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A REMARK ON GRAPH OPERATORS

Bohdan Zelinka, Liberec

(Received September 23, 1997)

Abstract. A theorem is proved which implies affirmative answers to the problems of
E. Prisner. One problem is whether there are cycles of the line graph operator L with
period other than 1, the other whether there are cycles of the 4-edge graph operator ∇4
with period greater than 2. Then a similar theorem follows.
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In [1], page 71, E. Prisner suggests the problem whether there are L-cycles with
period greater than 1. In the same book on page 131 the problem whether∇4-periods
greater than 2 are possible is given. We shall prove a general theorem which implies

affirmative answers to both these questions.
Let Γ be a class of graphs. A graph operator on Γ is a mapping Φ which assigns

to every graph G ∈ Γ a graph Φ(G) ∈ Γ.
We consider the class Γ of all undirected graphs (finite and infinite) without loops

and multiple edges. We denote by K0 the empty graph, i.e. the graph in which both
the vertex set and the edge set are empty.

The operator L is the line graph operator which to every graph G from Γ assigns
its line graph L(G), i.e. the graph whose vertex set is the edge set of G and in which

two vertices are adjacent if and only if there exists a vertex in G incident to both of
them (as edges).

The operator ∇k is the k-edge graph operator. For an integer k � 2, a k-edge of
a graph G is either a clique (i.e. a maximal complete subgraph) in G with at most k

vertices, or a complete subgraph of G with k vertices. The k-edge graph ∇k(G) of
a graph G is the graph whose vertex set is the set of all k-edges of G and in which

two vertices are adjacent if and only if they have at least one common vertex (as
subgraphs).
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Note that if a graph G has no triangles and no isolated vertices, then ∇k(G) =

L(G) for any k. A different situation occurs for graphs with isolated vertices; namely
an isolated vertex is not an edge, but it is a clique. We have ∇k(K1) = K1 while
L(K1) = K0.

A graph operator Φ on Γ will be called additive, if Φ(K0) = K0 and for every
graph G ∈ Γ the image Φ(G) is the disjoint union of graphs Φ(Ci), where Ci for

i from some index set I are connected components of G. (Most of commonly used
graph operators have this property.)

If Φ is a graph operator on Γ, then we define Φ0 to be the identical mapping on Γ

and Φn for a positive integer n to be the operator such that Φn(G) = Φ(Φn−1(G))
for every graph G ∈ Γ.
By Pn we denote the path of length n, i.e. with n + 1 vertices. In particular,

P0 = K1.

Theorem 1. Let Φ be an additive graph operator on Γ and let r be a positive

integer. If there is an infinite sequence (Hn)∞n=0 of pairwise non-isomorphic graphs
such that Φ(H0) = H0 and Φ(Hn) = Hn−1 for any n � 1, then there are r pairwise

non-isomorphic graphs Gi, 0 � i � r − 1, such that the sequence (Φn(Gi))∞n=0 is
periodic with period r.

�����. The graph Gi for 0 � i � r − 1 will be defined as the disjoint union
of all graphs Hj such that j ≡ i (mod r) and of infinitely many disjoint copies
of H0. Evidently the graphs G0, . . . , Gr−1 are pairwise non-isomorphic. If i, p are

positive integers and p � i, then Φp(Hi) = Hi−p; if p > i, then Φp(Hi) = H0. This
implies that for 0 � i � r − 1 we have Φp(Gi) = Gq, where 0 � q � r − 1 and
q ≡ i − p (mod r). This implies the assertion. �

Corollary 1. Let L be the line graph operator and let r be a positive inte-

ger. Then there exist at least r graphs Gi, 0 � i � r − 1, such that the sequence
(Ln(Gi))∞n=0 is periodic with period r.

�����. The assertion follows from Theorem 1 if we put H0 = K0 and Hi = Pi−1
for every positive integer i. �

Corollary 2. Let ∇k be the k-edge graph operator for an integer k � 2, let r be

a positive integer. Then there exist at least r graphs Gi, 0 � i � r − 1, such that
the sequence (∇n

k (Gi))∞n=0 is periodic with period r.

�����. This again follows from Theorem 1 if we put Hi = Pi for every non-
negative integer i. �
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We will prove another theorem similar to the preceding one.

Theorem 2. Let Φ be an additive operator on Γ, let H be a graph such that

Φn(H) is a proper subgraph of Φn+1(H) for each non-negative integer n. Then

there exists a graph G such that Φn+1(G) is a proper subgraph of Φn(G) for each

non-negative integer n.

�����. The graph G is the disjoint union of all graphs Φn(H) for non-negative

integers n. The graph Φn+1(G) is obtained from Φn(G) be deleting the subgraph
Φn(H) for any n. �

At the end we remark that in the proof of Corollary 2 the paths need not necessarily

occur.
We may define graphs P k

n analogous to the paths Pn. Let k � 2. We have
P k
0 = K1 and P k

1 = Kk. The graph P k
2 has k blocks which are complete graphs with

k vertices each and a unique articulation common to all of them. If the graph P k
n−2

is constructed for an integer n � 3, then to each vertex v of P k
n−2 which belongs to

only one block we assign k − 1 new copies of Kk, choose one vertex in each of them
and identify it with v. (In the case k = 2 we have P k

n = Pn for any n.) We have

∇k(P k
0 ) = P k

0 , ∇k(P k
n ) = P k

n−1 for any positive integer n.
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