitely generated extensions over Fp

but it has one for finitely generated extensions of Q (a theorem of Efrat-
Koenigsmann-Pop). However, at one point of our proof we use the basic
fact that Q has no proper subfields. That property totally fails if we re-
place Q say by Q(t) with t indeterminate. Thus, any generalization of the
main theorem to finitely generated fields or, more generally, to countable
Hilbertian fields, should use completely other means.

Acknowledgement. The author thanks the referee for useful suggestions,
especially for suggesting problem 9.

2. Galois extensions of number fields

Among all Hilbertian fields Q is the only one which is a prime field. This
simple observation plays a crucial role in the proof of the main theorem
(see Remark 2).
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Lemma 1. Let K be a finite Galois extension of Q, p an ultrametric prime
of K, Kp a Henselian closure of K at p, and F an algebraic extension of
K such that Gal(Kp) ∼= Gal(F ). Then F = Kσ

p for some σ ∈ Gal(Q).
Thus, F = Kp′ for some prime p′ of K conjugate to p over Q.

Proof. Let p be the prime number lying under p. Denote the closure of Q
in Kp under the p-adic topology by Qp. Then Qp is isomorphic to the field
of all algebraic elements in Qp (= the field of p-adic integers). By [7, Satz
1], F is Henselian and it contains an isomorphic copy Q′

p of Qp such that
[F : Q′

p] = [Kp : Qp]. In particular, the prime p′ which F induces on K lies
over p. Hence, KQ′

p is a Henselian closure of K at p′ which we denote by
Kp′ . Since K/Q is Galois, there is a σ ∈ Gal(K/Q) with pσ = p′. Moreover,
σ extends to an element σ ∈ Gal(Q) with Kσ

p = Kp′ .
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Since Qp (resp. Q′
p) is the p-adic (resp. p′-adic) closure of Q in Kp

(resp. Kp′), we have Qσ
p = Q′

p. Hence, [Kp : Qp] = [Kp′ : Q′
p]. There-

fore, [F : Kp′ ] = 1, so F = Kp′ = Kσ
p . �

Remark 2. The arguments of Lemma 1 can not be generalized to finitely
generated extensions of Q which are transcendental over Q. For example,
suppose K = Q(t) with t indeterminate. If K is a Galois extension a field
K0, then, by Lüroth, K0 = Q(u) with u transcendental over Q. As such,
K0 has infinitely many automorphisms τ , each of which extends to K̃ and,
in the notation of Lemma 1, Gal(Kτ

p ) ∼= Gal(Kp). However, the prime of
K induced by the Henselian valuation of Kτ

p is in general not conjugate to
p|K0 over K0.

Observation 3. Let V be a vector space of dimension d over Fp and
V1, . . . , Vn subspaces of dimensions d− 1. Suppose n < p. Then,

⋃n
i=1 Vi is

a proper subset of V . Indeed, |
⋃n

i=1 Vi| ≤
∑n

i=1 |Vi| = npd−1 < pd = |V |,
as required.

Let N/K be an algebraic extension of fields. We say that N is Hilber-
tian over K if each separable Hilbertian subset of N contains elements of
K.



374 Moshe Jarden

Lemma 4. Let N be an algebraic extension of a field K. Suppose N is
Hilbertian over K. Then, K has for each finite abelian group A a Galois
extension K ′ with Galois group A such that N ∩K ′ = K.

Proof. Let t be a transcendental element over K. By [1, Prop. 16.3.5], K(t)
has a Galois extension F with Galois group A such that F/K is regular. In
particular, FN/N(t) is Galois with Galois group A. By [1, Lemma 13.1.1],
N has a Hilbertian subset H such that for each a ∈ H, the specialization
t → a extends to an N -place ϕ of FN with residue field N ′ which a Galois
extension of N having Galois group A. Moreover, omitting finitely many
elements from H, we have that if a ∈ K, then the residue field K ′ of F at
ϕ is a Galois extension of K, Gal(K ′/K) is isomorphic to a subgroup of A
and NK ′ = N ′.

Since N is Hilbertian over K, we may choose a ∈ K ∩H. Then,

|A| = [N ′ : N ] ≤ [K ′ : K] ≤ [F : K(t)] = |A|.
Consequently, Gal(K ′/K) ∼= A and K ′ is linearly disjoint from N over K,
as desired. �

Theorem 5. Let N be a Galois extension of a number field K which is
different from Q̃. Then N is not PAC over K.

Proof. Assume N is PAC over K. First we replace K and N by fields
satisfying additional conditions.

Since N is PAC, N is not real closed [1, Thm. 11.5.1]. Hence, as N 6= Q̃,
[Q̃ : N ] = ∞ [6, p. 299, Cor. 3 and p. 452, Prop. 2.4], so Q has a finite Galois
extension E containing K which is not contained in N . By Weissauer, NE
is Hilbertian [1, Thm. 13.9.1]. Moreover, NE is Galois ever E, and by
[1, Prop. 13.9.3], NE is Hilbertian over E. In addition, NE is PAC over E
[4, Lemma 2.1]. Replacing N by NE and K by E, we may assume that, in
addition to N being Galois and PAC over K, the extension K/Q is Galois
and N is Hilbertian over K.

Let n = [K : Q] and choose a prime number p > n. Lemma 4 gives a
cyclic extension K ′ of K of degree p which is linearly disjoint from N . Let
K̂ be the Galois closure of K ′/Q. Choose elements σ1, . . . , σn of Gal(K̂/Q)
which lift the elements of Gal(K/Q). Finally let Ki = (K ′)σi , i = 1, . . . , n.
Since K/Q is Galois, K1, . . . ,Kn are all of the conjugates of K ′ over Q,
so K̂ = K1 · · ·Kn. Thus, V = Gal(K̂/K) is a vector space over Fp of
dimension d (which does not exceed n) and Vi = Gal(K̂/Ki) is a subspace
of V of dimension d − 1. Observation 3 gives a σ ∈ V r

⋃n
i=1 Vi. Denote

the fixed field of σ in K̂ by L. Then Ki 6⊆ L, i = 1, . . . , n.
Now choose a primitive element x for the extension K ′/K. By the

preceding paragraph, for each σ ∈ Gal(K̂/Q), there is an i such that xσ is
a primitive element of Ki/K, so xσ /∈ L.
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Again, by [5, Lemma 2.1], N ′ = NK ′ is PAC over K ′. Hence, there
exists a field M such that N ′ ∩ M = K ′ and N ′M = Q̃ [8, Thm. 5], so
N ∩ M = K and NM = Q̃. In particular, the restriction map
res : Gal(M) → Gal(N/K) is an isomorphism.

N N ′ Q̃

K K ′ M

Q

By the Frobenius density theorem, K has an ultrametric prime p unram-
ified in K̂ such that each element of

( K̂/K
p

)
generates Gal(K̂/L) [3, p. 134,

Thm. 5.2]. Hence, K has a Henselian closure Kp at p with Kp ∩ K̂ = L.
Therefore, no conjugate of x over Q belongs to Kp. Consequently, x belongs
to no conjugate of Kp over Q.

Kp

L K̂

K K ′

Q

As an extension of N , the field NKp is PAC [1, Cor. 11.2.5]. On the other
hand, as an extension of Kp, NKp is Henselian. Therefore, by Frey-Prestel,
NKp = Q̃ [1, Cor. 11.5.5], so

Gal(N/N ∩Kp) ∼= Gal(Kp).

Let F = (N ∩Kp)M . Since res : Gal(M) → Gal(N/K) is an isomorphism,
Gal(F ) ∼= Gal(N/N ∩Kp) ∼= Gal(Kp).

N Q̃
}}

}}

Kp

ttt
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N ∩Kp F

K M
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It follows from Lemma 1 that there exists σ ∈ Gal(Q) with F = Kσ
p . In

particular, x /∈ F , contradicting that x ∈ M and M ⊆ F . �

Remark 6. As already mentioned in the introduction, for almost all
σ ∈ Gal(Q)e the field Q̃[σ] is PAC [1, Thm. 18.9.3]. But, since Q̃[σ]
is Galois over Q, it is not PAC over Q (Theorem 5), so much the more not
PAC over Z. However, the latter theorem does not rule out that Q̃[σ] is
PAC over its ring of integers Z̃[σ]. According to Lemma 7 below, the latter
statement is equivalent to “ Z̃[σ] satisfies Rumely’s local global theorem”.
We don’t know whether these statements are true.

Lemma 7 (Razon). The following statements on an algebraic extension
M of Q are equivalent.

(a) M is PAC over OM .
(b) OM satisfies Rumely’s local-global principle.

Proof. The implication “(a)=⇒(b)” is a special case of [5, Cor. 1.9]. To
prove (a) assuming (b), we consider an absolutely irreducible polynomial
f ∈ M [T,X] with ∂f

∂X 6= 0 and a nonzero polynomial g ∈ M [T ]. By
[4, Lemma 1.3], it suffices to find a ∈ OM and b ∈ M such that f(a, b) = 0
and g(a) 6= 0. Choose a′ ∈ Z such that g(a′) 6= 0 and ∂f

∂X (a′, X) 6= 0.
Then choose b′ ∈ Q̃ with f(a′, b′) = 0. Next choose c ∈ Z with b′c ∈ Z̃.
For example, if

∑n
i=0 ci(b′)i = 0 with c0, . . . , cn ∈ Z, then we may choose

c = cn. Now note that (a′, b′c) is a zero of the absolutely irreducible
polynomial f(T, c−1X) with coefficients in M . By (a), there are a ∈ OM

and b′′ ∈ M with f(a, c−1b′′) = 0. Then b = c−1b′′ ∈ M satisfies f(a, b) = 0,
as needed. �

Problem 8. Prove or disprove the following statement: Let K be a finitely
generated transcendental extension of Q. Let N be a Galois extension of
K different from K̃. Then N is not PAC over K.

Problem 9. The fact that Qsolv is not PAC over Q implies the existence of
an absolutely irreducible polynomial f ∈ Qsolv[X, Y ] such that for all a ∈ Q
the equation f(a, Y ) = 0 has no solvable root. Is it possible to choose f in
Q[X, Y ]?
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