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Abstract. We use graph-algebraic results proved in [8] and some results of the graph
theory to characterize all pairs 〈L1,L2〉 of lattices for which there is a finite partial unary
algebra such that its weak and strong subalgebra lattices are isomorphic to L1 and L2,
respectively. Next, we describe other pairs of subalgebra lattices (weak and relative, etc.) of
a finite unary algebra. Finally, necessary and sufficient conditions are found for quadruples
〈L1,L2,L3,L4〉 of lattices for which there is a finite unary algebra having its weak, relative,
strong subalgebra and initial segment lattices isomorphic to L1,L2,L3,L4, respectively.
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Investigations of relationships between properties of algebras or properties of va-
rieties of algebras and those of their subalgebra lattices are an important part of

universal algebra (see e.g. [6], and also the introduction to the previous part [8]).
The theory of partial algebras provides additional tools for such investigations, be-

cause at least four different structures may be considered in this case (see [2] or [4]).
Note that these different partial subalgebra lattices yield more information on an

algebra (also a total one) than the (total) subalgebra lattice alone. For instance,
in [9] we show that for a total and locally finite unary algebra of finite type, its

weak subalgebra lattice uniquely determines its subalgebra lattice. Moreover, the
theory of graphs (its language and results) is very useful (see e.g. [7], [9], and also

[8]) in investigations of subalgebra lattices of partial unary algebras and connections
between algebras and their subalgebra lattices. For example, in [8] we characterized,

in terms of isomorphisms of some directed graphs, pairs 〈A,L〉, where A is a finite
partial unary algebra and L a lattice such that the strong subalgebra lattice Ss(A)
of A is isomorphic to L. Recall that the usual subalgebra is called strong to stress
that this notion of subalgebra is one of several considered in the theory of partial

171



algebras. Now we give new examples of applications of graphs in such investigations.

More precisely, we apply this result and other facts of [8], and several results of the
graph theory as well as some of the universal algebra to describe all pairs of lattices
〈L1,L2〉 for which there is a finite partial unary algebra such that its weak and strong
subalgebra lattices are isomorphic to L1 and L2, respectively. We also describe other
pairs of subalgebra lattices (weak and relative, relative and strong, etc.) of a finite

partial unary algebra. Finally, we characterize the quadruple of subalgebra lattices
of a finite partial unary algebra.

We use the notation from the previous part [8]. For any digraph (graph) D, by
V D and ED we denote its sets of vertices and edges, respectively. Obviously with
every digraph D we can associate a graph D∗ by omitting the orientation of all edges
(but not edges themselves). Each partial unary algebra A = 〈A, (kA)k∈K〉 can be
represented (see [8]) by the digraph D(A) obtained from A by omitting the names
of all operations. Thus we can also associate with A the graph D∗(A) =

(
D(A)

)∗
.

Recall also (see [2] or [4]) that a partial unary algebra B = 〈B, (kB)k∈K〉 of type K

is a weak subalgebra of a similar partial unary algebra A = 〈A, (kA)k∈K〉 iff B ⊆ A

and kB ⊆ kA for k ∈ K. The set of all weak subalgebras of A forms (see also [2] or
[4]) a complete and algebraic lattice Sw(A) under the (weak subalgebra) inclusion
�w.
For a complete lattice L = 〈L, �L〉, At(L) is the set of its atoms; Ir(L) is the

set of its non-zero and non-atomic join-irreducible elements; and for each l ∈ L,
At(l) = {a ∈ At(L) : a �L l}. Recall that i ∈ L is join-irreducible iff for any

k1, k2 ∈ L, i = k1 ∨ k2 implies i = k1 or i = k2.
By [1] we obtain

Theorem 1. A lattice L = 〈L, �L〉 is isomorphic to the weak subalgebra lattice
Sw(A) for some finite partial unary algebra A iff L is finite and distributive and
(1) every element of L is the join of join-irreducible elements,
(2) for each i ∈ Ir(L), At(i) has exactly one or exactly two elements,
(3) 〈Ir(L), �L〉 is an antichain.

More precisely, [1] shows that L � Sw(B) for some partial unary algebra B iff L
is algebraic, distributive and satisfies (1)–(3). Moreover, such an isomorphism forces
existence of a bijection between At(L) and the carrier of B, because it is known by [1]
that one-element subalgebras of B with empty operations form the set of all atoms
of Sw(B). Hence, L is finite iff B is finite.
The above theorem implies (see [7]) that each algebraic and distributive lattice L

satisfying (1)–(3) can be represented by a graph G(L) defined as follows: At(L) is
its set of vertices, Ir(L) is its set of (undirected) edges, and for every edge e, At(e)
is the set of endpoints of e.

172



Having this correspondence between lattices (algebraic, distributive and satisfying

(1)–(3) of Theorem 1) and graphs, and also the representations of partial unary
algebras by digraphs and graphs, we have proved in [7] the following characterization
of partial unary algebras (also infinite ones) with a given lattice of weak subalgebras:

Theorem 2. Let L be an algebraic and distributive lattice satisfying (1)–(3) of
Theorem 1 and let A be a partial unary algebra. Then

L � Sw(A) iff G(L) � D∗(A).

In the previous part [8] we recall (see [3], chapter 3.2) the operation of the con-
traction of a vertex set in a digraph or graph. Moreover, if W1, . . . , Wn are pairwise

disjoint subsets of the vertex set of a graph (digraph) G, then in turn we can contract
all these sets. It is easy to see that the order of the contraction of these sets is not im-

portant. Therefore the graph (digraph) so obtained can be denoted by G
/
{Wi}i=n

i=1 .
If this family has one element, i.e. n = 1, then we write G/W1.

Observe that every finite digraph D (i.e. whose vertex and edge sets are finite) can
be reduced to a simple digraph, which will be sometimes denoted by sim(D), in the
following way: First, we remove all loops. Secondly, for any two distinct vertices
v, w, if there are at least two edges going from v to w, then we replace all edges from

v to w by a single edge with the same endpoints.
Recall (see [3]) that a strongly connected component of D is a maximal strongly

connected subdigraph. A digraph is strongly connected iff for any two distinct vertices

v and w, there is a path going from v to w. An edge e is an isthmus (see also [3]) iff
e is regular (i.e. not a loop) and e is the only path from its initial vertex to its final

vertex. We assume that no path encounters the same vertex twice.
Now let D be a finite digraph. Then we define the digraph Tis(D) as follows:

First, we take the digraph T (D) = D
/
{Vi}i=n

i=1 , where V1, . . . , Vn are the vertex
sets of all non-trivial, i.e. with at least two vertices, strongly connected components

of D. Secondly, we can reduce T (D) to the simple digraph sim
(
T (D)

)
. Thirdly,

we take the subdigraph of the last digraph consisting of all its vertices and all its

isthmi. Note that Tis(D) is a simple digraph without directed cycles and each
of its edges is an isthmus. Moreover, for every finite partial unary algebra A, let
Tis(A) : = Tis

(
D(A)

)
.

Recall (see e.g. [8]) that a lattice L is isomorphic to the strong subalgebra lattice
for some finite partial unary algebra iff L is finite and distributive. Moreover, we
showed in [8] that each finite and distributive lattice L can be also represented by a
digraph D(L) defined as follows: Ir(L) ∪ At(L) is its set of vertices,

{
〈p, q〉 : p, q ∈

Ir(L)∪At(L), q ≺ p
}
is its set of (directed) edges, where ≺ is the covering relation on
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Ir(L) ∪At(L), i.e. q ≺ p iff q �L p and there is no join-irreducible element between

q and p. Note that D(L) is a simple digraph without directed cycles and each of its
edges is an isthmus.

Using these two constructions we have proved in [8]

Theorem 3. Let L be a finite and distributive lattice and let A be a finite partial
unary algebra. Then Ss(A) � L iff Tis(A) � D(L).

Observe that Theorems 2 and 4 reduce our algebraic problem to the following one:

Let G be a finite graph and let D be a finite and simple digraph without directed
cycles such that each of its edges is an isthmus. When is there a finite digraph H
such that H∗ � G and Tis(H) � D? In our solution of this graph problem we need
the following technical fact:

Lemma 4. Let a finite graph G, a family of digraphs {Ki}i=n
i=1 and a digraph H

satisfy the conditions

(1) K∗
1, . . . ,K∗

n are pairwise disjoint subgraphs of G,
(2) H∗ � G

/
{V Ki}i=n

i=1 .

Then G can be directed to form a digraph D, i.e. D∗ = G, such that
(a) K1, . . . ,Kn are subdigraphs of D,
(b) D

/
{V Ki}i=n

i=1 � H.

�����. First, all edges in
i=n⋃

i=1
EKi are already directed, and each of these turns

into a loop in H.
Secondly, if e is an edge of G with endpoints in Ki for some 1 � i � n, then e can

be arbitrarily directed, because in this case the image of e in H is a loop.
Thirdly, let e be an edge of G such that its endpoints belong to two distinct graphs

Ki and Kj , i.e. i 	= j. Then it is sufficient to import the orientation of e from the

digraph H. More precisely, let vi and vj be vertices of H corresponding to the sets
V Ki and V Kj , respectively. Moreover, assume that vi is the initial vertex of e in

H. Of course, the inverse case is analogous. Then we direct e so that the terminal
vertex of e (in G) belonging to V Ki becomes the initial vertex, and the other endpoint

(which belongs to V Kj ) becomes the final vertex.

It is easy to verify that in this way G is directed to form a digraph D satisfying
our conditions. �

Recall that H. E.Robbins proved in [10] the following simple characterization of

finite graphs that can be directed to form strongly connected digraphs (this result
and its proof is given also in [3], chapter 9.3, Theorem 10, p. 182):
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Theorem 5. A finite graph G can be directed to form a strongly connected
digraph iff G is connected and each edge lies on an undirected cycle.

Obviously any loop of a graph (digraph) forms a undirected (directed) cycle, called
trivial.

We also need the following technical fact from the previous part [8]:

Lemma 6. Let D be a finite and simple digraph without directed cycles. Then
for each edge e, there is a path (f1, . . . , fn) going from the initial vertex of e to the
final vertex of e, and f1, . . . , fn are isthmi.

Now we can formulate and prove our main graph result. For any graph (digraph)
G and its subset W ⊆ V G , we denote by [W ]G the subgraph spanned on W , i.e. W is

its set of vertices, and all the edges of G with endpoints in W form its set of edges.

Theorem 7. Let G be a finite graph and let H be a finite and simple digraph
without directed cycles such that each of its edges is an isthmus. Then the following

conditions are equivalent:

(a) There is a finite digraph D such that D∗ � G and Tis(D) � H.
(b) There is a family {Wi}i=n

i=1 of pairwise disjoint subsets of V
G such that each of

them has at least two vertices and

(b.1) [Wi]G is connected and each of its edges lies on an undirected cycle (of this
subgraph), for every i = 1, . . . , n.

(b.2) H∗ is a subgraph (up to isomorphism) of G/{Wi}i=n
i=1 containing all its vertices

and for each regular edge e of G/{Wi}i=n
i=1 , there is a directed path in H going

from one endpoint of e to the other endpoint of e.

�����. (a) ⇒ (b): Take a digraph D such that D∗ � G and Tis(D) � H,
and let K1, . . . ,Kn be all the non-trivial strongly connected components of D and
W1, . . . , Wn their sets of vertices, respectively. Then first,

K∗
i =

(
[W ]D

)∗
= [W ]D∗ = [W ]G for i = 1, . . . , n.

Hence and by Theorem 6, [W1]G , . . . , [Wn]G satisfy (b.1).
Secondly, observe that

(
D

/
{Wi}i=n

i=1

)∗ � D∗/{Wi}i=n
i=1 � G

/
{Wi}i=n

i=1 .

Thirdly, by the definition of Tis(D) and Lemma 6 we easily obtain that Tis(D) (and
thus also H) can be regarded (up to isomorphism) as a subdigraph of D

/
{Wi}i=n

i=1

containing all its vertices and for each of its regular edges e there is a directed path
in H going from the initial vertex to the final vertex of e.
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(b) ⇒ (a): At the beginning we show that G
/
{Wi}i=n

i=1 can be directed to form a

digraph K such that it has no non-trivial directed cycles and H is the subdigraph
(up to isomorphism) of sim(K) consisting of all its vertices and all its isthmi.
To this purpose observe first that all loops in G

/
{Wi}i=n

i=1 can be, of course, arbi-

trarily directed.

Secondly, all edges of G
/
{Wi}i=n

i=1 which belong to H (more formally, all edges
corresponding to edges of H by the isomorphism given in (b.2)) can be directed as
in H.
Thirdly, all regular edges of G

/
{Wi}i=n

i=1 outside H can be directed according to
the orientation of H. More precisely, let e be a regular edge of G

/
{Wi}i=n

i=1 which
does not belong to H. Then there is a directed path in H going from one endpoint v

of e to the other endpoint w of e. Thus we can direct e so that v becomes its initial
vertex (in K) and w becomes its final vertex. Since H has no directed cycles, we
conclude that every directed path in H connecting the endpoints of e must go from
v to w. Hence, this orientation of e is well-defined.

Obviously in this way we direct all edges of G
/
{Wi}i=n

i=1 to form a digraph K such
that H is (up to the isomorphism given in (b.2)) its subdigraph. Moreover, the above
construction easily implies that K has no non-trivial directed cycles.
Now we show the second property. Since H is a simple subdigraph of K containing

all its vertices such that for each regular edge e of K, there is a directed path in H
going from the initial vertex of e to the final vertex of e, we obtain that H is a
subdigraph (up to isomorphism) of sim(K) with the same properties. Hence, all the
isthmi of sim(K) are contained in H. Moreover, each isthmus of H is also an isthmus
in sim(K). To see this take an isthmus e of H and assume that p = (f1, . . . , fk) is a
directed path in sim(K) going from the initial vertex v of e to the final vertex w of

e. Then there are directed paths p1, . . . , pk in H such that pi goes from the initial
vertex of fi to the final vertex of fi for i = 1, . . . , k. Since H has no directed cycles,
these paths form another directed path p in H going from v to w. But e is an isthmus
in H, so p is equal to e. Thus k = 1 and p1 = (e). Hence p = (e), because sim(K) is
simple. This implies that e is indeed an isthmus in sim(K). Thus H consists of all
vertices of sim(K) and all its isthmi, because each edge of H is an isthmus.
Now by Theorem 5 and (b.1) there are strongly connected digraphs K1, . . . ,Kn

such that

K∗
i = [Wi]G for i = 1, . . . , n.

Thus by Lemma 4 there is a digraph D such that D∗ = G and D
/
{Wi}i=n

i=1 � K and
K1, . . .Kn are subdigraphs of D. Then

(
[Wi]D

)∗
= [Wi]D∗ = [Wi]G = K∗

i for i = 1, . . . , n,

176



so [Wi]D and Ki have the same vertex and edge sets. Hence, Ki = [Wi]D for
i = 1, . . . , n, because they are subdigraphs of D. Thus [W1]D, . . . , [Wn]D are
strongly connected subdigraphs of D and each of them has at least two vertices.
Moreover, D

/
{Wi}i=n

i=1 has no non-trivial directed cycles. These facts imply that

[W1]D, . . . , [Wn]D are all the non-trivial strongly connected components of D. Thus
T (D) � K. Hence we deduce Tis(D) � H, because H can be regarded as the
subdigraph of sim(K) consisting of all its vertices and all its isthmi. This completes
the proof. �

Using the above graph result we obtain the following characterization of the weak

and strong subalgebra lattices of one finite partial unary algebra:

Theorem 8. Let L1 and L2 be arbitrary lattices. Then the following conditions
are equivalent:

(a) There is a finite partial unary algebra A such that Sw(A) � L1 and Ss(A) � L2.
(b) L1 and L2 are finite and distributive lattices and
(b.1) L1 satisfies (1)–(3) of Theorem 1,
(b.2) G(L1) and D(L2) satisfy (b) of Theorem 7.

�����. (a)⇒ (b): First, we know that L1 and L2 are finite and distributive and
L1 satisfies (1)–(3) of Theorem 1. Secondly, D∗(A) � G(L1) and Tis(A) � D(L2),
by Theorems 2 and 3. Thirdly, D(L2) is a simple digraph without directed cycles
and each of its edges is an isthmus. Thus by Theorem 7 we obtain our implication.
(b) ⇒ (a): Since G(L1) and D(L2) satisfy (b) of Theorem 7 and, of course, the

other assumptions of this theorem as well, there is a finite digraph D such that
D∗ � G(L1) and Tis(D) � D(L2). Now it is sufficient to construct (details of
this simple construction are given in [7]) a finite partial unary algebra A such that
D(A) � D. Then by Theorems 2 and 3 (see also Theorem 1) we obtain that Sw(A)
and Ss(A) are isomorphic to L1 and L2, respectively. �

Finally, we consider the remaining two kinds of partial subalgebras which also play

an important role in the theory of partial algebras (see [2] and [4]): relative subal-
gebras and initial segments. Recall that a partial unary algebra B = 〈B, (kB)k∈K〉
of type K is a relative subalgebra (an initial segment) of a partial unary algebra
A = 〈A, (kA)k∈K〉 of the same type iff B ⊆ A and kB = kA|(B×B) (kB = kA|(A×B))

for k ∈ K. The sets of all relative subalgebras and initial segments of A form
complete, and also algebraic, lattices Sr(A) and Sd(A), respectively.
First, it is known (see e.g. [2]) that the relative subalgebra lattice of any partial

algebra A (not only a unary one) is isomorphic to the powerset lattice of the carrier
of A. Next (see [5]), a lattice L is isomorphic to the lattice of all subsets of a finite
set iff L is a finite Boolean algebra, and then L is isomorphic to the powerset lattice
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of At(L). Since each set can be viewed as a partial algebra with empty operations,
these two facts imply

������ 1.

(a) A lattice L is isomorphic to the relative subalgebra lattice for some finite partial
algebra iff L is a finite Boolean algebra.

(b) LetA be a finite partial algebra and L a finite Boolean algebra. Then Sr(A) � L
iff |A| = |At(L)|.

Because for any partial algebra A, its one-element subalgebras with empty oper-
ations form the set of all atoms of its lattice of weak subalgebras (see [1]), we have
|A| =

∣
∣At

(
Sw(A)

)∣∣. Hence and by Theorem 1 and Remark 1 we obtain the following
characterization of weak and relative subalgebra lattices:

������ 2. LatticesK and L are isomorphic respectively to Sw(A) and Sr(A) for
some finite partial unary algebra A iff K is a finite and distributive lattice satisfying
(1)–(3) of Theorem 1, L is a finite Boolean algebra, and |At(K)| = |At(L)|.

Now we describe the relative and strong subalgebra lattices.

Proposition 9. Lattices K and L are isomorphic respectively to Sr(A) and Ss(A)
for some finite partial unary algebra A iff K is a finite Boolean algebra, L is finite
and distributive, and |At(K)| � | Ir(L)|.

�����. The implication ⇒ follows from Theorem 3 and Remark 1, because for
any finite digraph D (and thus also for finite partial unary algebras), Tis(D) has not
more vertices than D, i.e. |V Tis(D)| � |V D|.

⇐: Take a vertex v0 of D(L) and let v1, . . . , vk be pairwise different elements

which do not belong to D(L) and such that
∣
∣{v1, . . . , vk} ∪ V D(L)∣∣ = |At(K)|. Let

H be a digraph obtained from D(L) by adding all vertices v1, . . . , vk and directed

edges 〈vi, vj〉 for i, j = 0, . . . , n with i 	= j. Then, of course, Tis(H) � D(L) and
|V H| = |At(K)|. Thus we must only take a finite partial unary algebra A such that
D(A) � H. �

By Theorem 8 and Remark 1, because |A| =
∣
∣At

(
Sw(A)

)∣∣, we obtain

������ 3. Lattices L1, L2, L3 are isomorphic respectively to Sw(A), Sr(A),
Ss(A) of a finite partial unary algebra A iff they are finite and distributive with L1
satisfying (1)–(3) of Theorem 1, L2 being a Boolean algebra, |At(L1)| = |At(L2)|,
and G(L1) and D(L3) satisfying (b) of Theorem 7.

Now we characterize the initial segment lattice. Take a finite partial unary algebra
A and let D(A) be the digraph obtained from D(A) by inverting the orientation of

178



all edges, and let A be any finite partial algebra corresponding to this digraph, i.e.
D(A) � D(A). Obviously we can assume that A and A have the same carrier. It is
not difficult to verify that each initial segment of A is a strong subalgebra of A, and
conversely, each strong subalgebra of A is an initial segment of A. Thus the identity
function on the carrier of A induces an isomorphism of the lattices Sd(A) and Ss(A).
This fact implies

Proposition 10. A lattice L is isomorphic to the initial segment lattice Sd(A)
for some finite partial unary algebra A iff L is finite and distributive.

Observe also that Tis(A) � Tis(A), because for any digraph D, each strongly con-
nected component of D is also a strongly connected component of D, and conversely.
Moreover, an edge of D is an isthmus iff it is an isthmus in D. Thus Theorem 3
yields

Corollary 11. Let A be a finite partial unary algebra and L a finite and distrib-
utive lattice. Then Sd(A) � L iff Tis(A) � D(L) iff Tis(A) � D(L).

This corollary and Theorem 3 imply

������ 4. Lattices K and L are isomorphic to Ss(A) and Sd(A) of one finite
partial unary algebra A iff K and L are finite and distributive, and D(K) � D(L).

Proposition 12. Lattices K and L are isomorphic respectively to the weak subal-
gebra and the initial segment lattices Sw(A) and Sd(A) for some finite partial unary
algebra A iff K and L are finite and distributive and
(1) K satisfies (1)–(3) of Theorem 1,
(2) G(K) and D(L) satisfy (b) of Theorem 7.

�����. Let K � Sw(A) and L � Sd(A) for some finite partial unary algebra
A. Then we know that K and L must be finite, distributive and, of course, K must
satisfy (1)–(3) of Theorem 1. Moreover, by Theorem 2 and Corollary 11 we have
D∗(A) � G(K) and Tis(A) � D(L). Hence and by Theorem 7 (the implication
(a) ⇒ (b)) we infer that G(K) and D(L) satisfy (b) of Theorem 7.
Assume that K and L satisfy (1), (2). Then by Theorem 7 there is a digraph D

such that D∗ � G(K) and Tis(D) � D(L). Let A be a finite partial unary algebra
such that D(A) � D. Then by Theorem 2, Sw(A) � K. Moreover, Tis(A) =
Tis

(
D(A)

)
� Tis(D) � D(L), so by Corollary 11, Sd(A) � L. �

Observe that for any partial unary algebra A, its inverse algebra A has the same
relative subalgebra lattice, so by Proposition 9 we obtain
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������ 5. Lattices K and L are isomorphic respectively to Sr(A) and Sd(A)
for some finite partial unary algebra A iff K is a finite Boolean algebra, L is finite
and distributive, and |At(K)| � | Ir(L)|.

Using Theorem 3, Remark 1, Proposition 9 and Corollary 11 we can characterize

the relative, strong subalgebra and the initial segment lattices. More precisely, we
have

������ 6. Lattices L1, L2 and L3 are isomorphic respectively to Sr(A), Ss(A)
and Sd(A) for a finite partial unary algebra A iff L1 is a finite Boolean algebra, L2
and L3 are finite and distributive, D(L2) � D(L3) and |At(L1)| � | Ir(L2)|.

Analogously, using Theorem 8 and Corollary 11 we can characterize the remaining
two triplets of subalgebra lattices of one finite partial unary algebra, i.e. the weak,

strong subalgebra and the initial segment lattices; and the weak, relative subalgebra
and the initial segment lattices.

Finally, we characterize the quadruple of the subalgebra lattices of one finite partial
unary algebra.

Theorem 13. Lattices L1, L2, L3 and L4 are isomorphic respectively to the weak,
relative, strong subalgebra and the initial segment lattices Sw(A), Sr(A), Ss(A) and
Sd(A) for some finite partial unary algebra A iff they are finite, distributive and
(1) L1 satisfies (1)–(3) of Theorem 1,
(2) L2 is a Boolean algebra,
(3) |At(L1)| = |At(L2)|,
(4) D(L3) � D(L4),
(5) G(L1) and D(L3) satisfy (b) of Theorem 8.

�����. ⇒ : (1), . . . , (5) are obtained directly by Theorem 1, Remarks 1 (a), 2,
4 and Theorem 8, respectively.

⇐ : By (1), (5) and Theorem 8, there is a finite partial unary algebra A such that
Sw(A) � L1 and Ss(A) � L3. Hence, in particular, Tis(A) � D(L3) � D(L4), by
Theorem 3 and (4). Thus Sd(A) � L4, by Corollary 11. Moreover, since Sw(A) � L1,
we have by (3) that |A| =

∣
∣At

(
Sw(A)

)∣∣ =
∣
∣At(L1)

∣
∣ =

∣
∣At(L2)

∣
∣, because lattice

isomorphisms preserve atoms. Hence and by (2) and Remark 1, Sr(A) � L2. �
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