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Abstract. This paper deals with the relations between graph automorphisms and direct
factors of a semimodular lattice of locally finite length.
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1. Introduction

Each lattice dealt with in the present paper is assumed to be of locally finite length

(i.e., all its bounded chains are finite).

For a lattice L let G(L) be the corresponding unoriented graph.

An automorphism of the graph G(L) is called also a graph automorphism of the
lattice L. The graph isomorphism of lattices is defined analogously.

We denote by C the class of all finite lattices L such that each automorphism of
G(L) turns out to be a lattice automorphism.

In connection with Birkhoff’s problem 6 from [1], the following result has been
proved in [5] (by using the results of [2] and [6]):

(∗) Let L be a finite modular lattice. Then the following conditions are equivalent:
(i) L belongs to C.
(ii) No direct factor of L having more than one element is self-dual.

The natural question arises whether in (∗) the assumption of modularity can be
replaced by the assumption that L is semimodular.

In Section 3 we show by an example that the answer is “No”.

We define the notions of an interval of type (C) in L and of a graph automorphism
of type (C) (cf. Definitions 2.1 and 2.2).
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Let A be a direct factor of a lattice L and ∅ �= X ⊆ L. We say that A is orthogonal

to X if for any x1, x2 ∈ X , the components of x1 and x2 in the direct factor A are
equal.

Let C1 be the class of all lattices L such that each graph automorphism of type
(C) of L is a lattice automorphism.

We prove (by applying the results and the methods of [3], [5] and [6]):

(∗1) Let L be a semimodular lattice. Then the following conditions are equivalent:
(i) L belongs to C1.
(ii) If A is a direct factor of L such that A is self-dual and orthogonal to each
interval of type (C) in L, then A is trivial (i.e., cardA = 1).

2. Preliminaries

In what follows, L is a lattice. For the notion of the unoriented graph G(L) of L

cf., e.g. [1], [2].

If x, y ∈ L, x < y and if the interval [x, y] of L is a two-element set, then we write
x ≺ y or y � x.

Hence a graph automorphism of L is a one-to-one mapping ϕ of L onto L such
that, whenever x, y ∈ L and x ≺ y, then

(i) either ϕ(x) ≺ ϕ(y) or ϕ(y) ≺ ϕ(x),

(ii) either ϕ−1(x) ≺ ϕ−1(y) or ϕ−1(y) ≺ ϕ−1(x).

2.1. Definition. Let L0 be a sublattice of L such that L0 is isomorphic to the
lattice in Fig. 1; then the convex closure L0 of L0 in L is said to be an interval of

type (C) in L.

�
Fig. 1

2.2. Definition. A graph automorphism ϕ of L is said to be of type (C) if,

whenever L1 is an interval of type (C) in L and x, y ∈ L1, x ≺ y, then ϕ(x) ≺ ϕ(y)
and ϕ−1(x) ≺ ϕ−1(y).
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It is easy to verify that if L is modular, then it has no sublattice of type (C);

consequently, in this case each graph automorphism of L is of type (C). Therefore
(∗) is a corollary of (∗1).
We denote by L∼ the lattice dual to L. If L and L∼ are isomorphic, then L is

said to be self-dual.

3. An example

Let us recall that if L can be expressed as a direct product L1 × L2 and if x =

(x1, x2) ∈ L, y = (y1, y2) ∈ L, then x ≺ y if and only if either x1 ≺ y1 and x2 = y2,
or x1 = x2 and y1 ≺ y2.

From this we immediately obtain

3.1. Lemma. Let L1, L2 be lattices and let ϕ be a graph isomorphism of L1 onto
L2. Put L = L1 × L2. For each x = (x1, x2) ∈ L we set

ϕ(x) = (ϕ−1(x2), ϕ(x1)).

Then ψ is a graph automorphism of L.

Consider the lattices L1 and L2 in Fig. 2 or Fig. 3, respectively. Both L1 and L2
are semimodular.
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3.2. Lemma. Both L1 and L2 are directly indecomposable.

�����. The assertion for L1 was proved in [5], pp. 164–165. The proof for L2
is similar. �

3.3. Lemma. Let i ∈ {1, 2}. Then the lattice Li fails to be self-dual.

�����. It is easy to verify that L∼
i fails to be semimodular. Therefore L

∼
i is

not isomorphic to Li. �
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Put L = L1 × L2.

Since any two direct product decompositions of L have a common refinement and
since L1, L2 are directly indecomposable by 3.3, we conclude

3.4. Lemma. Let A be a direct factor of L having more than one element. Then
the lattice A is isomorphic to some of the lattices L,L1, L2.

By the same argument as in 3.3 we obtain

3.5. Lemma. The lattice L is not self-dual.

Now, 3.3, 3.4 and 3.5 yield

3.6. Corollary. The lattice L satisfies the condition (ii) from (∗).
It is easy to verify that there exists a graph isomorphism ϕ of L1 onto L2 such that

ϕ fails to be a lattice isomorphism. Hence there are x1, y1 in L1 such that x1 ≺ y1

and ϕ(x1) � ϕ(y1). Consequently, if ψ is defined as above, then ψ is not a lattice
automorphism of L.

In view of 3.1 we conclude that in (∗), the assumption of modularity cannot be
replaced by the assumption of semimodularity of the lattice L.

We also remark that ψ is an example of a graph automorphism on a semimodular
lattice such that ψ is not of type (C).

4. Proof of (∗1)

In this section we assume that the lattice L is semimodular.

4.1. Lemma. Suppose that B is a direct factor of L such that
(i) B is self-dual;

(ii) B is orthogonal to each interval of type (C) in L;
(iii) cardB > 1.

Then L does not belong to C1.
�����. There is a lattice A such that there exists an isomorphism ψ of L onto

A×B. Further, in view of (i), there is an isomorphism χ of the lattice B onto B∼.
For each x ∈ L we put ϕ(x) = y, where

ψ(x) = (a, b), y = ψ−1((a, χ(b))).

Then ϕ is a graph automorphism of the lattice L (cf. [5], Lemma 1.1). Moreover, (ii)

yields that ϕ is of type (C). By applying Lemma 1.2 of [5] we conclude that ϕ fails
to be a lattice automorphism. Therefore L does not belong to C1. �
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Let L1 and L2 be semimodular lattices. Suppose that ϕ is a graph isomorphism

of L1 onto L2 such that
(a) if X is an interval of type (C) in L1 and x1, x2 ∈ X , x1 ≺ x2, then ϕ(x1) ≺

ϕ(x2);

(b) if Y is an interval of type (C) in L2 and y1, y2 ∈ Y , y1 ≺ y2, then ϕ−1(y1) ≺
ϕ−1(y2).

We apply similar steps as in Section 2 of [5]. For the sake of completenes, we recall
the corresponding notation.

Let A1 be the set of all intervals [x, y] of L1 such that

x ≺ y and ϕ(x) ≺ ϕ(y).

Further, let B1 be the set of all intervals [u, v] of L1 such that

u ≺ v and ϕ(u) � ϕ(v).

Similarly we define the sets A2 and B2 of intervals of L2 (with ϕ−1 instead of ϕ).
Choose x01 ∈ L1, x02 ∈ L2. We denote by A01 the set of all elements x ∈ L1 such

that either x = x01, or there exist y1, y2, . . . , yn ∈ L1 such that

(i) y1 = x01, yn = x,
(ii) for each i ∈ {1, 2, . . . , n − 1}, the elements yi, yi+1 are comparable and the

corresponding interval belongs to A1.
Similarly we define the set B01 (taking B1 instead of A1). The subsets A02 and B02

are defined analogously (taking x02 and ϕ
−1 instead of x01 and ϕ).

We apply the notion of the internal direct product decomposition of a lattice L

with the central element x0 in the same sense as in [5] (cf. also [6]). By using this
notion and by applying the assumption given above we conclude that the results of

[3] (cf. Theorem 2 in [3] and the lemmas applied for proving this Theorem) yield

4.2. Proposition. Under the assumptions as above, there exist internal direct
product decompositions

ψ1 : L1 → A01 ×B01 (with the central element x01),

ψ2 : L2 → A02 ×B02 (with the central element x02)

such that

(i) the lattices A01 and A
0
2 are isomorphic,

(ii) the lattice B01 is isomorphic to (B
0
2)

∼.

Now suppose that the lattice L satisfies the condition (ii) of (∗1).
Let ϕ be a graph automorphism of type (C) of the lattice L.
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Choose x0 ∈ L. We put L = L1 = L2 and x0 = x01 = x02. The fact that ϕ is of

type (C) yields that the conditions (a) and (b) are satisfied. Hence we can apply
Proposition 4.2.
The further steps are the same as in Part 3 of [5]. By using them we obtain

4.3. Lemma. Let L be a semimodular lattice satisfying the condition (ii) of (∗1).
Then the condition (i) of (∗1) is valid.
In view of 4.1 and 4.3, we infer that (∗1) holds.
If L1 is a sublattice of L and a, b ∈ L1, a < b, then we denote by [a, b]1 the

corresponding interval of L1. We put a ≺1 b if [a, b]1 is a two-element set.
We say that L1 is a c-sublattice of L if, whenever a, b ∈ L1 and a ≺1 b, then a ≺ b.

We remark that Theorem 2 in the paper [7] by Ratanaprasert and Davey (this
theorem solved a problem proposed in [4]) implies that in Definition 2.1 above it

suffices to consider only those sublattices L0 of L which are c-sublattices of L.
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