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ABSTRACT. In this paper, the authors introduce the anisotropic Herz-Morrey
spaces with two variable exponents and obtain some properties of these spaces.
Subsequently as an application, the authors give some boundedness on the
anisotropic Herz-Morrey spaces with two variable exponents for a class of sub-
linear operators, which extend some known results.

1. INTRODUCTION

In recent years, the theory of function spaces with variable exponents
has developed since the paper [10] of Kovacik and Rékosnik appeared in 1991.
Lebesgue and Sobolev spaces with integrability exponent have been extensively
investigated, see [0] and the references therein. In 2009, Izuki [8] defined the
Herz-Morrey spaces with variable exponent. In 2012, Almeida and Drihem [I]
introduced the Herz spaces with two variable exponents and proved the bound-
edness of some operators on these spaces. Meanwhile, extending classic function
spaces arising in harmonic analysis of Euclidean spaces to other domains and
non-isotropic settings is an important topic. In 2003, Bownik [2] introduced the
anisotropic Hardy spaces associated with very general discrete groups of dilations.
The above spaces include the classical isotropic Hardy space theory of Fefferman
and Stein [7] and parabolic Hardy space theory of Calderén and Torchinsky [3, 4].
In 2015, Wang [12] defined the anisotropic Herz spaces with variable exponents
and gave some applications.
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Inspired by the above results, we introduce the anisotropic Herz-Morrey spaces
with two variable exponents which is a generalization of the anisotropic Herz-
Morrey spaces and the Herz-Morrey spaces with variable exponent, and we obtain
the boundedness of some sublinear operators on the anisotropic Herz-Morrey
spaces with two variable exponents.

To be precise, we first briefly recall some standard notations in the remainder
of this section. In Section 2, we Will define the anisotropic Herz-Morrey spaces

with two variable exponents M K n ) MA;R") and MK a0, 0, A(A R™), and give some
properties. In Section 3, we W111 glve the boundedness of some sublinear operators
on MK (A;R) and MECS™ (A;R?).

Now, we first recall some notatlons in variable function spaces. Given an open
set 2 C R™, and a measurable function p(-) : Q — [1,00), LP*)(Q) denotes the

set of measurable functions f on {2 such that for some A > 0,

[ (MY g o

This set becomes a Banach function space when equipped with the Luxemburg-

Nakano norm
p(z)
oy =it {320 [ (L) a0 <1}
Q

These spaces are referred to as variable Lebesgue spaces or, more simply, as
variable LP spaces, since they generalized the standard LP spaces: if p(z) = p is
constant, then LP()(Q) is isometrically isomorphic to LP(Q2). The L? spaces with
variable exponent are a special case of Musielak-Orlicz spaces.

The space L ()(Q) is defined by

loc

L'YQ) .= {f : f € L*V(E) for all compact subsets E C Q}.

loc
Define P(Q2) to be set of p(+) : Q@ — [1, 00) such that
p- =essinf{p(z) :z € Q} >1, p' =esssup{p(x):z € Q} < .

Denote p'(z) = p(z)/(p(x) — 1). Let B(2) be the set of p(-) € P(Q2) such that the
Hardy-Littlewood maximal operator M is bounded on LP()(Q).
In variable LP spaces there are some important lemmas as follows.

Lemma 1.1 ([10]). Let p(-) € P(R™). If f € LPO(R") and g € LY O(R"), then
fg is integrable on R™ and

/ F@g@)dz < ol floo gl o
where
r,=14+1/p” — 1/p*.

This inequality is named by generalized Holder inequality with respect to the
variable L spaces.
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Lemma 1.2 ([5]). Let p(-),q(:),r(-) € P(R") such that 1/p(z) = 1/q(x)+1/r(z).
If f € L1O(R") and g € L"(R"), then fg € LPO(R™) and

1fglleer < CllfllzaollgllLros
where C' is a constant independent of the functions f and g.

Lemma 1.3 ([9]). Suppose q(-) € B(R™). Then there exists a constant C' > 0
such that for all balls B in R",

1
E||XB||LQ(‘>(]R")||XB||L‘1’(')(]R’I) <C.

Lemma 1.4 ([9]). Letq(-) € B(R™). Then for all balls B in R™ and all measurable
subsets S C B,

||XB||L4(->(Rn) < @7

HXSHLq<-)(Rn) S|

Ixsllzoo @ (ﬁ)‘sl Ixsll oo @n) < (ﬂ)éQ
IxBllzo@y ~ \IBl/) " lIxsllromy ~ \IBI|
where 0 < 01,09 < 1 are constants.

Throughout this paper ds is the same as in Lemma 1.4, and the notation f < g
means that there exists a constant C' > 0 such that f < Cg. If f <gand g < f,
then f ~ g.

We recall the following two definitions in [1].

Definition 1.5 ([1]). Let a function g(-) : R™ — R.

(1) g(-) is locally log-Hélder continuous, if there exists a constant C' > 0 such
that o

= Togle + 1/l — o)
for all z,y € R” and |z — y| < 1/2.

(2) g(-) is locally log-Hélder continuous at the origin (or has a log decay at
the origin), if there exists a constant C' > 0 such that

C
l9(x) = 9O) = e 17D

l9(z) — g(y)]

for all x € R™.
(3) g(-) is locally log-Hélder continuous at infinity (or has a log decay at
infinity), if there exist some g, € R and C' > 0 such that

|9(7) — gool < m

for all z € R™.

By Po(R"™) and P (R™) we denote the class of all exponents p € P(R"™) which
are locally log-Holder continuous at the origin and at infinity, respectively.

Next we will introduce some basic definitions and properties of non-isotropic
spaces associated with general expansive dilations. A n x n real matrix A is
called an expansive matrix, sometimes called a dilation, if all eigenvalues \ of A
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satisfy |A| > 1. We suppose Ay, ..., A, are eigenvalues of A (taken according to
the multiplicity) so that 1 < [\ < ... < |A\,|. A set A C R” is said to be an
ellipsoid if A = {x € R™ : |Pz| < 1}, for some nondegenerate n x n matrix P,
where | - | denotes the Euclidean norm in R". For a dilation A, there exists an
ellipsoid A and r > 1 such that A C rA C AA, where |A|, the Lebesgue measure
of A, equals 1. Let B, = A*A for k € Z, then we have By, C rB;, C Bji1,
and |By| = b*, where b = |detA| > 1. Let w be the smallest integer so that
2By C A¥By = B,,. A quasi-norm associated with an expansive matrix A is a
measurable mapping p4 : R” — [0, 00) satisfying

pa(xz) >0 for x #£ 0,
pa(Az) = |detA|p(x) for x € R",

pa(z +y) < Clpa(x) +paly)) for z,y € R",

where C' > 1 is a constant. One can show that all quasi-norms associated to a
fixed dilation A are equivalent, see [2, Lemma 2.4]. Define the step homogeneous
quasi-norm p on R" induced by dilation A as

. b] lfﬂfeB]+1\B],
pe) _{ 0, ifx=0.

For any x,y € R", we have

plx +y) <0"(p(x) + p(y)). (1.1)

2. SOME PROPERTIES FOR THE ANISOTROPIC HERZ-MORREY SPACES WITH
TWO VARIABLE EXPONENTS

In this section, we first introduce the definition of anisotropic Herz-Morrey
spaces with two variable exponents. Let Cy = By \ By_1 for k € Z. Denote Z
and N as the sets of all positive and non-negative integers, xx = x¢, for k € Z,
Xt = Xk if kK € Z4 and xo = xB,, Where x¢, is the characteristic function of C.

Definition 2.1. Let a(-) : R" — R with a(:) € L*(R"), 0 < p < o0, q(-) €
P(R”) and 0 < A < oo. The homogeneous anisotropic Herz-Morrey space
M K O‘( (A R™) associated with the dilation A is defined by

loc

MEGSMARY) = {f € L (RN A0}) : |1 £l < 00},

where
1/p
HfHMKO‘()))‘ - Supb A { Z kua kaHLq() Rn)} .
k=—o00

The non-homogeneous anisotropic Herz-Morrey space M K ( (A R™) associated
with the dilation A is defined by

MKQ( )P (A Rn> {f = Lloc( n) : ||f||MK:‘(()>,’p/\ < 00}7
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where

1/p
1Al gcacon —Supb “{Zﬂbka FXel 700 } :

k=0
Remark 2.2. If A =0, then

MECOD

q(-).p

(AR") = Ko )" (A;RY)
and

MK (A Rn) a(')#’(A.Rn)

where K (() (A;R™) and K (A R™) are the anisotropic Herz spaces associated
with the dilation A.

Next we will consider some properties of M Kg‘((.'))”p)‘(A; R™). There are similar
properties for M an((.'))j(A; R™).
Theorem 2.3. Suppose 05('),&1(‘>,042(') € Lm(Rn)mpﬂ(Rn)mPoo(Rn)7 Q(.)ach(');
@) € P(R"), 1 < p,p1,p2 < 00, and 0 < A\ A, Ay < oo such that af-) =
ar() + a2(), 1/q() = 1/a(-) + 1/q2(), 1/p = 1/p1 + p2 and X = >21 + Ao If

a1 (), A n a2 (), A N « n
f € MEZM(ARY) and g € MEZD72(A;RY), then fg € MK[\) M (A;R")
and
ol = Whhera Wizt

Proof. By Lemma 1.2 and the Hélder inequality we have

IIfQIIMKaw
1/p
= sup b~ k0 fgx n
. {k_zmu A
; 1/p
LeZ k=—00 /
1/p1
< supb_L’\l{ Z [pFert) kaHqu()(Rn }
Lez e —oo
1/p2
b{ S oot gxknw()w}
k=—00

= HfHMKOq('Ml ||g||M}'(a2(~),*2-
a1():p1 a2(),p2
So we complete the proof of Theorem 2.3. 0
From Theorem 2.3 we can get the following Corollary.

Corollary 2.4. Suppose a(-),a;(-) € L®(R™) N Py(R™) N Py (R ) q(-), q(-) €

m

PR"), 1 <p,p; <00, and 0 < X\, \; < 0o(1 < i < m) such that o Zaz
i=1
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1/q(:) Z Vagi(-), 1p =D 1/pi and X =Y A If fi € MK (AR,
i=1 =1

then Hfl € MK (A R™) and

=1

m m
ITTAlgieeon < TGl e
i—1 q(-),p el q;(-),p;

Theorem 2.5. Suppose a(-) € L=(R") N PO(R”) NPx(R™), q() € P(R”)
p<oo, and0 <\ <oo. If f,g € MK A R™), then f+g € MK (A; R")
and

1f + gl zeeern S Nfll oo + gl zae
q(-),p q(-),p q(+),p

Proof. By the Minkowski inequality we have

1+ gll o
q(-),p
L 1/p

=supb” LA{ Z ) (f+9)Xk||Lq<)(Rn }

LeZ antt

1/p

< Supb‘“{ D IO Xkl oy + IIb’““(')gx;cll’zqm(Rn)}

LEZ antt

1/p L 1/p

< sup biL/\ < Z kua )kaHLqU Rn ) + ( Z kua(.)ngH};qH(Rn))

Lez k=—o00 k=—oc0
< ‘|f"MK§(§'>>}D* + HQHMK;(%-
So we obtain Theorem 2.5. O

From Theorem 2.5 we can get the following Corollary.

Corollary 2.6. Suppose o) € L>®(R™) N Py(R") N P (R"™), q(-) € P(R™),
l <p<oo and 0 < XA < oo Iff; € MK;‘((,')Z?(A;R”)J < i < m, then

Zf’ € MKq( MA;RY) and

=1
m m
1Y fillyrgeeoon < DM ill oo
i—1 q(-),p im1 q(-),p
3. BOUNDEDNESS OF SOME SUBLINEAR OPERATORS

In this section, we will investigate the boundedness on the anisotropic Herz-
Morrey spaces with two variable exponents for some sublinear operators.
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Theorem 3.1. Let 0 < p < 00,q(+) € B(R"), a(:) € L>®(R™) NPy(R™) N Pu (R™),
0 <2X < a(0), a0 < d2. If a sublinear operator T satisfies

i@ s [ PPy o g s, 3.)

for any f € La¢ (]R”) with a compact suppor’t a,nd T is bounded on L1V)(R™), then
T is bounded on MK (A R™) and MK (A R™), respectively.

Proof. 1t suffices to prove that 7' is bounded on M K (A R™). The non-

homogeneous case can be proved in the similar way. Suppose f e MK q(.))z (A;R™).
Similar to the method of Proposition 2.5 in [1 1] we get

L 1/p
‘|Tf||Mk;<§;);IA %max{ sup b“( Z bka(o)pH(Tf)XkHLq()(Rn) ;

L<0,LeZ k=—00
i 1/p
. b“( 0RO (T £ xrIP o n)
L>0,L€Z { k:z—oo 7 kHL o
. 1/p
LA ( Z preep | (Tf)Xk”iq(o(Rn)) } }
k=0

It suffices to prove that I is bounded on MK a0, (A R™), while the estimate of
11 is essentlally similar to that of I. Denote f] fx; for each j € Z, then we

have f(x Z fi(x). It is easy to see that

]_—OO

L k—w—1 p
I < sup b I Z bka(o)p(Z H(Tfj)XkHL‘I(‘>(R"))

L<0,LEZ k__oo i e

L—1 p
+ sup bW Z pre O ( > H(Tfj>XkHL‘1(‘)(]R")>
Jj=

L<0,LEZ kﬁ_oo o

p
+ sup b LAp Z bka O)P (Z || Tf_] Xk”Lq() Rn )

L<0,L€eZ Rt
=hL+ 1L+ 15

Let us first estimate [;. If j <k —w —1,2 € C, and y € B;, by (1.1) we have
ple —y) 2 07"p(x) — p(y) = b~ p(a) = b p(x) = b~ (1 — 1/b)p(2).
Therefore by (3.1) and the generalized Holder inequality, we get
T)y(a)] < Cpla / £5(0)ldy
< Cb~ kaJHL‘I()(R” HXB]HL‘J’(')(R")'
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So by Lemma 1.3 and Lemma 1.4, we have

(T f) x| ot my S 075 ll e oy X8, | L oy X BN 00 ey
< b~ k||fy||Lq() R”)(|Bk|||XBkHLq()(Rn )HXBjHLq/(‘)(R")
HXB]'HL‘I'(')(R’L)

5 ||f] ||L<I(»)(]Rn) HXBk ||L‘1,(‘)(Rn)

S V2| Fill oo - (3.2)

Therefore, when 0 < p < 1, by 0 < a(0) < &2, we get

L k—w—1
I, < su bfL)\p bka([))p b&g] k)p
5, s k_z D T
=—00 j=—00
k—w—1
< su b LAp b]a pb] k)(62—a(0))p N
~ L Eez kZ Z HfJHLqU R
—00 j=—00
L—w-1 L
< sup b Lp Z pia(0) Z b(]—k)(52—oc(0))17”fj||1£q(')(Rn)
L<0,LEZ Pl b1
L—w-1
S 5w b D VOIS @ S I e (3.3)
L<0,LeZ j=—o0 q ):p

When 1 < p < oo, take 1/p+ 1/p’ = 1. Since 0 < «(0) < d2, by (3.2) and the
Holder inequality, we have

L k—w—1 p

L<0,LEZ e Pt

k—w—1

5 sup b—L)\p Z ( Z bjOé Pb k)[62—a( p/2||f]||Lq()R"))

L<0,LEZ oo \ e

k—w—1 p/p’
(Zb]kéza p/2>

J=—0
L—w—1
< sup bEW Z pi0)p Z pli—k)(62—a(0) p/2||f]||Lq()Rn
L<0,LeZ T
j=—00 k=j4+w+1
L—w-1
< sup bW per P s 3.4
S S BT Oy S I s (3.4)

]7—00
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Let us now estimate . Similarly, we consider two cases for p. When 0 < p <1,
by 0 < a(0) and L) (R") boundedness of T, we have

L<0,LEZ

L-1 p
I, = sup b Lxw Z bka(o (Z ||(Tfj)Xk||Lq(')(R”))
J

k=—o0 =k—w
Jtw
< sup bW pie(0) . plk—=5)a(0)p
<, s J_Zm M3l 2
S A1, o (3.5)

()sp

When 1 < p < oo, take 1/p+1/p' = 1. By 0 < a(0), L0 (R") boundedness of T
and the Holder inequality, we have

L -1 p
I f, sup p—Lp Z bka(O)P( ||fy||Lq<>(Rn>
J

L<0,LeZ

k=—o0 j=k—w
L L-1
< su b*L)\p b]a(o)p (k 7a(0)p/2
S <,Z .
=—00 \j=k-w
p/p’
(5 o)
J w
Jtw
< sup bW pic0)p . p(k—1)e(0)p/2
NL<O£)€Z ]_z_:oo ||f]||Lq()R k;oo
SIIE, Ko 36)

“)p

For I3, when 0 < p < 1, by 0 < 2\ < a(0) and L?)(R") boundedness of T', we
get

L 00 »
I. = su b—L)\p bka(O)p Tt .
3 LSQ}J)GZ kZZoo Z H( fj)XkHLq (R")
SJ sup b~ LAp bk Ja O)pbya p )
L<0,LEZ kz ZL ”f]HLq()(R
—o0 j
< sup b B k=) (0)ppirpp—irp pmalo)p ;
~ Soen k_ZmZL m_ZOO 1l e

(3.7)
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S sup bTEW Z S OB o
()p

L<0,LEZ

k=—o00 j=L
L
5 sup b—LAp bka(O)p b (A—a(0))jp o
() (3 A e
S sup pmEwpe@rpiel L”I|f||” ko0
L<0,LeZ ()p
S I, Ko (3.8)

q(-),p
When 1 < p < oo, take 1/p 4+ 1/p’ = 1. Since 0 < 2\ < «(0), by L(R")
boundedness of T" and the Holder inequality, we have

L

o P
Is < sup p—LAr Z pra©p (Z ||fj”LQ(')(R")>
j=L

L<0,LEZ L
=—00

p/p'
< s iy (Zb“ 1y o p/2> (Zb(’“ J>a<o>p/2)

L<0,LEZ X
=—00

< sup bW Z Zbk DO O £17) @

L<0,LEZ

k=—o00 j=L
< sup bEW k=) (0)p/2pip || £||P
S kZ > 71

=—o0 j=L

L

< gqup b LW ple(0)p/2 p(A—a(0)/2)jp .
S ke (Zm Z 1
< gqup b LAeplalOp/2p(A-al0)/2)Lp P
~ L<0, [I?EZ HfHMKq< ))pA
SR, (3.9)

q()p

Combining (3.3)-(3.9), we have
S ||f||M;~<;v(§<)>;A-
Thus, the proof of Theorem 3.1 is completed. O

Remark 3.2. From the proof of Theorem 3.1, it is easy to see that the size con-
dition (3.1) can be replaced by

1]z it inf p(z—y)>0""(1—1/b)p(x), (3.10)

( ) yeEsuppf

Tf(z)]| <C

for all f € L2C)(R™) with compact support.
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