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ABEL-SCHUR MULTIPLIERS ON BANACH SPACES OF
INFINITE MATRICES

NICOLAE POPA

Communicated by A. Fošner

Abstract. We consider a more general class than the class of Schur mul-
tipliers namely the Abel-Schur multipliers, which in turn coincide with the
bounded linear operators on `2 preserving the diagonals. We extend to the
matrix framework Theorem 2.4 (a) of a paper of Anderson, Clunie, and Pom-
merenke published in 1974, and as an application of this theorem we obtain a
new proof of the necessity of an old theorem of Hardy and Littlewood in 1941.

1. Introduction and preliminaries

In [1] the authors characterized the topological dual of the space

I = {f : D → C; f(z) =
∞∑
n=0

anz
n, z ∈ D, an analytic function such that

||f ||I := |f(0)|+ 1

2π

∫ 1

0

∫ 2π

0

|f ′(reiθ)|dθrdr <∞}

as being given by the Bloch space of functions

B = {f : D → C; f is an analytic function such that ||f ||B := |f(0)|
+ sup
|z|<1

(1− |z|)||f ′(z)||∞ <∞}

in the following manner (cf. [1, Theorem2.3]):
Let f(z) =

∑∞
n=0 anz

n ∈ B and g(z) =
∑∞

n=0 bnz
n ∈ I. Then

h(z) =
∞∑
n=0

anbnz
n
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is continuous on |z| ≤ 1 and further,

|h(z)| ≤ 2||f ||B||g||I (|z| ≤ 1).

In particular it follows that

〈f, g〉 := lim
ρ→1−

∞∑
n=0

anbnρ
n

exists for f ∈ B, g ∈ I. It is showed in [1, Theorem 2.5] that this sum need not
converge for ρ = 1.

It was also proved in [1, Theorem 2.4] that

For every ψ ∈ I∗ there exists a unique f ∈ B such that

ψ(g) = 〈f, g〉 := lim
ρ→1−

∞∑
n=0

anbnρ
n (g ∈ I).

Conversely this defines a bounded linear functional on I for each f ∈ B. Also

1

3
||f ||B ≤ ||ψ||I∗ ≤ 2||f ||B.

In 1976 the previous theorem was rephrased in [2] as follows

Ia = B, (1.1)

where Ia denotes the Abel dual of I, that is the space of all analytic functions
g =

∑∞
n=0 bnz

n, for |z| < 1, such that

lim
ρ→1−

∞∑
0

anbnρ
n

exists for all functions f(z) =
∑∞

n=0 anz
n ∈ I.

In this paper we would like to introduce for some spaces of upper triangular
infinite matrices a similar notion to that of the Abel dual, and to extend in an
appropriate manner the identity (1.1) .

To this end we introduce a new class of bounded linear operators acting on
Banach spaces of infinite matrices. The Schur multipliers belong to this class,
and also to another more general class called the class of Abel-Schur multipliers.

In what follows we focus our attention on the upper triangular infinite matrices,
and particularly on Toeplitz matrices of this kind. Such a Toeplitz matrix may
be identified in a natural manner with an analytic function.
To the function f(z) =

∑∞
n=0 anz

n ∈ X we associate the matrix

Af :=


a0 a1 a2 . . .
0 a0 a1 . . .
0 0 a0 . . .
...

...
...

. . .


with the equality of the norms: ||Af ||X = ||f ||X .
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Next, let X, Y be two Banach spaces of infinite matrices (the matrices are
always meant to be upper triangular). We denote by S(X, Y ) the set of all upper
triangular matrices A, such that

A ∗B ∈ Y for all B ∈ X.
Here A ∗B is the matrix C = (cij) given by

cij = aijbij (i, j ≥ 0),

where A = (aij), B = (bij).
We call A ∗B the Schur (Hadamard) product of matrices A and B, and A will be
called the Schur multiplier for the pair X and Y.

On the space S(X, Y ) we consider the natural quasi-norm

||A||S(X,Y ) := sup
||B||X≤1

||A ∗B||Y .

In the sequel we consider a class of bounded linear operators between X and Y,
extending the class of Schur multipliers.

First of all we make some assumptions on the spaces X and Y.
If A = (aij)j≥i≥1 ∈ X, the matrix Ak = (a′ij), where k ≥ 0, is called the kth
diagonal of A if

a′ij :=

{
aij whenever j = i+ k, i ≥ 1
0 otherwise.

Let PX
k : X → X, k ≥ 0 be the natural projection on the kth diagonal, that is

PX
k (A) := Ak, (k ≥ 0).

A Banach space X of upper triangular infinite matrices has property (i) if

sup
k≥0
||PX

k || ≤ C <∞,

where the norm is meant to be the usual norm of the space of all bounded linear
operators B(X, Y ), and C > 0 is a constant C = C(X).

The space B(`2) of all bounded linear operators T : `2 → `2, identified with
their representation matrices, and the Schatten classes Sp, 1 ≤ p <∞ verify the
property (i) (cf. [6]).

We remark that TA given by TA(B) = A ∗ B, for A ∈ S(X, Y ), preserves the
diagonals that is P Y

n = TAP
X
n , for all n ≥ 0.

We are lead naturally to the following definition.

Definition 1.1. Let X, Y be two spaces with property (i). We denote by
Bd(X, Y ) the space of all bounded linear operators T : X → Y preserving the
diagonals.

Remark 1.2. Clearly Bd(X, Y ) is a closed subspace of B(X, Y ).
Using the previous identification between a space X of analytic functions and a
space of infinite matrices, denoted also by X, we get for instance that the classical
H∞ may be regarded as the space of all upper triangular infinite Toeplitz matrices
belonging to B(`2), which is a well-known result [14].
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Next let X be a Banach space of analytic functions, which can be regarded as
a space of infinite matrices. We say that X verifies condition (ii), if we have:

lim
ρ→1−

fρ = f ∈ X,

where fρ(z) = f(ρz), for |z| < 1 and 0 ≤ ρ < 1. We can describe the space
Bd(X, Y ).

Proposition 1.3. Let X be a Banach space of analytic functions on the unit disk
verifying conditions (i) and (ii), and let Y be a Banach space of upper triangular
infinite matrices (not necessarily Toeplitz matrices) verifying condition (i). Let
moreover T ∈ Bd(X, Y ). There is an upper triangular infinite matrix A such that

T (B) = lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn,

for all B ∈ X, the limit being taken in the norm of Y.
Moreover,

|||A||| := sup
||B||X≤1

|| lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn||Y ≤ ||T || <∞.

Conversely, if |||A||| <∞,

T (B) = lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn

where B ∈ X, is an operator belonging to Bd(X, Y ), and ||T || ≤ |||T |||.

Proof. Let T ∈ Bd(X, Y ). If E = (eij)i,j, where eij = 1 for all i, j ≥ 1, its diagonal
En corresponds to the function zn, with |z| < 1.
We put An := T (En). Since T ∈ Bd(X, Y ), An is the nth diagonal of an upper
triangular matrix A. If B ∈ X, all the entries on the diagonal Bn are equal to the
same complex number, denoted by bn.
By using condition (ii) we get

lim
ρ→1−

||Bρ −B|| = 0,

consequently

T (B) = lim
ρ→1−

T (Bρ) = lim
ρ→1−

T (
∞∑
n=0

bnρ
nzn).

Since
∞∑
n=0

||Bn||Xρn ≤

(
∞∑
n=0

ρn

)
C(X)||B||X ≤

C(X)

1− ρ
||B||X <∞,

by condition (i) it follows that the series
∑∞

n=0 bnρ
nzn converges with respect to

the norm of X. Thus

T (B) = lim
ρ→1−

∞∑
n=0

bnρ
nAn = lim

ρ→1−

∞∑
n=0

(An ∗Bn)ρn

for all B ∈ X. Moreover
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|| lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn||Y = ||T (B)||Y ≤ ||T || · ||B||X ,

thus

|||A||| ≤ ||T || <∞.
The converse is immediate, since

T (Bk) = lim
ρ→1−

(Ak ∗Bk) ρ
k = Ak ∗Bk

for all k ≥ 0. Thus T preserves the diagonals, and moreover, T is a bounded
linear operator, because ||T || = |||A||| <∞. �

Definition 1.4. Let X, Y be Banach spaces of upper triangular infinite matri-
ces verifying condition (i). An upper triangular matrix A is called Abel-Schur
multiplier (with respect to the pair X, Y ) if, for every B ∈ X, there exists

〈A,B〉 := lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn

in Y and moreover,

|||A||| := sup
||B||X≤1

|| lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn||Y <∞.

Krtinic [8] showed that, in the case Y = B(`2) or Y = Sp, 1 ≤ p < ∞, the filter
(
∑∞

n=0Anρ
n)0≤ρ<1 converges to the matrix A if and only if

lim
n→∞

σn(A) = A,

where σn(A) =
∑∞

k=0(1−
k

n+1
)Ak.

Lemma 1.5. Let X be a Banach space verifying conditions (i) and (ii), and Y
with condition (i). Then every Schur multiplier A ∈ S(X, Y ) is an Abel-Schur
multiplier and moreover,

||A||S(X,Y ) = |||A|||.

Proof. Let A ∈ S(X, Y ) and B ∈ X. Then

||An||S(X,Y ) = sup
||B||X≤1

||An ∗B||Y = sup
||B||X≤1

||A ∗Bn||Y

≤ ||A||S(X,Y ) sup
||B||≤1

||Bn||X ≤ C(X)||A||S(X,Y )

for all n. Thus
∞∑
n=0

||An||S(X,Y )||Bn||Xρn ≤ C(X)||A||S(X,Y )

∞∑
n=0

||Bn||Xρn

≤ C(X)2||A||S(X,Y )(1− ρ)−1 <∞,
for all B ∈ X, 0 ≤ ρ < 1. Consequently, A ∗Bρ =

∑∞
n=0(An ∗Bn)ρn converges in

the norm of Y for any 0 ≤ ρ < 1.
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Since limρ→1− Bρ = B in the norm of X, we have that limρ→1− A ∗Bρ = A ∗B in
Y, that is

lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn = A ∗B ∈ Y

for all B ∈ X. Therefore A is an Abel-Schur multiplier and

|||A||| = sup
||B||X≤1

||A ∗B||Y = ||A||S(X,Y ) <∞.

�

In view of Lemma 1.5 we ask ourselves if the converse is also true, that is if
any Abel-Schur multiplier is a Schur multiplier. The negative answer is given by
the following statement.

First, we introduce a different notation for the entries of an upper triangular
infinite matrix A = (aij)i,j≥1, namely we denote by alk := al,k+l for l ≥ 1 and
k ≥ 0.
We recall from [1] that B is the Bloch space of analytic functions, that is

B = {f : D → C; f is an analytic function such that ||f ||B := |f(0)|
+ sup
|z|<1

(1− |z|)||f ′(z)||∞ <∞}

Example 1.6. There is a pair of Banach spaces X, Y of upper triangular infinite
matrices and an Abel-Schur multiplier A for the pair X, Y such that A 6∈ S(X, Y ).

As in [1] let

I = {f : D → C; f(z) =
∞∑
n=0

anz
n, z ∈ D, is an analytic function such that

||f ||I := |f(0)|+ 1

2π

∫ 1

0

∫ 2π

0

|f ′(reiθ)|dθrdr <∞}.

If we consider the space I, identified as above with a space of upper triangular
infinite Toeplitz matrices X, it is well-known [1], that X verifies conditions (i)
and (ii). Let

Y = {A; ||A||Y := sup
n≥0;l≥1

|
n∑
k=0

alk| <∞}.

It is easy to see that Y is a Banach space. Moreover, Y verifies condition (i) since
A ∈ Y implies that for all n ≥ 0 we have

sup
k≥0
||P Y

k (A)||Y = sup
k≥0, l≥1

|alk| ≤ 2 sup
n≥0, l≥1

|
n∑
k=0

alk| = 2||A||Y ,

that is C(Y ) ≤ 2.
By using [1, Theorem 2.3, Theorem 2.4], it follows that any f ∈ B deter-
mines an Abel-Schur multiplier for X and Y , given by the Toeplitz matrix Af .
But [1, Theorem 2.5] shows that there are upper triangular Toeplitz matrices
A = (alk) ∈ I and B = (blk) ∈ B such that the sequence (

∑n
k=0 a

l
kb
l
k)n is un-

bounded for all l. But this shows that A ∗B 6∈ Y.
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2. An example of Bd(X, Y )

We denote by B(D, `2) the space of all upper triangular matrices A such that

||A|| := |A0|+ sup
0≤r<1

(1− r)||A′r||B(`2) <∞,

where

A′r :=
∞∑
k=1

kAkr
k−1

for all 0 ≤ r < 1, see [10], [11].
Let next H∞(`2) be the Banach space of all upper triangular infinite matrices

A ∈ B(`2) equipped with the norm induced by B(`2).
Under these notations we can describe the space Bd

(
I, H∞(`2)

)
.

Theorem 2.1. Let T ∈ Bd(I, H∞(`2)). Then there exists a unique upper trian-
gular matrix A ∈ B(D, `2) such that

T (B) = lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn

for all B ∈ I, where the limit is taken in the operator norm. Moreover,

||A||B(D,`2) ≤ 3||T ||.

Proof. Let A = T (En), for all n ≥ 0. Here En was introduced in the proof of
Proposition 1.3. Next, let A =

∑∞
n=0An, the series being a formal one, and let

0 ≤ ρ < 1. Then we have

T (Bn) = T

(
∞∑
n=0

bnρ
nEn

)
,

where B is the Toeplitz matrix corresponding to the analytic function g(z) =∑∞
n=0 bnz

n ∈ I. But

∞∑
n=0

|bn|ρn ≤
(

sup
n
|bn|
)

1

1− ρ
≤ 2||g||I

1

1− ρ
,

where the last inequality follows by Cauchy’s inequalities. Therefore

T (Bρ) = T

(
∞∑
n=0

bnEnρ
n

)
=
∞∑
n=0

bnρ
nAn.

Since I verifies condition (ii), by Proposition 1.3, it follows that

T (B) = lim
ρ→1−

T (Bρ) = lim
ρ→1−

∞∑
n=0

(Bn ∗ An)ρn

for all B ∈ I. Therefore the matrix A is an Abel-Schur multiplier with respect to
the pair I, H∞(`2).

Next we show that A ∈ B(D, `2) and ||A||B(D,`2) ≤ 2||T ||.
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First, clearly

A′r =
∞∑
k=0

kAkr
k−1 = T (B(r)),

where B(r) is the Toeplitz matrix corresponding to the function f(z) = z
(1−rz)2 ,

for 0 ≤ r < 1 and |z| < 1. It is known by [1] that ||f ||I ≤ 2
1−r2 .

Therefore

||A′r||B(`2) = ||T (B(r))||B(`2) ≤ ||T || · ||B(r)||I ≤
2

1− r2
||T ||.

Consequently,

||A||B(D,`2) = sup
0≤r<1

(1− r)||A′r||B(`2) + ||A0||B(`2) ≤ 3||T ||.

Next, putting B = En, for all n ≥ 0, we conclude that A ∈ B(D, `2) is uniquely
determined by T. �

We recall that the space of all Schur multipliers S
(
B(`2), B(`2)

)
will be denoted

by M(`2), [3].
Next we give a converse of Theorem 2.1 and at the same time, an extension of

[1, Theorem 2.3] stated at the beginning of this paper.

Theorem 2.2. Let A ∈ B(D, `2) and let B ∈ I be a Toeplitz matrix. Then

h(r) =
∞∑
n=0

(An ∗Bn)rn

is a continuous function on [0, 1) and it can be extended by continuity to [0, 1].
Moreover, we have

||h(r)||H∞(`2) ≤ 5||A||B(D,`2) · ||B||I , (2.1)

for all r ∈ [0, 1).
Particularly, A is an Abel-Schur multiplier for the pair I, H∞(`2), that is the
limit

lim
ρ→1−

∞∑
n=0

(An ∗Bn)ρn

exists in H∞(`2), for any A ∈ B(D, `2), B ∈ I.

Proof. Let 0 ≤ ρ < 1. Then A′r =
∑∞

n=1 nAnr
n−1 and

d

dr
[r(Br −B0)] =

∞∑
n=1

(n+ 1)Bnr
n,

where B is the Toeplitz matrix corresponding to the function g ∈ I. Straightfor-
ward computations shows that

∞∑
n=1

(An ∗Bn)ρn−1 = 2

∫ 1

0

[
(1− r2)A′ρr] ∗

[ d
dr

[r(Br −B0)]
]
dr.

Since
||C ∗D||B(`2) ≤ ||C||B(`2)||D||M(`2),
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we have

||
∞∑
n=1

(An ∗Bn)ρn||B(`2) ≤ 2 sup
0≤r<1

(1− r2)||A′ρr||B(`2)

∫ 1

0

||Br −B0 + rB′r||M(`2)dr

≤ 2 sup
0≤s<1

(1− s2)||A′s||B(`2)

∫ 1

0

[
||Br −B0||M(`2) + r||B′r||M(`2)

]
dr

≤ 4||A||B(D,`2)
[∫ 1

0

||Br −B0||M(`2)dr +

∫ 1

0

r||B′r||M(`2)dr

]
.

But

||Br −B0||M(`2) =

∥∥∥∥∫ r

0

B′tdt

∥∥∥∥
M(`2)

≤
∫ r

0

||B′t||M(`2)dt.

Thus∫ 1

0

||Br −B0||M(`2)dr ≤
∫ 1

0

∫ r

0

||B′t||M(`2)dt =

∫ 1

0

[∫ 1

t

dr

]
||B′t||M(`2)dt

=

∫ 1

0

(1− t)||B′t||M(`2)dt.

Then

||
∞∑
n=1

(An∗Bn)ρn||B(`2) ≤ 4||A||B(D,`2)
∫ 1

0

||B′t||M(`2)dt = 4||A||B(D,`2) ·||B||I . (2.2)

Here we used the well-known fact that the norm ||C||M(`2) coincide with the norm
of the Borel measure associated to the Toeplitz matrix C, [4].

We show that h is a continuous function on [0, 1). Let 0 ≤ ρ1, ρ2 < 1. Then,
using (2.2)

||h(ρ1)− h(ρ2)||B(`2) = ‖
∞∑
n=0

An ∗ [(Bn)ρ1 − (Bn)ρ2 ]‖B(`2)

≤ 5||A||B(D,`2)||Bρ1 −Bρ2||I → 0

uniformly whenever |ρ1 − ρ2| → 0, (see relation (2.9) in [1]). Therefore h(ρ) is
also continuous on [0, 1], consequently relation (2.1) holds. �

Corollary 2.3. The matrices A ∈ B(D, `2) may be identified with the Abel-Schur
multipliers for the pair I, H∞(`2), with equivalent norms.

As a consequence, by using [8], we have

B(D, `2) = S
(
I, H∞(`2)

)
, (2.3)

with equivalent norms. More generally, we can do the following.

Remark 2.4. For the pair I, X, where X is H∞(`2), or a symmetric mononormal-
izing ideal of upper triangular matrices, the Schur multipliers and the Abel-Schur
multipliers are the same.
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3. Some applications of Corollary 2.3.

As an application of Corollary 2.3 we give a different proof of a theorem found
independently in [13] and [12]. This is the necessity part of Theorem HL [9]. The
sufficiency was proved in 1941 by Hardy and Littlewood [7].

Let us state Theorem HL.
Theorem HL. An analytic function g ∈ (H1, H2) if and only if

M2(r, g
′) ≤ C

1− r
, 0 < r < 1.

Here

Mp
p (r, f) :=

1

2π

∫ 2π

0

|f(reiθ)|pdθ, 1 ≤ p <∞,

and Hp means the Hardy space of all analytic functions f on the unit disk D,
such that

sup
0≤r<1

Mp(r, f) <∞.

Moreover, for two sequence spaces A, B, a sequence λ = (λn) is called a multiplier
from A to B if (λnαn) ∈ B whenever (αn) ∈ A. The space of all multipliers from
A to B is denoted by (A,B). Therefore if we identify a space X (respectively
Y ) of analytic functions with the space A (respectively B) of all sequences of
Taylor’s coefficients of those functions, then the space (X, Y ) means the space
of all multipliers (A,B). This is the meaning of the notation (H1, H2) in the
statement of the above theorem.

Theorem 3.1. Let the analytic function g ∈ (H1, H2). Then we have

M2(r, g
′) ≤ C

1− r
for all 0 < r < 1, where C > 0 is a constant.

Proof. Let g(z) =
∑∞

n=0 cnz
n ∈ (H1, H2), where |z| < 1. Next we consider the

matrix  c0 c1 c2 c3 . . . cn . . .
0 0 0 0 . . . 0 . . .
...

...
...

...
...

... . . .

 .

Since I ⊂ H1 [1], clearly the sequence (cn)n≥0 is a multiplier from I to H2,
therefore the matrix G is a Schur multiplier from I to H∞(`2).
Thus, by Corollary (2.3), G ∈ B(D, `2), that is, by using the special form of the
matrix G, we have

sup
0<r<1

(1− r)M2(r, g
′) ≤ C <∞.

The proof is complete. �

Another application of Corollary (2.3) is an extension into matrix spaces frame-
work of a celebrated theorem of Mateljevic and Pavlovic [9]. We use the beau-
tiful ideas of the theory developed for the analytic functions by O. Blasco and
M. Pavlovic [5]. More precisely, motivated by [5, Definition 2.3] we introduce the
notion of tensor product of two Banach spaces of infinite matrices.
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Let first M be the space of all upper triangular matrices A so that for any
natural number k we have ||A||M,k := ||Pk(A)||B(`2) < ∞. The space M will be
equipped with the semi-norms ||A||M,k , k ∈ N.

Definition 3.2. Let X and Y be two Banach spaces of upper triangular infinite
matrices verifying condition (i). Then we define the space X ⊗ Y, to be the set
of all upper triangular infinite matrices C that can be represented in the form

C =
∞∑
n=0

A(n) ∗B(n), A(n) ∈ X, B(n) ∈ Y so that the series converges in M and

∞∑
n=0

||A(n)||X ||B(n)||Y <∞. (3.1)

The norm in X ⊗ Y is given by

||C||X⊗Y = inf
∞∑
n=0

||A(n)||X ||B(n)||Y ,

where the infimum is taken over all the above representations.

Next we get easily the following matrix version of [5, Theorem 2.3].

Theorem 3.3. Let X, Y, Z be Banach matrix spaces verifying condition (i).
Then

S(X ⊗ Y, Z) = S
(
X,S(Y, Z)

)
.

We omit the details of the proof.
Now we use a beautiful result due to Blasco and Pavlovic, (see [5, Corollary

8.1]):

H1 ⊗H1 = I.
More precisely, using (2.1), Theorem 3.3, and this last equality, we get:

B(D, `2) = S
(
I, H∞(`2)

)
= S

(
H1, S

(
H1, H∞(`2)

))
. (3.2)

Next we give a definition motivated by the well-known fact, that BMOA =
(H1, H∞), see [9].

Definition 3.4. We denote the space of Schur multipliers S
(
H1, H∞(`2)

)
by

BMOA(`2) and we equipped it by the usual norm on the space of Schur multi-
pliers. .

It is easy to see that the subspace of all upper triangular Toeplitz matrices of
BMOA(`2) coincides with the classical Banach space BMOA of analytic func-
tions on the unit disk.

Now, by using (3.2) we get the matrix extension of a well-known theorem of
Mateljevic and Pavlovic [9]

Theorem 3.5.

S
(
H1, BMOA(`2)

)
= B(D, `2).
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