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Non-degenerate Hilbert cubes in random sets

par CsaBA SANDOR

RESUME. Une légére modification de la démonstration du lemme
des cubes de Szemerédi donne le résultat plus précis suivant: si
une partie S de {1,...,n} vérifie |S| > &, alors S contient un cube
de Hilbert non dégénéré de dimension |log, log, n — 3|. Dans cet
article nous montrons que dans un ensemble aléatoire avec les
probabilités Pr{s € S} = 1/2 indépendantes pour 1 < s < n,
la plus grande dimension d’un cube de Hilbert non dégénéré est
proche de log, logy, n + log, log, log, n presque siirement et nous
déterminons la fonction seuil pour avoir un k-cube non dégénéré.

ABSTRACT. A slight modification of the proof of Szemerédi’s cube
lemma gives that if a set S C [1,n] satisfies |S| > %, then S must
contain a non-degenerate Hilbert cube of dimension |log, log, n —
3|. In this paper we prove that in a random set S determined
by Pr{s € S} = 1 for 1 < s < n, the maximal dimension of non-
degenerate Hilbert cubes is a.e. nearly log, log, n+log, log, log, n
and determine the threshold function for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let [1,n] de-
note the first n positive integers. The coordinates of the vector A*:m) =
(ap,ai,...,a) are selected from the positive integers such that Zf:o a; <

n. The vectors Bk Ai(k’") are interpreted similarly. The set S, is a
subset of [1,n]. The notations f(n) = o(g(n)) means lim, % = 0.
An arithmetic progression of length k is denoted by AP;. The rank of a
matrix A over the field F is denoted by rr(A). Let R denote the set of real
numbers, and let Fy be the finite field of order 2.

Let n be a positive integer, 0 < p,, < 1. The random set S(n,p,) is the
random variable taking its values in the set of subsets of [1,n] with the law
determined by the independence of the events {k € S(n,p,)}, 1 <k <n
with the probability Pr{k € S(n,p,)} = pn. This model is often used for

Manuscrit recu le 30 novembre 2005.
Supported by Hungarian National Foundation for Scientific Research, Grant No. T 49693
and 61908.



250 Csaba SANDOR

proving the existence of certain sequences. Given any combinatorial number
theoretic property P, there is a probability that S(n,p,) satisfies P, which
we write Pr{S(n,p,) = P). The function r(n) is called a threshold function
for a combinatorial number theoretic property P if

(i) When p, = o(r(n)), limp—oc Pr{S(n,pn) = P} =0,

(ii) When r(n) = o(p(n)), lim,— Pr{S(n,p,) = P} =1,
or visa versa. It is clear that threshold functions are not unique. However,
threshold functions are unique within factors m(n), 0 < liminf,, ..o m(n) <
lim sup,,_,., m(n) < oo, that is if p, is a threshold function for P then p/,
is also a threshold function iff p, = O(p),) and p}, = O(p,). In this sense
we can speak of the threshold function of a property.

We call H C [1,n] a Hilbert cube of dimension k or, simply, a k-cube if
there is a vector A%™) such that

k
H = HA(k,n) = {(Z() + ani 1€ € {0, 1}}
i=1
The positive integers ay,...,ax are called the generating elements of the
Hilbert cube. The k-cube is non-degenerate if |[H| = 2F i.e. the vertices
of the cube are distinct, otherwise it is called degenerate. The maximal
dimension of a non-degenerate Hilbert cube in S, is denoted by H 42 (Sn),
i.e. Hppar(Sy) is the largest integer | such that there exists a vector An)
for which the non-degenerate Hilbert cube H 1,0y C Sy,.
Hilbert originally proved that if the positive integers are colored with
finitely many colors then one color class contains a k-cube. The density
version of theorem was proved by Szemerédi and has since become known

as ”Szemerédi’s cube lemma”. The best known result is due to Gunderson
and Rodl (see [3]):

Theorem 1.1 (Gunderson and R&dl). For every d > 3 there exists ng <
(2¢ —2/1n2)? so that, for every n > ng, if A C [1,n] satisfies |A| >

1
2n172?1, then A contains a d-cube.
A direct consequence is the following:

Corollary 1.2. Every subset S, such that |S,| > 5 contains a [logy logy n]-
cube.

A slight modification of the proof gives that the above set S,, must con-
tain a non-degenerate |log,logy n — 3]-cube.

Obviously, a sequence S has the Sidon property (that is the sums s; +
sj, si < sj, si,s5 € S are distinct) iff S contains no 2-cube. Godbole,
Janson, Locantore and Rapoport studied the threshold function for the
Sidon property and gave the exact probability distribution in 1999 (see

[2]):
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Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let ¢ > 0 be
arbitrary. Let P be the Sidon property. Then with p, = cn=3/4,

c4
lim Pr{S(n,p,) E P} =¢ 1.

Clearly, a subset H C [1,n] is a degenerate 2-cube iff it is an APs.
Moreover, an easy argument gives that the threshold function for the event
”» APs-free” is p, = n~2/3. Hence
Corollary 1.4. Let ¢ > 0 be arbitrary. Then with p, = cn=3/4,

A
lim Pr{S(n,pn) contains no non-degenerate 2-cube} = e 12.
n—oo

In Theorem 1.5 we extend the previous Corollary.

Theorem 1.5. For any real number ¢ > 0 and any integer k > 2, if
k41
pn=cn 2%,
ok

lim Pr{S(n,py,) contains no non-degenerate k-cube} = ¢~ THDW
n—oo

In the following we shall find bounds on the maximal dimension of non-
degenerate Hilbert cubes in the random set S(n, 3). Let

(1 —€)logy logy logs n
log 2log, logy n

D (e) = [logy logy n + logy logy logy o +

and

(1+ €) log, logy logy n

E,(e) = [logy logy n + log, log, logy n + Tog 210, logy 1

The next theorem implies that for almost all 7, Hyaz(S(n, 3)) concentrates
on a single value because for every ¢ > 0, D,(e) = E,(¢) except for a
sequence of zero density.

Theorem 1.6. For every e > 0

lim Pr{Dy(€) < Hynar(S(n, 5)) < Ea(e)} = 1.

n—oo

2. Proofs

In order to prove the theorems we need some lemmas.

logn
loglogn

in [1,n] is (1 + 0(1))(%11)1%1!’ as n — oo.

Lemma 2.1. For k, = o( ) the number of non-degenerate ky,-cubes
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Proof. All vectors A(F") are in 1-1 correspondence with all vectors (vo, v1,

e Uk, With 1 < v < v < -+- < v, < nin R*»+1 according to the
formulas (ag, a1, ...,ax,) — (vo,v1,...,v,) = (ag,a0 + ai,...,ap + a1 +
-+ ay,); and (vo,v1,...,v,) — (ag,ai,...,ak,) = (vo,v1 —vo,...,Vk, —

U, —1). Consequently,

(k Zl> = [{A%=m) . H , 4, is non-degenerate} |
n

+ |{AFnn) H  (x,.n) is degenerate}|.

By the definition of a non-degenerate cube the cardinality of the set
{A(k"’") : H (x,.n) is non-degenerate} is equal to

kyn!|{non-degenerate k,-cubes in [1,n]}|,

because permutations of ai,...,ax give the same k,-cube. It remains to
verify that the number of vectors A(*»™) which generate degenerate k-
cubes is o( (kn@rl)) Let A%n:7) be a vector for which H 4 (+,.») is a degenerate
kn-cube. Then there exist integers 1 < u; <uo < ... <us < kp, 1 <v; <

vy < ... < vy <k, such that
apg+ Ay, + ...+ Ay, =00 + Gy + ... F Ay,

where we may assume that the indices are distinct, therefore s +t¢ < k.
Then the equation

1 +x2+ ..+ Ts—Tsp1 — ... —Tsyt =0

can be solved over the set {ai,as...,a,}. The above equation has at most
ns+t=1 < nka=1 solutions over [1,n]. Since we have at most k2 possibilities
for (s,t) and at most n possibilities for ag, therefore the number of vectors
A k) for which H 4 (x,.n is degenerate is at most k2nfn = 0((,%’11)). O

In the remaining part of this section the Hilbert cubes are non-
degenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following defini-
tion. For two intersecting k-cubes H  (x,n), Hg,n) let Hp ) N Hyen =
{c1,...,em} with ¢1 < ... < ¢, where

k k
ca=ao+ Y aqia =bo+ Y _ Baibi, aay,Bay € {0,1}
=1 =1

for 1 <d<mand 1 <[ <k. The rank of the intersection of two k-cubes
H (r.n), Hgx.n) is defined as follows: we say that r(Ha (x.n), Hgk.n) )=(s,t)
if for the matrices A = (g 1)mxk, B = (Ba1)mxk we have rg(A) = s and
rr(B) = t. The matrices A and B are called matrices of the common
vertices of H p 4,0y, Hg(k.n)-
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Lemma 2.2. The condition 7(H  (.n), Hgx.m)) = (s,t) implies that
H ) N Hpm| < gmin{s;t}

Proof. We may assume that s < ¢. The inequality [Hx.n) NHgen| < 2°
is obviously true for s = k. Let us suppose that s < k£ and the number of
common vertices is greater than 2°. Then the corresponding (0—1)-matrices
A and B have more than 2° different rows, therefore rp,(A) > s, but we
know from elementary linear algebra that for an arbitrary (0 — 1)-matrix
M we have rg, (M) > rr(M), which is a contradiction. O

Lemma 2.3. Suppose that the sequences A%™) and B generate non-
degenerate k-cubes. Then
(1) {(AEM BED) 1 (H pw, Hpea ) = (5,1)}]
< 22k2 (kzl)nk+17max{s,t}
forall0<s t<k;
(2) [{(Altn) : Btm) - (Hyp g, Hpow) = (r,7), [Hawn N Hpen| =
2r}| < 22k (k+1) k—r
for all0 <r <k;
(3) [{(Atm, :n)) cr(Ham, Hgem) = (K, k), [Hacm N Hgom| >
261} < 2 T2t

Proof. (1) We may assume that s < ¢. In this case we have to prove that the
number of corresponding pairs (A% B(*:) is at most (k+1)22k2 ktl—t,
We have already seen in the proof of Lemma 2.1 that the number of vec-

tors A®) is at most (k+1) Fix a vector A® ™) and count the suitable

vectors B("™) Then the matrix B has ¢ linearly independent rows, namely
TR((Ba;1)exk) = t, for some 1 < dy < -+ < dy < m, where

k
a0+ Y e =bo+ Y Bab, g Ba €{0,1} for1<i<t.

The number of possible bgs is at most n. For fixed by, ag, i, 84, let us study
the system of equations

ap + Zadi,lal =bo + Zﬁdi,lmh ad; 1, Bq,0 € {0,1}  for 1 <i <t

The assumption rr(Bg,1)txk = t implies that the number of solutions over
[1,n] is at most n*~*. Finally, we have at most 2 possibilities on the
left-hand side for ay, ;s and, similarly, we have at most 2kt possibilities on
the right-hand side for 3y, ;s, therefore the number of possible systems of
equations is at most 92k*

(2) The number of vectors A" is (kil) as in (1). Fix a vector A(#m)

and count the suitable vectors B, Tt follows from the assumptions
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r(Hpwn, Hgtn) = (1,7), [Hp0 NHpgao| = 27 that the vectors (aq,. . .,
aqr), d =1,...,2" and the vectors (8q1,...,04k), d = 1,...,2", respec-
tively form r-dimensional subspaces of F5. Considering the zero vectors of
these subspaces we get ag = by. The integers by, ..., by are solutions of the
system of equations

k k
ag + Zad,lal =by + Zﬂd,lwl ad,hﬁd,l IS {0, 1} for1 <d<2r.
=1 =1

Similarly to the previous part this system of equation has at most n*~"

solutions over [1, n] and the number of choices for the r linearly independent
rows is at most 22%°,

(3) Fix a vector A" Let us suppose that for a vector B*™) we have
r(H g en), Hgony ) = (k, k) and [H 6,0y "Hg .y | > 2571, Let the common
vertices be

k k
ap + Zad,lal =bo + Zﬂd,lbz, aqr,Bag € {0,1}  for 1 <d<m,
=1 =1

where we may assume that the rows dy, ..., d are linearly independent, i.e.
the matrix By, = (84,,1)kxk is regular. Write the rows di, ..., d; in matrix
form as

(1) a = bol + Byb,

with vectors @ = (ag + S35, g, 10)kx1, 1 = (Dgx1 and b = (b)px1. It
follows from (1) that

b= B;'(a—bol) = B;'a— B, 'L,
Let Bk_ll = (d;)kx1 and Bk_lg = (¢;)kx1. Obviously, the number of subsets
{i1,...41} € {1,...,k} for which d;, +...+d;, # 11is at least 2871, therefore

thereexist 1 <up < ... <us < kand 1 <wv; <...< v <k such that
ao+ Qy, +...+ay, =bg+by, +...+ by, and dy, +...4+d,, # 1. Hence

ap+ay, +. . .4+ay, = bo+by, +...4+by, = bo+cy, +...+cy, —bo(dy, +. .. +dy,)

ap+tay, +...+au, —Cy; — ... — Cyy,
by =
1—(dy, +...+dy,)
To conclude the proof we note that the number of sets {u,...,us} and
{v1,...,v} is at most 22k and there are at most 28 choices for Bj, and

a, respectively. Finally, for given By, a, by, 1 < u; < ... < us < k and
1<wv <...<uw <k, the vector B%™) is determined uniquely. O

In order to prove the theorems we need two lemmas from probability
theory (see e.g. [1] p. 41, 95-98.). Let X; be the indicator function of the
event A; and Sy = X1 + ...+ Xu. For indices i, j write i ~ j if i # j and
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the events A;, A; are dependant. We set I' = >, Pr{4; N A;} (the sum
over ordered pairs).

Lemma 2.4. If E(S,) — 0o and T' = o(E(S,)?), then X >0 a.e.

In many instances, we would like to bound the probability that none of
the bad events B;, i € I, occur. If the events are mutually independent,
then Pr{N;jc;B;} = [[;c; Pr{B;}. When the B; are "mostly” independent,
the Janson’s inequality allows us, sometimes, to say that these two quan-
tities are "nearly” equal. Let €2 be a finite set and R be a random subset
of Q given by Pr{r € R} = p,, these events being mutually independent
over r € . Let FE;, ¢ € I be subsets of {2, where [ a finite index set. Let
B; be the event F; C R. Let X; be the indicator random variable for B;
and X = Ziel X; be the number of E;s contained in R. The event N;erB;
and X = 0 are then identical. For i,j € I, we write ¢ ~ j if i # j and
E;NE; # 0. Wedefine A =3, . Pr{B;NB;}, here the sum is over ordered

pairs. We set M = [[,c; Pr{B;}.

Lemma 2.5 (Janson’s inequality). Let € €]0,1[ and let B;,i € I, A, M be
as above and assume that Pr{B;} < e for all i. Then

M < Pr{niesB;} < Mer=2.

Proof of Theorem 1.5. Let HA(k’”)’ e ’HA(k’”) be the distinct non-degen-
1 N
k+1
erate k-cubes in [1,n]. Let B; be the event H, (t.n) C S(n,cn 28'). Then
Pr{B;} = @'n "1 = o(1) and N = (1 + o(1))(,,) - It is enough to

k+1
prove

A=) "Pr{BiNB;} =o(1)

i~vj

since then Janson’s inequality implies

Pr{S(n, cn_%) does not contain any k-cubes}
= Pr{n}L, Bi}
= (14 0(1))(1 — (cn” 3 )2)HHeM) 5

k
2

=(1+o0(1))e ®FDK,
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It remains to verify that 7, Pr{B; N B;} = o(1). We split this sum
according to the ranks in the following way

k
> Pr{B;NB;} =)

i~ s=0t

NE

> Pr{B; N B;}

T(HAEk,n) ’HAjk,n) ):(Svt)

Il
=)

|
—

S

k
=2> > Pr{B; N B;}

s=1 t=0 inj
T(HAgk,n) 7HA‘]§]€,’IL) ):(Svt)
k—1
- Z Pr{B; N B;}
r=0 I~
(H (k n)7 A(k n)) (T T)
|H (k n>ﬁH (k ny|=2"
k—1

+ Z PI‘{Bl N BJ}

1 ’LNj
( A(k n)a A(k n)) (T T)

ﬁ
I

|H (kn)ﬂH (k ny <27

+ > Pr{B; N B} + > Pr{B; N B;}.

i~j i~j
T(HAl(k,n) 7HA§k,n) ):(krk) T(HAEk,n) 7HA§k,n) ):(krk)
<ok—1 k—1
IHAgk,n)ﬂHAjgk,n)I,2 |HA§k,n) WHAJgk,n>|>2

The first sum can be estimated by Lemmas 2 and 2.3(1)

=

S—

k
> 3 Pr{B; N B;}
s=1 t=0 inj
T(HAi(k,'n) 7HA§k,7L) ):(57t)

k s—1
2 n E+1 k_ot
< 222% (k+1) k+1— S(cn ok ) 28 —2

s=1 t=0

k
Zn2s R n"(l)(n%*1 + n%_k) = o(1),
s=1

since the sequence a; = — s is decreasing for 1 < s < k41—
logy(k + 1) and increasing for k + 1 —logy(k+1) < s < k.

—1k+1
25705k
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To estimate the second sum we apply Lemma 2.3(2)

k—1
> > Pr{B; N B;}
r=0 zNj

r(H NG ny H (k n))=(7,7)
‘H (k IL)mH (k n)‘ 2"

. . )
< Z o2k? (k Z 1) nk—r(cn—%)zzk—z
_1+o(1) Z’I’LT k;l n—l—i—o(l) (TL% + n%—(k—l)) _ 0(1)
The third sum can be bounded using Lemma 2.3(1):

k—1
> > Pr{B; N B;}

r=1 i~
T(HASk,n) 7HA§k,n) ):(T,T)

J
IHAi(k,n) mHA‘gk,n) |<2T

k—1
< Z 22k2 (k Z 1) nkJrlfr(Cﬂ—

k+1 rktl _k+1 k+1 k41
ZnZ o = M (n®2F 'tz Ny = o(1).

k+1 2.2k72r+1

|
~—

Similarly, for the fourth sum we apply Lemma 2.3(1)

Z Pr{B; N B;} < no(l)nk”(cn_%)wgk = o(1).
—

T(HAi(k,n) 7HA§k,n) ):(kvk)

H NH <gk-1
| Albm) A‘gk,n) I<

To estimate the fifth sum we note that \HA(M) U HA(k,n)‘ >2k 41 Tt
i i
follows from Lemma 2.3(3) that

k41

> Pr{B; N Bj} < 2K +2knk+ (e~ ok )24 = (1),
2

7‘(:H:A&l(k,n) vHA(k,n) ):(k’k)

J
‘HA(k,n) mHA(k‘,n) |>2k_1
i Jj

which completes the proof. O
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Proof of Theorem 1.6. Let € > 0 and for simplicity let D,, = D, (¢) and
E, = E,(¢). In the proof we use the estimations

(1—e€) logg logg logg n

logg logo n+logg logg logo n+ Tog 2 Togy logg n

22D” S 22

— plogs logy n+(1—e+o(1)) log, log, logy n

and

(14-€) logg logg logg n

logg logg n+logg logy logg n+ Tog 2 logs logg 1

22En+1 2 22

_ nlog2 logy n+(1+€e+0(1)) log, log, logy n

In order to verify Theorem 1.6 we have to show that

1
(2) lim Pr{S(n, 5) contains a Dj-cube} =1
and
. 1 .
(3) lim Pr{S(n, 5) contains an (E,, + 1)-cube} = 0.

To prove the limit in (4) let H, m), -, H,(0nn be the different non-
1 N
degenerate D,,-cubes in [1,n], B; be the event H, wnn C S(n, %), X; be

the indicator random variable for B; and Sy = X3 th ..+ Xy be the number
of HA.(Dn,n) C S(n, %) The linearity of expectation gives by Lemma 2.1 and

inequality (2)

D, +1/) D,
> n10g2 logy n+(1+0(1)) log, log, logs Ny = logs logg n—(1—e+0(1)) log, logs logy n

E(SN)=NE(X1~)=(1+0(1))< " ) 1 ,—opn

— pleto(1))logy logy logy n

Therefore E(Sy) — o0, as n — co. By Lemma 2.4 it remains to prove that

S Pr{B; N B;} = o(E(Sx)?)

i~vj

where ¢ ~ j means that the events B;, B; are not independent i.e. the cubes
H A(Dn,n)7H AP have common vertices. We split this sum according to
i j
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the ranks
D, D,
Seiman -3 Y mimom)
i~g s=0 t= i~
T(HAgDn,n)7HA§Dn,n)):(37t)
1 J
< > Pr{B; N B;}
i
T(HAi(Dnﬂl)’HA.gDn,n)):(OvO)

D, s
+2> ) 3 Pr{B; N B;}.
s=1 t=0 i~
T(HA.(Dn,n) 7HA§Dn,n) ):(Svt)
1 J

The condition r(HAi(Dn,n),HAJ@,M)) = (0,0) implies that

H n "N U H n,n)| — 2Dn+1 — 17
| Ai<D ) AéD )]
thus by Lemma 2.3(2)
) . 2D2 n Dy o—2DN+141
Z Pr{B; N B;} <2 (Dn+1> 2
inj
T(HAgDn,n) ’HA;Dn,n) ):(0’0)
= n LQ—QD” ?
“°\\\p, +1) D,
= o(E(Sn)?).

In the light of Lemmas 2 and 2.3(1) the second term in (6) can be estimated

as

D, s
> > Pr{Bi N B;}
”(HAgDn,n> ’HAJgDn,m):(S,t)

D,

_|_
=11t=0
eyt

< s=1 t=0

Dy s

n 1 g—20n ? o(1) ~ 2?2

= (o)) p?™) 2%

s=1
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22"

Finally, the function f(x) = =5 decreases on (—o0c,log, logn — 2log, log 2]
and increases on [log, log n — 2log, log 2, 00), therefore by (2)

D s D
", 92 4 227"

_ o(l) % _ . —140(1)
Z;TLT_nO (n+nDn)_n 7
S=

which proves the limit in (4).
In order to prove the limit in (5) let HC<E"+1,H), .. .,HC(E"H,M be the
1 K

distinct (Ey,+1)-cubes in [1, n] and let F; be the event H y(5,+1.n) C S(n, 1).
By (3) we have 1

K
Pr{S, contains an (E, + 1)-cube} = Pr{UX | F;} < ZPr{Fi} <

=1
n oBnt1 nlog2 logy n+(14+0(1)) log, log, logy n B 0(1)
E, +2 — plogs logy n+(1+e+o(1)) log, log, logy 1 o ’
which completes the proof. U

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a
random sequence. A natural problem would be to give analogous theorems
for Hilbert cubes, where degenerate cubes are allowed. In this situation the
dominant terms may come from arithmetic progressions. An APy forms
a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that
for a fixed k > 2

: _2 . _ct
lim Pr{S(n,cn” #T) contains no AP, 1} =e 2 .
n—oo

An easy argument shows (using Janson’s inequality again) that for all ¢ > 0,
with p, = en=2/5

(<

c

lim Pr{S(n,p,) contains no 4-cubes} = e~ 5.
n—oo

Conjecture 3.1. Fork >4
2 Ck+1
lim Pr{S(n,cn” *#+1) contains no k-cubes} = e~ 2% .
n—oo
A simple calculation implies that in the random sequence S(n, %) the
length of the longest arithmetic progression is a.e. nearly 2logy n, therefore
it contains a Hilbert cube of dimension (2 — €) log, n.

Conjecture 3.2. For every e >0

. the maximal dimension of Hilbert cubes
lim Pr =1.
n—oo

in S(n,3)is < (2+¢€)logyn
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N. Hegyvéri (see [5]) studied the special case where the generating el-
ements of Hilbert cubes are distinct. He proved that in this situation
the maximal dimension of Hilbert cubes is a.e. between c¢qlogn and
calognloglogn. In this problem the lower bound seems to be the correct
magnitude.
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