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Counting monic irreducible polynomials P in

Fq[X] for which order of X (mod P ) is odd

par Christian BALLOT

Résumé. Hasse démontra que les nombres premiers p pour les-
quels l’ordre de 2 modulo p est impair ont une densité de Dirich-
let égale à 7/24-ième. Dans cet article, nous parvenons à imiter
la méthode de Hasse afin d’obtenir la densité de Dirichlet δq de
l’ensemble des polynômes irréductibles et unitaires P de l’anneau
Fq[X] pour lesquels l’ordre de X (mod P ) est impair. Puis nous
présentons une seconde preuve, nouvelle, élémentaire et effective
de ces densités. D’autres observations sont faites et des moyennes
de densités sont calculées, notamment la moyenne des δp lorsque
p parcourt l’ensemble des nombres premiers.

Abstract. Hasse showed the existence and computed the Dirich-
let density of the set of primes p for which the order of 2 (mod p)
is odd; it is 7/24. Here we mimic successfully Hasse’s method to
compute the density δq of monic irreducibles P in Fq[X] for which
the order of X (mod P ) is odd. But on the way, we are also led to
a new and elementary proof of these densities. More observations
are made, and averages are considered, in particular, an average
of the δp’s as p varies through all rational primes.

1. Introduction

In a 1958 paper [Sier], Sierpinski considered the partition of the rational
primes p into two sets: the primes for which the order of 2 (mod p) is odd
and those for which this order is even. He asked what the relative size of
these two sets was. A satisfying and complete answer to this question was
found by Hasse [Ha] in the mid-sixties: the odds in favour of the order of 2
(mod p) being odd versus even are 7 to 17. That is, in the sense of Dirichlet,
or of natural density, the order of 2 is odd for 7 out of 24 primes. In this
paper, we investigate a similar question but in a new setting. Given a prime
power q we consider the euclidean ring Fq[X] and ask for the proportion
of primes P in Fq[X] for which the order of X (mod P ) is odd. Here a
prime P is a monic irreducible polynomial of Fq[X]. It will be seen that
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the answer depends heavily on q, but we will show among other results
that the 7 to 17 odds are again the correct answer if and only if q is an
odd power of a prime congruent to 3 (mod 8). For any other odd q’s, these
odds are lower than 7 to 17.

Besides the introduction the paper contains five sections. Section 2 is
preliminary and is divided into four subsections. Section 2.1 introduces
notation. Section 2.2 is devoted to brief remarks and definitions about
Dirichlet and natural densities for primes in Z or in Fq[X]. Section 2.3
contains the statements of three relevant analogues of classical theorems:
the Kummer-Dedekind prime decomposition theorem, the Dirichlet and
Kronecker Density Theorems. In Section 2.4 a technical proposition about
the power of 2 dividing qn − 1 is proven in a most elementary way. This
result will be of frequent use.

The calculation à la Hasse of the density δq of primes P in Fq[X] such
that X has odd order modulo P is carried out in Section 3. The method
devised by Hasse to compute the density of rational primes p for which the
order of a (mod p) is odd (where a is any integer, not just 2) proceeded
by first calculating the sub-densities of such primes within the primes p
having a fixed power of 2 dividing p − 1. The method we employ here
works similarly with sub-densities being computed within the primes P
having a fixed power of 2 dividing their degrees. We will indicate why our
method constitutes a proper generalization of the classical method of Hasse
(see Remark 3.4).

Now the sub-density corresponding to primes of odd degree (i.e. primes
whose degree is divisible by 20) obtained in Section 3 yields the exact pro-
portion of primes P , within primes of degree n ≥ 3, for each odd integer n,
for which the order of X (mod P ) is odd. This, we prove in Section 4 in
an elementary manner. This observation and the idea, used to mimic the
Hasse method in Section 3, of separating primes according to the 2-adic
valuation of their degree, are put together to yield another proof of the
existence and of the values of the densities computed in Section 3. This
new proof, however, is elementary in that it does not use the Kummer-
Dedekind, nor the Kronecker Density Theorems; the proof actually shows
that our sets of primes have a natural density, via a notion of natural density
that was shown to imply Dirichlet density in [Ba2]. Moreover, the proof is
effective in that it shows how the natural density is being approached when
considering only primes up to a given norm qN . Section 4 also contains
additional remarks, one of which, Remark 4.6, is of computational interest
and presents numerical data for q = 3 and primes P of small degrees.

Section 5 contains two subsections. In the first one we return to the
classical case to calculate, through a dual and average point of view, and
given a “typical” integer a, the expected density of primes p such that a
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has odd order (mod p). Indeed the 7:17 odds found by Hasse for a = 2 is
not typical. These odds are 1:2 for most integers a and in particular for a
equal to any odd prime q. Loosely speaking we may say that having chosen
a “random” pair of primes (q, p), the odds that the order of q (mod p) be
odd are 1 to 2. Thus, this statement made in “dual” form leads us to a
short heuristic argument, less educated than the proof of Hasse, to account
for the proven, yet still intriguing fact that the order of q (mod p) is twice
as often even than odd. In Section 5.2, we carry this point of view over
to Fq[X] and, as a consequence, we show that the choice of X rather than
that of another monic polynomial in Fq[X] is representative of the general
expected odds.

That the densities δq computed in Section 3 vary a great deal with q, and
that the point of view of Section 5 be successful, suggests we investigate
the densities themselves “on average”. In the classical setting this average
is 1/3. What will the densities in our setting turn out to be on average?
Thus, in Section 6, we define in reasonable manner density averages over
δq’s. We do so either as q varies through the same eth power of primes p, or
as q varies among all powers of the same prime p, or simply over all prime
powers q. We show how to prove their existence and we compute their
values. For instance, we define δ(−, e = 1), the average of the δp’s over
all rational primes, as limx

1
π(x)

∑
p≤x δp. Various asymptotic averages over

rational primes have recently been investigated. For instance the quantity
1
x

∑
p≤x

α(p−1)
p−1 , where α(p− 1) is the average order of elements in F∗p, was

studied in [Ga], or δ(a, d) = 1
π(x)

∑
p≤x δ(p; a, d), where δ(p; a, d) is the

proportion of elements of F∗p whose order is congruent to a (mod d), was
studied in [Mo2]. Note that taking d = 2 and a = 1 in the last example is
akin to our problem. In fact, see Remark 4.5, finding δ(1, 2) is like averaging
over rational p’s the proportions of P ’s for which the order of X (mod P )
is odd among primes P in Fp[X] of degree 1. Instead, we may say that our
δ(−, e = 1) is an average over rational p’s of the proportions of such P ’s
regardless of degree.

Much work and progress has been done, since Sierpinski, to compute
densities for rational primes defined in several ways that generalize the
primes of the Sierpinski question. Thus, many densities for primes in Fq[X]
are expected to be computable.

For instance, finding the density of primes P in Fq[X] with order of X
(mod P ) even, as we did here, is the same as determining the density of
primes dividing some term of the second order linear recurrence (Xn +
1)n≥0. The Hasse method, as in the classical case, clearly generalizes to
other special recurrences, such as the companion Chebyshev-like recurrence
defined by Tn+2 = XTn+1 + Tn, n ≥ 0 with T0 = 2 and T1 = X in Fq[X], q
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odd. But would the elementary method of Section 4 also generalize to such
a sequence Tn?

Also, if ` is any prime, not just 2, arguments analogous to those of
Sections 3 or 4, yield the density of primes P in Fq[X] with order of X
(mod P ) divisible by ` (see [Ba3]).

Acknowledgment. I thank the anonymous Referee who read this paper
carefully and made sensible suggestions.

2. Preliminaries

2.1. Notation. We denote the exponent of the power of 2 dividing an
integer n by ν2(n). Equivalently, we will write 2ν2(n)||n or say that 2ν2(n)

is the (exact) power of 2 in n.
Having fixed a rational prime p and an integer e ≥ 1, we set q = pe.

A prime P in Fq[X] is a monic irreducible polynomial of the ring. The
degree of a polynomial P is written deg(P ) and the size of the quotient
ring Fq[X]/P , i.e. the norm of P , is denoted by |P |. The field of fractions
of the ring Fq[X] is denoted by K.

The symbol ζn denotes a primitive n-th root of unity in the algebraic
closure Fp of Fp.

We define for all integers k ≥ 0 the sets Sq(k) to be

{P ∈ Fq[X], P is prime and 2k||deg(P )}.

2.2. Dirichlet and natural densities of sets of primes. Let S be a
set of rational primes. Provided the limits exist, the natural density of S is
defined as d(S) = limN→∞N−1

∑N
n=1

χS(pn)
1 , where pn is the n-th rational

prime and χS is the characteristic function of S, while the Dirichlet density

of S is δ(S) = lims→1+

P
p∈S p−sP

p p−s .
It is well-known that a set S with a natural density d has a Dirichlet

density δ = d ([Des], Chap. 8). However, a set of rational primes may
have a Dirichlet density, but no natural density ([Ser], p. 76). The Cheb-
otarev Density Theorem is usually stated with respect to Dirichlet density.
However all Chebotarev sets of primes, i.e. sets to which the Chebotarev
Density Theorem or one of its corollaries may be applied, all have a natural
density ([Nar], Theorem 7.10*). The definition of natural density presents a
computational advantage compared to that of Dirichlet in the sense that the
approximants N−1

∑N
n=1 χS(pn) can be calculated using only a few primes

to yield empirical evidence of the existence and the value of a density.
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Definitions. A set S of primes in Fq[X] is said to have Dirichlet density
δ if the limit below exists and

lim
s→1+

∑
P∈S |P |−s∑

P |P |−s
= δ.

For a set S of primes in Fq[X], we define natural density by

(2.1) d(S) = lim
N→∞

1
N

N∑
n=1

Sn

In
,

where Sn represents the number of primes in S of degree n and In is the
number of primes of degree n in Fq[X], if the limit exists.

The reasons for defining d(S) as in (2.1) are discussed abundantly in
[Ba2] where (2.1) is compared to other definitions and shown to yield the
best analogue to the classical notion. In particular, the relations between
Dirichlet and natural densities are similar to that of the classical case. Also
the N -th approximants rN = 1

N

∑N
n=1

Sn
In

can be computed to provide an
empirical check to a density computed theoretically. In fact we do this in
Remark 4.6.

2.3. Some relevant theorems : statement and reference.

Proposition 2.1. (A weak function field version of a classical Kummer-
Dedekind Theorem) Let α be an algebraic integer over K with minimal
polynomial M(Y ) ∈ (Fq[X])[Y ] (that is M(Y ) is monic with coefficients in
Fq[X]) and P be a prime in Fq[X]. Then there is a one-to-one correspon-
dence between prime ideal factors P of the ideal generated by P in the ring
of integers Oα of K(α) and monic irreducible factors M of M , and the
correspondence is such that the degree of Oα/P over Fq[X]/P matches the
polynomial degree of M.

Proof. One may view this proposition as a particular instance of Proposi-
tion 25 of [Lan] with the Dedekind ring A = Fq[X]. �

Theorem 2.2 (Dirichlet Density Theorem). Let B and M be two polynomi-
als in Fq[X] with deg(M) ≥ 1. Then the set of primes {P ∈ Fq[X]; P ≡ B
(mod M)} has Dirichlet density δ = 1/Φ(M), where Φ(M) is the number
of non-zero polynomials prime to M and of degree less than deg(M).

Proof. See [Ro], Theorem 4.7. �

Theorem 2.3 (Kronecker Density Theorem). Let L be a Galois extension
of K of Galois group G. Then the set of primes in Fq[X] which split
completely in L has Dirichlet density 1/|G|.

Proof. This is a special case of the Chebotarev Density Theorem (Theo-
rem 9.13 of [Ro]). �
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2.4. A useful lemma. Let p be an odd prime, e an integer≥ 1 and q = pe.
We consider the pair of Lucas sequences un = qn−1

q−1 and vn = qn +1 (n ≥ 0)
with characteristic polynomial X2−(q+1)X+q. As the reader may readily
check we have the addition formula 2um+n = umvn +unvm, ∀m and n ≥ 0,
and its corollary, the so-called double-angle formula, u2n = unvn, ∀n ≥ 0.
In the next proposition, we write x ∼ y to mean that the powers of 2
dividing the integers x and y are the same.

Proposition 2.4. For all integers n ≥ 0 we have that i) u2n+1 is odd, and
ii) u2n ∼ n(q + 1).

Proof. First we prove i) by induction on n. If n = 0, then u2n+1 = u1 = 1
is odd. Assuming u2n+1 is odd for some n ≥ 0 then u2n+3 = (q +1)u2n+2−
qu2n+1 ≡ −qu2n+1 ≡ 1 (mod 2) and we are done. We then prove ii) by
induction on ν2(n). And we prove the initial step ν2(n) = 0 itself by
induction on the odd integers n ≥ 1. For n = 1 we have u2n = u2 = q+1 ∼
n(q +1) = q +1. Assume u2n ∼ q +1 for some odd n, then by the addition
formula we have 2u2n+4 = u2nv4 + u4v2n. Now for any integer k ≥ 0 the
integer vk is even and v2k = (q2)k+1 ≡ 1k+1 ≡ 2 (mod 4) satisfies v2k ∼ 2.
Hence u2nv4 ∼ 2(q +1) while u4v2n = u2v2v2n ∼ 2(q +1)v2 so the power of
2 in u4v2n is larger than the power of 2 in u2nv4. Therefore u2n+4 ∼ q + 1
and the case ν2(n) = 0 holds. So let us assume ii) is true for any n with
ν2(n) = k ≥ 0. Then if n is such that ν2(n) = k+1, write n = 2m. We have
using the inductive hypothesis u2n = u4m = u2mv2m ∼ 2u2m ∼ 2m(q+1) ∼
n(q + 1). �

We restate Proposition 2.4 as a lemma in a form that will be of direct
use throughout the paper.

Lemma 2.5. Let q = pe, where p is an odd prime and n an integer ≥ 1.
Then

ν2(qn − 1) =
{

ν2(q − 1), if n is odd,
ν2(q2 − 1) + ν2(n)− 1, if n is even.

Notation. We will denote by m the arithmetic function of n ≥ 1 defined
by m(n) = ν2(qn − 1).
Remark 2.6. By Lemma 2.5, m(n) depends only on ν2(n).

3. Computation of δq via a method analogous to Hasse’s

In the proofs of Theorems 3.1 and 3.2, whenever the argument of the
function m is dropped, we mean m(2k).

Theorem 3.1. For all integers k ≥ 0 the sets Sq(k) have a Dirichlet density
δ(Sq(k)) where

δ(Sq(k)) =
1

2k+1
.
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Proof. Given the prime p, our reckonings take place within a fixed algebraic
closure Fp of Fp. The sets Sq(k), k = 0, 1, 2, . . ., partition the set I of primes
of Fq[X]. By Remark 2.6, the function ν2(|P | − 1) = ν2(qdeg P − 1) of the
prime P depends only on k. In fact, for P ∈ Sq(k), ν2(|P | − 1) = m(2k).
And we have, for the ideal P , the equivalence
(3.1)

P ∈ Sq(k) ⇐⇒ P splits completely in K(ζ2m), but not in K(ζ21+m).

Indeed, P ∈ Sq(k) if and only if 2m, but not 2m+1, divides the order of
the cyclic group

(
Fq[X]/P

)∗, or −1 is a 2m−1-th power, but not a 2m-th
power in that cyclic group, or equivalently Y 2m−1

+ 1 = 0 is solvable in
Fq[X] (mod P ), but Y 2m

+ 1 = 0 is not solvable. So that, applying Prop.
2.1 yields (3.1). Now by the Kronecker Density Theorem

(3.2) δ(Sq(k)) = [K(ζ2m) : K]−1 − [K(ζ21+m) : K]−1.

But the dimension [K(ζ2m) : K] is also the degree of the extension Fq(ζ2m)
over Fq (see Lemma 3.1.10 p. 64 of [Sti]).

Now the largest primitive 2x-th root of unity, ζ2x in F
q2k corresponds to

x = m(2k). Indeed F∗
q2k has order q2k − 1. And ζ2m is a primitive element

of F
q2k /Fq since a proper subfield of this extension (if any), i.e. any F

q2` ,
` < k, has m(2`) < m(2k) by Lemma 2.5. Therefore F

q2k = Fq(ζ2m(2k))
so that, by (3.2) and the remark that follows (3.2), we have δ(Sq(k)) =
2−k − 2−k−1 = 2−k−1. �

Definition. Define Oq(k) as {P ∈ Sq(k); order of X (mod P ) is odd} and
Oq as

⋃
k≥0 Oq(k). The complement of Oq(k) in Sq(k) is Eq(k) = {P ∈

Sq(k); order of X (mod P ) is even}.

Theorem 3.2. The sets Oq(k) have a Dirichlet density δ(Oq(k)) where

δ(Oq(k)) = 2−m(2k)−k−1 =
{

2−ν2(p−1)−1, if e is odd and k = 0,
2−ν2(p2−1)−ν2(e)−2k, otherwise.

Proof. Let P be a prime of degree n in Sq(k). Then to say that X has

odd order (mod P ) means that X
|P |−1
2m ≡ 1 (mod P ), or that there is

a solution Y ∈ Fq[X] satisfying Y 2m − X ≡ 0 (mod P ), or again by
Prop. 2.1 that the ideal P splits completely in Lk = K(ζ2m , 2m√

X), but
not completely in Lk(ζ2m+1) since P ∈ Sq(k). Now we have [Lk : K] =
[Lk : K(ζ2m)] × [K(ζ2m) : K] = 2m × [K(ζ2m) : K], and by the proof of
Theorem 3.1 we conclude that [Lk : K] = 2m× 2k, and also that Lk(ζ2m+1)
is a quadratic extension of Lk. Hence, by the Kronecker Density Theo-
rem, we get δ(Oq(k)) = 2−1 × 2−m(2k)−k. By Lemma 2.5, if k = 0 and e

is odd, then m(2k) = ν2(qn − 1) = ν2(q − 1) = ν2(p − 1) and otherwise
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m(2k) = ν2(pne − 1) = ν2(p2 − 1) + ν2(ne)− 1 = ν2(p2 − 1) + k + ν2(e)− 1
so that δ(Oq(k)) has the announced density. �

Remark. Because Dirichlet densities are finitely additive we deduce that
Eq(k) possesses such a density, namely δ(Sq(k))− δ(Oq(k)).

Finally we compute the densities δq.

Theorem 3.3. The Dirichlet density δq of the set Oq of primes P in Fq[X]
for which the order of X (mod P ) is odd exists and is

δq =


1, if p = 2,
2−ν2(p−1)−1 + 3−1 · 2−ν2(p2−1), if e is odd,

3−1 · 2−ν2(p2−1)−ν2(e)+2, if e is even.

Proof. If p = 2 then the cyclic group (Fq[X]/P )∗ is of odd order 2e deg P −1.
So every element has odd order, in particular X. Since X has odd order
(mod P ) for any prime P ∈ Fq[X], we have δq = 1. For odd p, we claim
that δq exists and is the infinite sum

∑
k≥0 δ(Oq(k)) (Dirichlet densities are

finitely additive and since
∑

k≥0 δ(Oq(k)) converges, the lower density is
at least the sum of the series, but a similar reasoning holds for primes for
which X has even order which is the complementary set). Thus for e odd,
we have δq = 2−ν2(p−1)−1 +

∑
k≥1 2−ν2(p2−1)−2k and for e even we also get

δq by summing a geometric series of common ratio 1/4. �

Remark. It does not take long to check that for p not 2, δq is at most
1
4 + 1

24 = 7
24 and that this upper bound is reached exactly for q an odd

power of a prime p ≡ 3 (mod 8) (as claimed in the introduction).

Remark 3.4. In the classical Hasse method, odd primes p are partitioned
into sets Pj , j = 1, 2, 3, . . ., where Pj = {p; ν2(p − 1) = j}. Then for
a fixed j ≥ 1, necessary and sufficient splitting conditions on p in Pj are
established for the order of 2 (mod p) to be odd, yielding for each j, as in
Theorem 3.2 for each k, a sub-density dj . To compute the density of Oq in
the ring Fq[X] we computed the sub-densities of Oq within sets of primes
P having a fixed power of 2 in their degree n. By Lemma 2.5, the power
of 2 in qn − 1 is a simple linear (or nearly linear with slope 1) function of
the power of 2 in the degree n. But qn − 1 = |P | − 1. Thus, our approach
replaces the p − 1 of the Hasse method of the classical setting by |P | − 1,
a rather close analogue.

4. An elementary calculation of the densities
based on counting primes

For any integer n ≥ 1, let Fn be the number of elements of odd order in
the multiplicative group F∗qn and let Gn be the number of primitive elements
of the extension Fqn over Fq which have odd order in F∗qn . Note that the
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Fn elements of odd order in F∗qn form a subgroup of F∗qn . We recall that
the number In of primes P ∈ Fq[X] of degree n is given by the formula
In = 1

n

∑
d n µ(d)qn/d, where µ is the Moebius function (see for instance

[Ro], Chap. 2).

Lemma 4.1. Let α ∈ Fq of degree n over Fq and let P denote the minimal
polynomial of α over Fq. Then

α has odd order in the multiplicative group of the field Fq(α) if and only
if P ∈ Oq.

Proof. Since Fq(α) ' Fqn , α has odd order in F∗qn if and only if α is a
root of XFn − 1 or equivalently P divides XFn − 1 in Fq[X], that is to say
P ∈ Oq. �

Lemma 4.2. For any prime power q and any integer n ≥ 2, we have the
double inequality

qn − q

q − 1
qn/2 < nIn < qn.

Proof. Not every element of Fqn is a root of an irreducible polynomial of
degree n, therefore nIn < |Fqn | = qn. Also

qn − nIn =
∣∣∣∣ ∑
1<d n

µ(d)qn/d

∣∣∣∣
≤

n/2∑
k=1

qk, since
n

d
≤ n

2
,

<
q

q − 1
qn/2, implying the other inequality.

�

Theorem 4.3. Assume q = pe, p an odd prime and e ≥ 1. Let Ωn be the
number of primes in Oq of degree n. Then the ratio Ωn/In satisfies{

Ωn
In

= 2−m(n), if n is odd ≥ 3,
2−m(n) − q

2(q−1)q
−n/2 < Ωn

In
< 2−m(n) + q

8(q−2)q
−n/2, if n is even,

Proof. Since an element of a cyclic group of order x has odd order if and
only if it belongs to the unique subgroup of order 2−ν2(x) · x, we have
Fn = 2−ν2(qn−1) · (qn − 1) = 2−m(n)(qn − 1). To compute Gn observe
that Fn =

∑
d n Gd. So by the Moebius inversion formula we have Gn =∑

d n µ(d)Fn/d. And by Lemma 4.1 we have Ωn = Gn/n.
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Assume first that n is odd ≥ 3. Then any divisor d of n is odd and
therefore m(d) = m(1) = m(n) by Remark 2.6. Hence

Gn = 2−m(n)
∑
d n

µ(d)(qn/d − 1)

= 2−m(n)
∑
d n

µ(d)qn/d − 2−m(n)
∑
d n

µ(d),(4.1)

yielding Gn = 2−m(n)
∑

d n µ(d)qn/d, since n > 1 implies
∑

d n µ(d) = 0.

And Ωn = Gn/n = 2−m(n)In implies Ωn/In = 2−m(n).
Assume now that n is even. Then

Gn =
∑
d n

µ(d)Fn/d =
∑
d n

µ(d)2−m(n/d)qn/d −
∑
d n

µ(d)2−m(n/d)

≥ 2−m(n)qn − 2−m(n/2)qn/2 +
∑

d n, d≥3

µ(d)2−m(n/d)qn/d − 1/2,

since 0 ≤
∑

d n µ(d)2−m(n/d) ≤ 1/2. Indeed,∑
d n

µ(d)2−m(n/d) =
∑

d 2l+1

µ(d)2−m(1) −
∑

d 2l+1

µ(d)2−m(2)

=
{

0, if l ≥ 1,

2−m(1) − 2−m(2), if l = 0,

where 2l + 1 = 2−ν2(n)n. But 0 < 2−m(1) − 2−m(2) < 2−m(1) ≤ 1/2.
Proceeding as in Lemma 4.2, we get for n even

ξ(n) .=
∣∣ ∑

d n, d≥3

µ(d)2−m(n/d)qn/d
∣∣ ≤ 1

2(q − 1)
qn/2 − 1

2
.

One can check directly the above inequality for n = 2 and 4, whereas for
n ≥ 6 observe that

ξ(n) ≤ 1
2

n/3∑
k=1

qk ≤ qn/3+1 − q

2(q − 1)
≤ qn/2

2(q − 1)
− 1

2
.

Hence, using −2−m(n/2) ≥ −1/2, we have

Gn ≥ 2−m(n)qn − 2−m(n/2)qn/2 −
(

qn/2

2(q − 1)
− 1

2

)
− 1

2

≥ 2−m(n)qn − q

2(q − 1)
qn/2.
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On the other hand, Gn ≤ 2−m(n)qn − ζ(n), where ζ(n) .= 2−m(n/2)qn/2 −∑
d n, d≥3 µ(d)2−m(n/d)qn/d. But

ζ(n) > 2−m(n/2)qn/2 −
∑

d n, d≥6

µ(d)2−m(n/d)qn/d

≥ 2−m(n/2)qn/2 − 2−m(n/2)

n/6∑
k=1

qk, which is > 0,

since qn/2 >
∑n/6

k=1 qk for n ≥ 6, and where, in the above, we used µ(3) =
µ(5) < 0, µ(d) = 0, if 4 d, and 2−m(n/2) > 2−m(n). Therefore Gn <

2−m(n)qn.
Using the previous inequalities on Gn and Lemma 4.2 we get

2−m(n)qn − q
2(q−1)q

n/2

qn
<

Ωn

In
=

Gn

nIn
<

2−m(n)qn

qn − q
q−1qn/2

,

or

2−m(n) − q

2(q − 1)
q−n/2 <

Ωn

In
< 2−m(n)

(
1− q

q − 1
q−n/2

)−1

< 2−m(n)

(
1 +

q

q − 2
q−n/2

)
,

where the rightmost inequality above is obtained by writing 1/(1 − x) =
1 +x+x ·x/(1−x) with x = q

q−1q−n/2 and having x
1−x ≤

1/(q−1)
1−1/(q−1) = 1

q−2 ,

since qn/2 ≥ q. We get the announced estimate by noting that n even
implies m(n) ≥ 3, so that Ωn/In < 2−m(n) + q

8(q−2)q
−n/2. �

We state a fact mentioned in our introduction as a corollary of Theo-
rem 4.3.

Corollary 4.4. The relative density ratio δ(Oq(k))/δ(Sq(k)) when k = 0 is
more than a density since it is the exact proportion of primes in Oq within
the set of primes of a given odd degree n ≥ 3, i.e. δ(Oq(0))/δ(Sq(0)) =
Ωn/In, for any odd n ≥ 3.

Proof. By Theorem 4.3 the ratio Ωn
In

= 2−m(n) which by looking at Theo-
rems 3.1 and 3.2 is the ratio δ(Oq(k = 0))/δ(Sq(k = 0)). �

Remark 4.5. For n = 1,
∑

d n µ(d) = 1, so by (3.1) we get G1 =

2−m(1)(I1−1) = 2−m(1)(q−1), instead of 2−m(1)q. That we get q−1 instead
of q comes from the fact that there are only q − 1 primes of degree 1 for
which the order of X (mod P ) is defined, namely P = X − a, for a ∈ F∗q .
The ratio Ω1/I1 is again 2−m(1) provided one only considers these q − 1
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primes. Indeed, X ≡ a (mod X − a) implies the order of X (mod X − a)
is the order of a in F∗q . This order is odd if and only if a belongs to the
subgroup of F∗q of order 2−ν2(q−1) · (q− 1) = 2−m(1)(q− 1) (a trivial case of
Lemma 4.1). Thus, Ω1/I1 = 2−m(1)(q − 1)/q = 2−m(1) − q−12−m(1).

Remark 4.6. The numerical table below gives for q = 3 and each degree
n from 1 to 11 the values of In, Ωn and rn, where Ωn is the number of
primes in O3 of degree n and rn is the n-th approximant to d3 = δ3. See
§1.2 for the definition of the rn’s. They are given here with 4 decimal places
of accuracy.

n 1 2 3 4 5 6 7 8 9 10 11
In 3 3 8 18 48 116 312 810 2184 5880 16104
Ωn 1 0 4 1 24 13 156 25 1092 726 8052
rn .3333 .1666 .2777 .2222 .2777 .2506 .2859 .2540 .2813 .2655 .2868

The Ωn’s can be obtained by asking some mathematical software to factor
Xt − 1 (mod 3) for various t’s. But they can be computed directly by
observing that if X has odd order modulo a prime P of degree n, then P
must be a factor of some Xm−1, where m is a factor of Fn, the largest odd
factor in qn − 1. One only considers those factors m for which the order of
q (mod m) is n. For in that case, the m-th cyclotomic polynomial Φm(X)
factors into ϕ(m)/n primes in Ωn, where ϕ is Euler’s totient function. As
an example consider q = 3 and n = 8. Then 38 − 1 = 25 × 5 × 41. So
F8 is 5× 41. Since 3 has order 8 modulo 5× 41 and modulo 41, there are
(4 · 40)/8 + 40/8 = 25 primes of degree 8 for which X has odd order.

It is of interest to see how the successive rn’s approach the asymptotic
density δ3 = 7/24 which is about 0.2917.

Using Theorem 4.3 and the remarks about natural and Dirichlet densi-
ties made in §2.2, we give a purely elementary proof of Theorem 3.3. By
“elementary”, we mean not using the Kummer-Dedekind Theorem, nor the
Kronecker Density Theorem. This is a major difference from the classical
case. In fact, the method we follow yields an effective theorem in which
we precise how the sequence of approximants (rn) converges to the natural
density dq.

Theorem 4.7. For any N ≥ 1, we have, uniformly for any odd prime
power q = pe, e ≥ 1, ∣∣rN − δq

∣∣ <
3

4N
,

where rN is the N -th approximant N−1
∑N

n=1 Ωn/In, δq is the Dirichlet
density

∑
k≥0 2−k−1−m(2k) of the set Oq found in Theorems 3.2 and 3.3. In

particular, Oq has a natural density dq = limN rN equal to δq.

Proof. We show that the set of primes Oq possesses a natural density dq =∑
k≥0 2−k−12−m(2k). It then follows that Oq has Dirichlet density δ(Oq) =
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dq. Since dq = limNN−1
∑N

n=1 Ωn/In, if the limit exists, we consider a sum
SN =

∑N
n=1 Ωn/In. Because Ωn/In depends essentially on k = ν2(n), we

need to estimate the number of integers n between 1 and N of the form
2k(2l+1) for a fixed k ≥ 0. Solving for l the inequality 2k(2l+1) ≤ N yields

0 ≤ l ≤ N−2k

2k+1 . Thus there are
⌊

N+2k

2k+1

⌋
integers n with ν2(n) = k between

1 and N . But using Theorem 4.3 which, in particular, for n even implies
that |Ωn/In − 2−m(n)| < .5q(q − 1)−1q−n/2 and the end of Remark 4.5, we
get

(4.2) SN =
∑
k≥0

⌊
N + 2k

2k+1

⌋
2−m(2k) + CN ,

where |CN | ≤ .5q(q − 1)−1
∑

n even ≤N q−n/2 − 2−m(1)q−1.

Note that −1
2 ≤

N
2k+1 −

⌊
N+2k

2k+1

⌋
< 1

2 so that replacing the integer value

expressions
⌊

N+2k

2k+1

⌋
in (4.2) by 2−k−1N causes an error on SN no greater

than 2−1
∑

k≥0 2−m(2k). Thus SN = N
∑

k≥0 2−k−12−m(2k) + EN , where

|EN | ≤ 2−1
∑
k≥0

2−m(2k) + .5q/(q − 1)
∑

n even ≤N

q−n/2 − 2−m(1)q−1.

But .5q/(q − 1)
∑

n even ≤N q−n/2 ≤ q
2(q−1)

q−1

1−q−1 = .5q(q − 1)−2 and

2−1
∑

k≥0 2−m(2k) = 2−1
(
2−m(1) +

∑
k≥1 2−m(2k)

)
= 2−1−m(1) + 2−m(2).

Therefore,

|EN | ≤ .5q(q − 1)−2 + [2−1−ν2(q−1) + 2−ν2(q2−1)]− 2−ν2(q−1)q−1

<
3
8

+
[
1
4

+
1
8

]
− 0 =

6
8
.(4.3)

Dividing SN = N
∑

k≥0 2−k−12−m(2k) + EN through by N yields the theo-
rem. �

Remark 4.8. The bound on |EN | given in (4.3) is better than 3/4 for
most q’s.

5. The classical 1:2 odds revisited and
why the choice of X is a representative choice

Definition. (Arithmetic density of a set of monic polynomials) The arith-
metic (or natural) density of a set A ⊂ N is defined, if it exists, as d(A) =
limN→∞N−1AN , where AN is the number of natural integers in A and
≤ N . Note that d(A) = limN→∞

1
N

∑N
n=1

χA(n)
1 , where χA is the charac-

teristic function of A. Analogously, we propose to define, if it exists, the
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arithmetic density of a set S of monic polynomials in Fq[X] as the limit
d(S) = limN→∞

1
N

∑N
n=1

S(n)
qn , where S(n) is the number of elements of S

of degree n. Here qn stands for the number of monic polynomials in Fq[X]
of degree n, or of norm qn.

5.1. A heuristic for the expected odds in the classical case. We
start by recalling a fact which is familiar to people in the field of Lucas
sequences: For “most” Lucas sequences Un = αn−βn

α−β , the density of primes
p with odd rank r(p) in (Un) is 1

3 (see [Ba1, Lag, Lax, Mo1] and [M-S]).
Here α and β are the roots of a quadratic X2 − aX + b ∈ Z[X]. The rank
r(p) is the least integer r ≥ 1 such that p Ur; it always exists if p 6 2b.
Although with the existing results in the area this fact could be turned
into an explicit theorem, our intention is merely to provide an informal
argument aimed at understanding. Why do primes first divide (Un) twice
more often at even indices?

Let us only consider Lucas sequences of the type an−1
a−1 where a ∈ Z.

Here r(p) is the order of a (mod p). And assume for simplicity that a is
a positive integer. Let δa denote the density of primes p for which order
of a (mod p) is odd. From Theorem 3.1.3 of [Ba1] one can deduce that
for any a ∈ A, δa = 1

3 , where A = {a ∈ Z≥1; a = 2d · m, where d ≥
0 and m is a non-square odd integer}. Since the arithmetic density of A

is one, we get that limN→∞
1
N

∑N
a=1 δa = 1

3 . This is a proof, but it re-
quired the knowledge of the existence and the value of the δa’s. Let us
now compute the average order of a (mod p) from a dual point of view.
Instead of fixing an a and counting primes for which a has odd order, let
us fix a prime p and evaluate the proportion α(p), in terms of arithmetic
density, of positive integers a having odd order (mod p). In computing
α(p), we discard integers a divisible by p. For j ≥ 1, let Pj be the set
{p prime ; ν2(p− 1) = j}. If p ∈ Pj , then an integer a prime to p has odd
order (mod p) if and only if a is in the unique subgroup of order p−1

2j of
(Z/p)∗. Hence α(p) = 1

2j . So it is never 1
3 . But what about the average

over all p’s? By the Dirichlet Density Theorem each Pj possesses a density
δ(Pj) = 1

2j , so it seems reasonable1 to assign to each possible value of α(p)
a weight equal to the “probability” that p be in Pj , i.e. δ(Pj). Then this
average is ∑

j≥1

δ(Pj) · 1
2j

=
∑
j≥1

1
4j

=
1
4
· 1
1− 1/4

=
1
3

!

Remark. Had we considered the proportion β(p), in terms of Dirichlet
density, of primes q for which order of q (mod p) is odd, rather than the
proportion α(p) of positive integers a, then the Dirichlet Density Theorem

1And it can be proved. See the argument used in the proof of Theorem 6.1
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would have given β(p) = α(p) and therefore we would have obtained an
expected probability of 1

3 again.

5.2. Expected odds in Fq[X]. Let P be a prime of Fq[X] of degree d. Let
R ∈ Fq[X] be of degree < d. Then A = {M ∈ Fq[X]; M is monic and M ≡
R (mod P )} has an arithmetic density. Indeed suppose n is any integer
≥ d. Then M of degree n belongs to A if and only if M = R + ΛP with Λ
a monic polynomial of degree n− d. Hence d(A) = qn−d

qn = 1
|P | .

To emulate what we did in 5.1 let α(P ) be the proportion, in terms of
arithmetic density, of monic polynomials M in Fq[X] for which the order
of M (mod P ) is odd. In evaluating α(P ) we discard those M divisible
by P . Hence there are |P | − 1 disjoint sets of arithmetic density 1/|P |
corresponding to the |P | − 1 classes in (Fq[X]/P )∗. Exactly |P |−1

2ν2(|P |−1) have
odd order (mod P ). Hence α(P ) = 1/2ν2(|P |−1).

As noticed in Section 3 the function α(P ) is constant on Sq(k). Thus as
above we write that the average of the α(P ) as P varies through the primes
of Fq[X] is

(5.1)
∑
k≥0

δ(Sq(k)) · α(P ∈ Sq(k)) =
∑
k≥0

1
2k+1

· 1
2m(k)

=
∑
k≥0

δ(Oq(k)) = δq!

Thus the polynomial X, unlike the prime 2 of Sierpinski, behaves like a
typical polynomial.

Remark. By the Dirichlet Density Theorem the set {Q ∈ Fq[X]; Q prime
and Q ≡ R (mod P )}, where R is a representative of a class in (Fq[X]/P )∗,
has a density = 1

Φ(P ) = 1
qd−1

. Thus the sum in (5.1) can be interpreted as
the “probability” that, given P and Q ∈ Fq[X], the order of Q (mod P ) be
odd.

6. Density averages

Definition. In this Section we write δ(p, e) for the density δq, where q = pe.
Let p1 = 3, p2 = 5, . . . , pn, . . . denote the odd rational primes in their
natural increasing order. Since a density δ(pn, e) is associated to each prime
power pe

n, we define most naturally the average δ(−, e) of the densities
δ(p, e) over all primes p by the limit limN→∞N−1

∑N
n=1 δ(pn, e) if it exists.

Similarly we define δ(p,−) to be limE E−1
∑E

e=1 δ(p, e), and the average
over all q′s, δ(−,−), as limN N−2

∑N
n=1

∑N
e=1 δ(pn, e), if these limits exist.
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Theorem 6.1. The average densities defined above all exist and are given,
for odd p, by the formulas

δ(−, e) =
{

7
36 , if e is odd,

2−ν2(e) · 4
36 , if e is even,

δ(p,−) = 36−1[9 · 2−ν2(p−1) + 14 · 2−ν2(p2−1)]

and

δ(−,−) =
52

63
=

4 + 1
6

36
.

Proof. We only prove the formula for δ(−, e), since the other cases can be
computed in similar fashion. Note in passing that both limits

lim
N

N−1
N∑

n=1

δ(pn,−) and lim
E

E−1
E∑

e=1

δ(−, e)

turn out to also be equal to δ(−,−). So assume e to be a fixed integer ≥ 1.
Let Pu = {p; ν2(p − 1) = u} and Pv

+ = {p; ν2(p + 1) = v} for u and v
integers ≥ 1. By the Dirichlet Density Theorem for primes in arithmetic
progressions, we have δ(Pu) = 2−u and δ(Pv

+) = 2−v, since for example
p ∈ Pu ⇐⇒ p ≡ 1 + 2u (mod 2u+1) and ϕ(2u+1) = 2u. The constant
values of δ(p, e) on each Pu, u ≥ 2, and on each Pv

+, v ≥ 2, are denoted
respectively by δu and δv

+. Since primes in arithmetic progressions have a
natural density d equal to their Dirichlet density ([Pra], Chap. 5), we have
d(Pu) = 2−u and d(Pv

+) = 2−v.
Theorem 3.3 gives the values of δu and δv

+ for u ≥ 2 and v ≥ 2. We claim
that the contribution of primes p ≡ 1 (mod 4) to δ(−, e) is

∑
u≥2 δ(Pu) ·

δu. For instance if e is odd, it is
∑

u≥2 2−u · 3−12−u+1 = 1
18 . And the

contribution of primes p ≡ −1 (mod 4) is
∑

v≥2 δ(Pv
+)δv

+. For e odd, it is∑
v≥2 2−v · (4−1 + 3−12−1−v) = 5

36 . Hence, for e odd, δ(−, e) = 2
36 + 5

36 .
To prove the above claim, let MN = 1

N

∑N
n=1 δ(pn, e) be the average of

the δ(p, e)’s over the first N odd primes. First we show that lim inf MN ≥ l
and then that l ≥ lim supMN , where l =

∑
u≥2 δ(Pu)δu +

∑
v≥2 δ(Pv

+)δv
+.

Let Pu(N) and Pv
+(N) be the number of indices n, 1 ≤ n ≤ N , such

that pn ∈ Pu and respectively pn ∈ Pv
+. Since MN =

∑
u≥2

Pu(N)
N δu +∑

v≥2
Pv

+(N)

N δv
+ ≥ MN (U, V ), ∀U ≥ 2, V ≥ 2, where

MN (U, V ) =
U∑

u=2

Pu(N)
N

δu +
V∑

v=2

Pv
+(N)
N

δv
+,
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we get as N → ∞, lim inf MN ≥
∑U

u=2 d(Pu)δu +
∑V

v=2 d(Pv
+)δv

+, for any
U and any V ≥ 2. Letting U and V go to ∞, the last inequality yields
lim inf MN ≥ l.

On the other hand for any U and V ≥ 2,

MN = MN (U, V ) +
1
N

[∑
u>U

Pu(N)δu +
∑
v>V

Pv
+(N)δv

+

]
≤ MN (U, V ) +

1
N

∑
u>U

Pu(N) +
1
N

∑
v>V

Pv
+(N).

Now limN
1
N

∑
u>U Pu(N) = d

(
{p; p ≡ 1 (mod 2U+1)}

)
= 2−U and

limN
1
N

∑
v>V Pv

+(N) = d
(
{p; p ≡ −1 (mod 2V +1)}

)
= 2−V . Hence,

∀ε > 0, for any U, V and N large enough we have MN ≤ MN (U, V )+ ε. As
N → ∞, we get lim supMN ≤

∑U
u=2 δ(Pu)δu +

∑V
v=2 δ(Pv

+)δv
+ + ε, which

as U, V →∞ yields lim supMN ≤ l + ε. �

Example. The average over all primes p of the densities δp4 is only 1
36 .

Remark. No average density δ(−, e), δ(p,−) or δ(−,−) is ever equal to any
δq, q a prime power, contrary to the 1/3 average, in the classical setting, of
the densities of the sets Tp = {` rational prime; order of p (mod `) is odd}
as p varies through rational primes.
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