GRAPH AUTOMORPHISMS OF SEMIMODULAR LATTICES

JÁN JAKUBÍK, Košice

(Received October 13, 1998)

Abstract. This paper deals with the relations between graph automorphisms and direct factors of a semimodular lattice of locally finite length.

Keywords: semimodular lattice, graph automorphism, direct factor

MSC 2000: 06C10

1. INTRODUCTION

Each lattice dealt with in the present paper is assumed to be of locally finite length (i.e., all its bounded chains are finite).

For a lattice L let G(L) be the corresponding unoriented graph.

An automorphism of the graph G(L) is called also a graph automorphism of the lattice L. The graph isomorphism of lattices is defined analogously.

We denote by C the class of all finite lattices L such that each automorphism of G(L) turns out to be a lattice automorphism.

In connection with Birkhoff's problem 6 from [1], the following result has been proved in [5] (by using the results of [2] and [6]):

(*) Let L be a finite modular lattice. Then the following conditions are equivalent:(i) L belongs to C.

(ii) No direct factor of L having more than one element is self-dual.

The natural question arises whether in (*) the assumption of modularity can be replaced by the assumption that L is semimodular.

In Section 3 we show by an example that the answer is "No".

We define the notions of an interval of type (C) in L and of a graph automorphism of type (C) (cf. Definitions 2.1 and 2.2).

Let A be a direct factor of a lattice L and $\emptyset \neq X \subseteq L$. We say that A is orthogonal to X if for any $x_1, x_2 \in X$, the components of x_1 and x_2 in the direct factor A are equal.

Let C_1 be the class of all lattices L such that each graph automorphism of type (C) of L is a lattice automorphism.

We prove (by applying the results and the methods of [3], [5] and [6]):

- (*1) Let L be a semimodular lattice. Then the following conditions are equivalent:
 (i) L belongs to C₁.
 - (ii) If A is a direct factor of L such that A is self-dual and orthogonal to each interval of type (C) in L, then A is trivial (i.e., $\operatorname{card} A = 1$).

2. Preliminaries

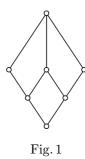
In what follows, L is a lattice. For the notion of the unoriented graph G(L) of L cf., e.g. [1], [2].

If $x, y \in L$, x < y and if the interval [x, y] of L is a two-element set, then we write $x \prec y$ or $y \succ x$.

Hence a graph automorphism of L is a one-to-one mapping φ of L onto L such that, whenever $x, y \in L$ and $x \prec y$, then

- (i) either $\varphi(x) \prec \varphi(y)$ or $\varphi(y) \prec \varphi(x)$,
- (ii) either $\varphi^{-1}(x) \prec \varphi^{-1}(y)$ or $\varphi^{-1}(y) \prec \varphi^{-1}(x)$.

2.1. Definition. Let L_0 be a sublattice of L such that L_0 is isomorphic to the lattice in Fig. 1; then the convex closure $\overline{L_0}$ of L_0 in L is said to be an interval of type (C) in L.



2.2. Definition. A graph automorphism φ of L is said to be of type (C) if, whenever L_1 is an interval of type (C) in L and $x, y \in L_1, x \prec y$, then $\varphi(x) \prec \varphi(y)$ and $\varphi^{-1}(x) \prec \varphi^{-1}(y)$.

It is easy to verify that if L is modular, then it has no sublattice of type (C); consequently, in this case each graph automorphism of L is of type (C). Therefore (*) is a corollary of (*₁).

We denote by L^{\sim} the lattice dual to L. If L and L^{\sim} are isomorphic, then L is said to be self-dual.

3. An example

Let us recall that if L can be expressed as a direct product $L_1 \times L_2$ and if $x = (x_1, x_2) \in L$, $y = (y_1, y_2) \in L$, then $x \prec y$ if and only if either $x_1 \prec y_1$ and $x_2 = y_2$, or $x_1 = x_2$ and $y_1 \prec y_2$.

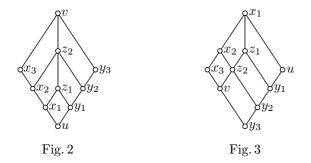
From this we immediately obtain

3.1. Lemma. Let L_1, L_2 be lattices and let φ be a graph isomorphism of L_1 onto L_2 . Put $L = L_1 \times L_2$. For each $x = (x_1, x_2) \in L$ we set

$$\varphi(x) = (\varphi^{-1}(x_2), \varphi(x_1)).$$

Then ψ is a graph automorphism of L.

Consider the lattices L_1 and L_2 in Fig. 2 or Fig. 3, respectively. Both L_1 and L_2 are semimodular.



3.2. Lemma. Both L_1 and L_2 are directly indecomposable.

Proof. The assertion for L_1 was proved in [5], pp. 164–165. The proof for L_2 is similar.

3.3. Lemma. Let $i \in \{1, 2\}$. Then the lattice L_i fails to be self-dual.

Proof. It is easy to verify that L_i^{\sim} fails to be semimodular. Therefore L_i^{\sim} is not isomorphic to L_i .

Put $L = L_1 \times L_2$.

Since any two direct product decompositions of L have a common refinement and since L_1, L_2 are directly indecomposable by 3.3, we conclude

3.4. Lemma. Let A be a direct factor of L having more than one element. Then the lattice A is isomorphic to some of the lattices L, L_1, L_2 .

By the same argument as in 3.3 we obtain

3.5. Lemma. The lattice L is not self-dual.

Now, 3.3, 3.4 and 3.5 yield

3.6. Corollary. The lattice L satisfies the condition (ii) from (*).

It is easy to verify that there exists a graph isomorphism φ of L_1 onto L_2 such that φ fails to be a lattice isomorphism. Hence there are x_1, y_1 in L_1 such that $x_1 \prec y_1$ and $\varphi(x_1) \succ \varphi(y_1)$. Consequently, if ψ is defined as above, then ψ is not a lattice automorphism of L.

In view of 3.1 we conclude that in (*), the assumption of modularity cannot be replaced by the assumption of semimodularity of the lattice L.

We also remark that ψ is an example of a graph automorphism on a semimodular lattice such that ψ is not of type (C).

4. Proof of $(*_1)$

In this section we assume that the lattice L is semimodular.

4.1. Lemma. Suppose that B is a direct factor of L such that

- (i) B is self-dual;
- (ii) B is orthogonal to each interval of type (C) in L;
- (iii) $\operatorname{card} B > 1$.

Then L does not belong to C_1 .

Proof. There is a lattice A such that there exists an isomorphism ψ of L onto $A \times B$. Further, in view of (i), there is an isomorphism χ of the lattice B onto B^{\sim} . For each $x \in L$ we put $\varphi(x) = y$, where

$$\psi(x) = (a, b), \quad y = \psi^{-1}((a, \chi(b))).$$

Then φ is a graph automorphism of the lattice L (cf. [5], Lemma 1.1). Moreover, (ii) yields that φ is of type (C). By applying Lemma 1.2 of [5] we conclude that φ fails to be a lattice automorphism. Therefore L does not belong to C_1 .

Let L_1 and L_2 be semimodular lattices. Suppose that φ is a graph isomorphism of L_1 onto L_2 such that

- (a) if X is an interval of type (C) in L_1 and $x_1, x_2 \in X$, $x_1 \prec x_2$, then $\varphi(x_1) \prec \varphi(x_2)$;
- (b) if Y is an interval of type (C) in L_2 and $y_1, y_2 \in Y$, $y_1 \prec y_2$, then $\varphi^{-1}(y_1) \prec \varphi^{-1}(y_2)$.

We apply similar steps as in Section 2 of [5]. For the sake of completenes, we recall the corresponding notation.

Let \mathcal{A}_1 be the set of all intervals [x, y] of L_1 such that

$$x \prec y$$
 and $\varphi(x) \prec \varphi(y)$.

Further, let \mathcal{B}_1 be the set of all intervals [u, v] of L_1 such that

$$u \prec v$$
 and $\varphi(u) \succ \varphi(v)$.

Similarly we define the sets \mathcal{A}_2 and \mathcal{B}_2 of intervals of L_2 (with φ^{-1} instead of φ).

Choose $x_1^0 \in L_1$, $x_2^0 \in L_2$. We denote by A_1^0 the set of all elements $x \in L_1$ such that either $x = x_1^0$, or there exist $y_1, y_2, \ldots, y_n \in L_1$ such that

- (i) $y_1 = x_1^0, y_n = x$,
- (ii) for each $i \in \{1, 2, ..., n-1\}$, the elements y_i , y_{i+1} are comparable and the corresponding interval belongs to \mathcal{A}_1 .

Similarly we define the set B_1^0 (taking \mathcal{B}_1 instead of \mathcal{A}_1). The subsets A_2^0 and B_2^0 are defined analogously (taking x_2^0 and φ^{-1} instead of x_1^0 and φ).

We apply the notion of the internal direct product decomposition of a lattice L with the central element x^0 in the same sense as in [5] (cf. also [6]). By using this notion and by applying the assumption given above we conclude that the results of [3] (cf. Theorem 2 in [3] and the lemmas applied for proving this Theorem) yield

4.2. Proposition. Under the assumptions as above, there exist internal direct product decompositions

$$\psi_1: L_1 \to A_1^0 \times B_1^0$$
 (with the central element x_1^0),
 $\psi_2: L_2 \to A_2^0 \times B_2^0$ (with the central element x_2^0)

such that

- (i) the lattices A_1^0 and A_2^0 are isomorphic,
- (ii) the lattice B_1^0 is isomorphic to $(B_2^0)^{\sim}$.

Now suppose that the lattice L satisfies the condition (ii) of $(*_1)$. Let φ be a graph automorphism of type (C) of the lattice L.

Choose $x^0 \in L$. We put $L = L_1 = L_2$ and $x^0 = x_1^0 = x_2^0$. The fact that φ is of type (C) yields that the conditions (a) and (b) are satisfied. Hence we can apply Proposition 4.2.

The further steps are the same as in Part 3 of [5]. By using them we obtain

4.3. Lemma. Let *L* be a semimodular lattice satisfying the condition (ii) of $(*_1)$. Then the condition (i) of $(*_1)$ is valid.

In view of 4.1 and 4.3, we infer that $(*_1)$ holds.

If L_1 is a sublattice of L and $a, b \in L_1$, a < b, then we denote by $[a, b]_1$ the corresponding interval of L_1 . We put $a \prec_1 b$ if $[a, b]_1$ is a two-element set.

We say that L_1 is a *c*-sublattice of *L* if, whenever $a, b \in L_1$ and $a \prec_1 b$, then $a \prec b$.

We remark that Theorem 2 in the paper [7] by Ratanaprasert and Davey (this theorem solved a problem proposed in [4]) implies that in Definition 2.1 above it suffices to consider only those sublattices L_0 of L which are *c*-sublattices of L.

References

- [1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967.
- [2] J. Jakubik: On graph isomorphism of lattices. Czechoslovak Math. J. 4 (1954), 131–141. (In Russian.)
- [3] J. Jakubik: On graph isomorphisms of semimodular lattices. Matem. fyz. časopis 4 (1954), 162–177. (In Slovak.)
- [4] J. Jakubik: Graph isomorphisms of semimodular lattices. Math. Slovaca 35 (1985), 229–232.
- [5] J. Jakubik: Graph automorphisms of a finite modular lattice. Czechoslovak Math. J 49 (1999), 443–447.
- [6] J. Jakubík, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–379.
- [7] C. Ratanaprasert, B. A. Davey: Semimodular lattices with isomorphic graphs. Order 4 (1987), 1–13.

Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, email: musavke@mail.saske.sk.