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A class–field theoretical calculation

par Cristian D. POPESCU

Résumé. Dans cet article, nous donnons la caractérisation com-
plète des sous-groupes de p–torsion de certains groupes de classes
d’idèles associés à des corps de fonctions de charactéristique p.
Nous utilisons ce résultat pour répondre à une question qui a
surgi dans le contexte de l’approche employée par Tan [6] pour
résoudre un important cas particulier d’une généralisation d’une
conjecture de Gross [4] sur des valeurs spéciales des fonctions L.

Abstract. In this paper, we give the complete characterization
of the p–torsion subgroups of certain idèle–class groups associated
to characteristic p function fields. As an application, we answer
a question which arose in the context of Tan’s approach [6] to an
important particular case of a generalization of a conjecture of
Gross [4] on special values of L–functions.

1. Notation and motivation

Let p be a prime number. As usual, the term characteristic p function
field (equivalently, characteristic p global field) refers to a finite extension
of a field Fp(T ), where Fp is the finite field of p elements and T is a variable.
Let K/k be a finite abelian extension of characteristic p function fields, of
Galois group Γ := Gal(K/k). Let S be a finite, nonempty set of primes in k,
containing all the primes which ramify in K/k. We denote by SK the set of
primes in K dividing primes in S. Let Kab,p

S be the maximal pro–p abelian
extension of K, unramified outside SK . Since SK is Γ–invariant, Kab,p

S /k

is a Galois extension. Let G := Gal(Kab,p
S /k), and H := Gal(Kab,p

S /K).
As usual, the group Γ acts by lift–and–conjugation on H. More precisely,
γ ∗h := γ̃hγ̃−1, for all h ∈ H and γ ∈ Γ, where γ̃ denotes any lift of γ to G
with respect to the usual epimorphism G −→ Γ. This way, since H is an
abelian group, H is endowed with a natural Z[Γ]–module structure.

In what follows, we denote by IΓ the augmentation ideal in the group ring
Z[Γ], i.e. the ideal of Z[Γ] generated by {γ − 1 | γ ∈ Γ}. Let [G, G] denote
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the commutator subgroup of G, generated by the commutators [x, y] =
xyx−1y−1 of all the elements x, y ∈ G. Since, by definition (γ − 1) ∗ h =
γ̃hγ̃−1h−1 = [γ̃, h], for all γ ∈ Γ and h ∈ H, we have an inclusion

IΓ ·H ⊆ [G, G] .

In [6], the following question arises in the context of Tan’s approach to an
important particular case (the so–called “p–primary part in characteristic
p”–case) of a generalization of a conjecture of Gross [4].

Question. Under what conditions do we have an equality

[G, G] = IΓ ·H ?

In §§2–3 below, we use class–field theory to show that the answer to
the Question above depends on the p–torsion subgroup of a certain idèle–
class group associated to K. In §3, we use class–field theory and Galois
cohomology to calculate this p–torsion subgroup explicitly. Based on this
calculation, in §4 we settle the Question stated above. In §5, we give a
sufficient condition for the equality [G, G] = IΓ · H to hold true, for ab-
stract groups G, H, and Γ, not necessarily arising in the number–theoretical
context described above.

2. Group theoretical considerations

Throughout this section, H, G, and Γ are arbitrary abstract groups,
fitting into a short exact sequence

1 −→ H −→ G −→ Γ −→ 1 ,

with H and Γ abelian. As above, Γ is viewed as acting on H via lift–and–
conjugation, and this action endows H with a Z[Γ]–module structure.

Proposition 2.1. If H/IΓ ·H has no torsion, then one has an equality

[G, G] = IΓ ·H .

Proof. We have a short exact sequence of groups

(2.1) 1 −→ H/IΓ ·H −→ G/IΓ ·H −→ Γ −→ 1.

We will need the following lemma, which was suggested to the author by
Tan [7].

Lemma 2.1. Let 1 −→ H −→ G
π−→ Γ −→ 1 be an exact sequence of

groups, such that

(1) Γ is a torsion abelian group.
(2) H is a non–torsion abelian group.
(3) Γ acts trivially on H (via the usual lift–and–conjugation action).

Then, G is abelian.
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Proof of Lemma 2.1. Hypothesis (3) above implies right away that H ⊆
Z(G), where Z(G) denotes the center of G. Let a, b ∈ G. We will show
that [a, b] = 1. Since Γ is abelian, π([x, y]) = 1 and therefore [x, y] ∈ H,
for all x, y ∈ G. This shows that, if we denote by B the subgroup of G
generated by b, then we have a function

fa : B −→ H ,

defined by fa(x) = [a, x], for all x ∈ B. We claim that fa is a group
morphism. Indeed, if x, y ∈ B we have the equalities

fa(x) · fa(y) = (axa−1x−1)(aya−1)y−1 = (aya−1)(axa−1x−1)y−1 =

= ayxa−1x−1y−1 = fa(yx) = fa(xy) ,

which prove our claim. The second equality above is a consequence of
[a, x] ∈ H and H ⊆ Z(G). The last equality follows from the fact that
B is abelian. Since H ⊆ Z(G), we have B ∩ H ⊆ ker(fa). Therefore,
the image =(fa) of fa is isomorphic to a quotient of B/B ∩ H. Since
B/B∩H is isomorphic to a subgroup of Γ, hypothesis (2) shows that =(fa)
is a torsion subgroup H. Hypothesis (1) implies that =(fa) is a torsion
subgroup of H, while hypothesis (2) implies that =(fa) is trivial. Therefore
fa(b) = [a, b] = 1. This concludes the proof of Lemma 2.1. �

An alternative proof for Lemma 2.1. In what follows, we give a second, ho-
mological in nature and very enlightening proof for Lemma 2.1, suggested
to us by the referee. Let V := H ⊗Z Q. Hypothesis (1) implies that we
have an exact sequence of Z[Γ]–modules

0 −→ H −→ V −→ V /H −→ 0 ,

with Γ acting trivially on each term (see hypothesis (3)). Hypotheses (3)
and (1) imply that

H1(Γ, V ) = Hom(Γ, V ) = 0 , H1(Γ, H) = Hom(Γ, H) = 0 .

Consequently, the usual coboundary maps in the long–exact sequence of
Γ–cohomology groups associated to the last short exact sequence induce a
group isomorphism

H1(Γ, V /H) ∼−→ H2(Γ, H) .

Let h ∈ H1(Γ, V /H) = Hom(Γ, V /H) correspond to the extension class of
G in H2(Γ, H) via this coboundary isomorphism. Then G is isomorphic to
the pull–back of V −→ V /H along h : Γ −→ V /H. Since Γ and V are
abelian, so is G. �
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Now, we return to the proof of Proposition 2.1. The exact sequence (2.1)
satisfies properties (1), (2), and (3) in Lemma 2.1, and therefore G/IΓ ·H
is abelian. This shows that

[G, G] ⊆ IΓ ·H .

As the reverse inclusion is obviously true, we obtain the desired equality

[G, G] = IΓ ·H .

This concludes the proof of Proposition 2.1. �

If A is an (additive) abelian group, Â denotes the pro-p completion of
A, namely

Â := lim←−A/pnA ,

where lim←− denotes the usual projective limit with respect to the canonical
surjections A/pn+1A −→ A/pnA. Also, A[p∞] will denote the subgroup of
A consisting of all its p-power order elements. In what follows, we refer to
A[p∞] as the p–torsion subgroup of A. We have the following.

Lemma 2.2. Let A be an abelian group. Then, the following hold true.
(1) The inclusion A[p∞] ⊆ A induces a group isomorphism

Â[p∞][p∞] ∼−→ Â[p∞] .

(2) If A has a trivial p-torsion subgroup, then Â has a trivial p-torsion
subgroup.

Proof. First, we prove (2). Let α = (ân)n ∈ Â, where an ∈ A and ân is
the class of an in A/pnA. By definition, we have πn(ân) = ân−1, where
πn : A/pnA −→ A/pn−1A is the canonical projection, for all n. Assume
that p · α = 0 in Â. This implies that pan ∈ pnA, for all n ≥ 1. Since A
has no p–torsion, this implies that an ∈ pn−1A, for all n ≥ 1, which shows
that ân−1 = 0̂ in A/pn−1A, for all n ≥ 2. This implies that α = 0 in Â.

Next, we prove (1). Let B := A/A[p∞]. We have an exact sequence of
groups.

0 −→ A[p∞] −→ A −→ B −→ 0 .

We have an obvious equality pnA∩A[p∞] = pnA[p∞], for all n. This implies
that, for every n, we obtain an exact sequence of groups.

0 −→ A[p∞]/pnA[p∞] −→ A/pnA −→ B/pnB −→ 0 .

Since the canonical projections are surjective, the projective limit of these
exact sequences with respect to the canonical projections leads to the exact
sequence

0 −→ Â[p∞] −→ Â −→ B̂ −→ 0 .
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By definition, B has a trivial p–torsion subgroup. Statement (2) in the
Lemma implies that B̂ has a trivial p–torsion subgroup as well. Con-
sequently, the last exact sequence leads to the desired isomorphism
Â[p∞][p∞] ∼−→ Â[p∞] . �

3. Class–field theoretical considerations

Now, we return to the notations and definitions in §1. Proposition 2.1
above shows that, since H is a pro–p group, in order to settle the Question
stated above, it is important to characterize the p–torsion subgroup of
H/IΓ ·H. In particular, if one shows that H/IΓ ·H has no p–torsion then
Proposition 2.1 above leads to the desired equality [G, G] = IΓ · H. In
the current section, we use class–field theory to identify H/IΓH with the
pro–p completion of an idéle–class group of K and fully describe its torsion
subgroup. As usual, let CK denote the idèle-class group of K, i.e.

CK := JK/K× ,

where JK is the group of idèles of K. For the definitions and properties of
JK and CK , as well as class–field theory in idèlic and Galois–cohomological
language, the reader is referred to the classical texts [1] and [3].

If restricted to the context of characteristic p global fields, global class–
field theory (see [1], Chpt. VIII, §3, or [3], Chpt. VII, §5.5) shows that
the global Artin map induces a topological group isomorphism between
the profinite completion of CK and the Galois group Gal(Kab/K) of the
maximal abelian extension Kab of K. For every prime w of K, Uw denotes
the group of w–local units of the completion Kw of K with respect to w.
Let

∏
Uw denote the (closed) subgroup of JK , consisting of all those idèles

with local component 1 at all w ∈ SK and local component belonging to
Uw, for all w 6∈ SK . Since S 6= ∅, we have K× ∩

∏
Uw = {1}, and therefore

we can view
∏

Uw as a subgroup of CK , by identifying it with its image
via the injective group morphism

∏
Uw −→ CK .

By global class–field theory and the definition of H, the global Artin
map induces a topological group isomorphism of Γ–modules between the
pro-p completion of CK/

∏
Uw and H. Consequently, the global Artin map

induces a topological group isomorphism between the pro-p completion of
the quotient CK/(IΓ · CK)

∏
Uw and the group H/IΓ ·H,

(3.1) ̂
CK/(IΓ · CK)

∏
Uw

∼−→ H/IΓ ·H .

Our next goal is to prove the following theorem which gives a full de-
scription of the p–torsion of the group CK/(IΓ · CK)

∏
Uw.

Theorem 3.1. The p–torsion subgroup of CK/(IΓ·CK)·
∏

Uw is isomorphic
to ∧2Γ(p), where Γ(p) is the p-Sylow subgroup of Γ.
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Before proceeding to proving Theorem 3.1, we need to make several
Galois–cohomological considerations. For a Γ–module A and an i ∈ Z, we
denote by Ĥ

i
(Γ, A) the i–th Tate cohomology group of Γ with coefficients

in A (see [3], Chpt. IV, §6 for the definitions). Also, A[NΓ] denotes the
subgroup of A annihilated by the norm element NΓ ∈ Z[Γ], where NΓ :=∑

γ∈Γ γ. Obviously, IΓ ·A ⊆ A[NΓ]. By definition, Ĥ−1(Γ, A) = A[NΓ]/IΓ ·
A. Also, Ĥ0(Γ, A) = AΓ/NΓ · A, where AΓ is the maximal subgroup of A
fixed by Γ. We have an exact sequence of abelian groups.
(3.2)

1 −→ CK [NΓ] ·
∏

Uw

(IΓ · CK) ·
∏

Uw
−→ CK

(IΓ · CK)
∏

Uw
−→ CK

CK [NΓ] ·
∏

Uw
−→ 1 .

However, since K/k is unramified away from S, Shapiro’s Lemma ([3], Prop.
2, p. 99) combined with the cohomological triviality of groups of units in
unramified Galois extensions of local fields (see [3], Chpt. VII, §7) implies
that

(3.3) Ĥ
i
(Γ,

∏
Uw) =

∏
v 6∈S

Ĥ
i
(Γv, Uw(v)) = 0 , for all i ∈ Z ,

where Γv denotes the decomposition group of v in K/k and w(v) is a fixed
prime in K dividing v, for all v 6∈ S. Equality (3.3) for i = 1 gives the
following.

IΓ ·
∏

Uw = (
∏

Uw)[NΓ] .

This implies immediately that the left–most nonzero term of the exact
sequence (3.2) is in fact isomorphic to CK [NΓ]/IΓ · CK = Ĥ−1(Γ, CK).
Therefore, we obtain an exact sequence of groups.
(3.4)
1 −→ Ĥ

−1
(Γ, CK) −→ CK/(IΓ ·CK)·

∏
Uw −→ CK/CK [NΓ]·

∏
Uw −→ 1 .

Consequently, proving Theorem 3.1 amounts to studying the p–torsion sub-
groups of the two end–terms of exact sequence (3.4). This is accomplished
by the next two lemmas.

Lemma 3.1. The p-torsion subgroup of Ĥ
−1

(Γ, CK) is isomorphic to ∧2Γ(p).

Proof. Global class-field theory (see [3], Chpt. VII, §11.3) gives an isomor-
phism

Ĥ
−1

(Γ, CK) ∼−→ Ĥ
−3

(Γ, Z) .

On the other hand, one has an equality

Ĥ
−3

(Γ, Z) = H2(Γ, Z) .

Theorem 6.4 (iii) in [2] gives an isomorphism

H2(Γ, Z) ∼−→ ∧2Γ ,
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where the exterior product is taken over Z. Taking p–torsion of both sides
in the last equality concludes the proof of Lemma 3.1. �

In order to describe the p–torsion subgroup of the right–most nonzero
term of exact sequence (3.4), we need the following result, proved by
Kisilevsky in [5] and shown to imply the classical Leopoldt Conjecture for
characteristic p function fields.

Theorem 3.2 (Kisilevsky). Let k be an arbitrary characteristic p function
field. Let v a prime in k and kv the completion of k with respect to v. If
x ∈ k is the p–power of an element in kv, then x is the p–power of an
element in k.

Proof. See [5] �

Lemma 3.2. The p–torsion subgroup of CK/CK [NΓ] ·
∏

Uw is trivial.

Proof. Let us assume that CK/CK [NΓ] ·
∏

Uw has p-torsion. Let j ∈ JK

such that its class ĵ ∈ CK gives rise to an element of order p in the quotient
CK/CK [NΓ] ·

∏
Uw. This means that there exist ρ ∈ JK , u ∈

∏
Uw,

x ∈ K×, and y ∈ k×, such that

(1) jp = ρ · u · x in JK .
(2) NΓ(ρ) = y.

By taking norms in (1) above, we obtain

NΓ(j)p = NΓ(u) · yNΓ(x) .

However, since S 6= ∅, this implies right away that y · NΓ(x) is a p-power
locally, at primes in S. Theorem 3.2 above implies that there exists z ∈ k×,
such that y ·NΓ(x) = zp. This shows that NΓ(j)p = NΓ(u)·zp, and therefore
NΓ(u) = θp, for some θ ∈

∏
Uv, where the product is taken over all primes

v of k which are not in S, and Uv denotes the unit group of the completion
kv of k at v. However, equality (3.3) for i = 0 implies that Ĥ0(Γ,

∏
Uw) = 0

and therefore ∏
Uv = (

∏
Uw)Γ = NΓ(

∏
Uw) .

This shows that there exists u′ ∈
∏

Uw such that θ = NΓ(u′). This obvi-
ously implies that

NΓ(j) = NΓ(u′) · z , with u′ ∈
∏

Uw and z ∈ k× .

The last equality shows that ĵ/u′ ∈ CK [NΓ] and therefore ĵ ∈ CK [NΓ] ·∏
Uw. This shows that the element ĵ ∈ CK gives rise to the trivial class in

the quotient CK/CK [NΓ] ·
∏

Uw. �

Proof of Theorem 3.1. This is a direct consequence of exact sequence (3.4),
Lemma 3.1 and Lemma 3.2 above. �
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The next corollary fully describes the torsion subgroup T (H/IΓ ·H) of
H/IΓ ·H.

Corollary 3.1. (1) One has an isomorphism of groups

T (H/IΓ ·H) ∼−→ ∧2Γ(p) .

(2) H/IΓ ·H has no torsion if and only if Γ(p) is cyclic.

Proof. Let us first remark that since H is a pro–p group, its torsion sub-
group and p–torsion subgroup are identical. With this in mind, statement
(1) is a direct consequence of isomorphism (2), Theorem 3.1, Lemma 2.2
applied to the group A := CK/(IΓ · CK) ·

∏
Uw, and the finiteness of Γ.

Statement (2) is a direct consequence of (1) �

4. The answer to the Question stated in §1

We work under the hypotheses and with the notations of §§1 and 3. The
following theorem provides a full answer to the Question raised in §1.

Theorem 4.1. The following statements are equivalent
(1) [G, G] = IΓ ·H.
(2) The p–Sylow subgroup Γ(p) of Γ is cyclic.

Proof. The implication (2) =⇒ (1) is a direct consequence of Corollary 3.1
(2) and Proposition 2.1. Now, let us assume that [G, G] = IΓ ·H. As in §1,
let kab,p

S be the maximal pro–p abelian extension of k, unramified outside
of S. Let L′ be the maximal subfield of Kab,p

S fixed by [G, G]. Then, under
the present hypothesis, we have

(4.1) Gal(L′/K) ∼−→ H/[G, G] = H/IΓ ·H .

By definition, L′ is the maximal subfield of Kab,p
S which is an abelian ex-

tension of k. Obviously, we have an inclusion kab,p
S ⊆ L′. Also, if we denote

by K ′ the maximal subfield of K fixed by Γ(p), then K ′/k and kab,p
S /k are

linearly disjoint extensions of k and their compositum K ′ · kab,p
S inside L

equals L′. Consequently, we have a group isomorphism

Gal(L′/k) ∼−→ Γ/Γ(p) ×Gal(kab,p
S /k) .

The isomorphism above combined with (4.1) and the fact that H is a pro–
p group shows that H/IΓ ·H is isomorphic to a subgroup of Gal(kab,p

S /k)
(via the usual map restricting automorphisms of Kab,p

S to automorphisms
of kab,p

S ). This shows that if we prove that Gal(kab,p
S /k) has a trivial torsion

subgroup, then H/IΓ · H has a trivial torsion subgroup which, via Corol-
lary 3.1(2) implies that, indeed, Γ(p) is cyclic. However, the global Artin
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map for k induces an isomorphism

̂
Jk/k× ·

∏
Uv

∼−→ Gal(kab,p
S /k) .

Therefore, Lemma 2.2 implies that it suffices to show that the group Jk/k× ·∏
Uv has no p–torsion. This follows immediately by applying once again

Kisilevsky’s Theorem 3.2. Indeed, assume that j ∈ Jk has the property
that jp = x · u, where x ∈ k× and u ∈

∏
Uv. Since S is non–empty, this

implies that x is a p–power in k×v , for all v ∈ S. Theorem 3.2 implies that
x = yp, for some y ∈ k×. This implies that u = θp, with θ = j/x, θ ∈

∏
Uv.

Consequently, j = y · θ ∈ k× ·
∏

Uv, and therefore the class ĵ of j in the
quotient Jk/k× ·

∏
Uv is trivial. This concludes the proof of the implication

(1) =⇒ (2). �

5. More group theory (final thoughts)

We conclude with a short purely group–theoretical section providing a
sufficient condition for the equality [G, G] = IΓ ·H to hold true, where G,
H, and Γ are abstract groups.

Lemma 5.1. Let us assume that we have an exact sequence of groups

1 −→ H −→ G
π−→ Γ −→ 1 ,

with H and Γ abelian and H normal in G. Let us assume that π has a
set–theoretic section s : Γ −→ G, such that s(x) · s(y) = s(y) · s(x), for all
x, y in Γ. Then, we have an equality [G , G] = IΓ ·H .

Proof. It suffices to show that [G, G] ⊆ IΓ ·H. Let α, β be two elements in
G. Let x, y ∈ Γ, and a, b ∈ H, such that α = s(x)a and β = s(y)b. Since
s(y)−1s(x)−1 = s(x)−1s(y)−1, we have

[α, β] =s(x)as(y)ba−1s(x)−1b−1s(y)−1 = {s(x)as(x)−1}·
· {s(x)s(y)bs(y)−1s(x)−1} · {s(y)s(x)a−1s(x)−1s(y)−1}·
· {s(y)b−1s(y)−1} .

Let us denote by m, n, p, and q respectively the elements appearing inside
braces to the right of the second equality above. Since H is normal in G,
we have m,n, p, q ∈ H. Since H is assumed to be abelian and a, b ∈ H, the
equalities above give

[α, β] = {ma−1} · {nb−1} · {pa} · {qb} =

= [s(x), a] · [s(x)s(y), b] · [s(y)s(x), a−1] · [s(y), b−1] .

Let us now recall that s is a section of π. Therefore, there exists an element
µ ∈ H, such that s(x)s(y) = s(xy)µ. Since H is abelian, this implies that
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[s(x)s(y), b] = [s(xy)µ, b] = [s(xy), b] and [s(y)s(x), a−1] = [s(yx), a−1]. We
obtain
[α, β] = [s(x), a] · [s(xy), b] · [s(yx), a−1] · [s(y), b]

= {(x− 1) ∗ a} · {(xy − 1) ∗ b} · {(yx− 1) ∗ a−1} · {(y − 1) ∗ b−1} .

This shows that [α, β] ∈ IΓ·H, which concludes the proof of Lemma 5.1. �

Corollary 5.1. Assume that we have an exact sequence of groups

1 −→ H −→ G
π−→ Γ −→ 1 ,

with H and Γ abelian and H normal in G. Assume that either (1) or (2)
below hold.

(1) Γ is cyclic.
(2) The exact sequence above is split.

Then, we have an equality [G , G] = IΓ ·H.

Proof. It is very easy to check that if either one of the conditions above
is satisfied, one can construct a set–theoretic section s for π, such that
s(x)s(y) = s(y)s(x), for all x, y ∈ Γ. (Under condition (2), one can actually
find a group morphism section s. Such a section satisfies the commutativity
property automatically, since Γ is assumed to be abelian.) The corollary is
then a consequence of Lemma 5.1. �
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References
[1] E. Artin, J. Tate, Class–field Theory. Addison–Wesley Publishing Co., Inc.- Advanced Book

Classics Series, 1990.
[2] K. Brown, Cohomology of Groups. GTM 87, Springer Verlag, 1982.
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