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Abstract. In this paper we investigate convergence structures on a generalized Boolean
algebra and their relations to convergence structures on abelian lattice ordered groups.
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The system ConvB of all sequential convergences on a Boolean algebra B which
are compatible with the structure of B was investigated in [5], [7], [9].

Some concrete types of sequential convergences on a Boolean algebra were dealt

with by Löwig [10], Novák and Novotný [10] and Papangelou [12].

Let A be a generalized Boolean algebra. We define the system ConvA of sequential
convergences on A in such a way that in the case when A is a Boolean algebra the

new definition coincides with that given in [5].

For a lattice ordered group G the system ConvG of sequential convergences on G

was studied in several papers; cf., e.g., [2], [3], [7].

Both ConvA and ConvG are partially ordered by the set-theoretical inclusion.

In this paper we prove that for each generalized Boolean algebra A there exists
an abelian lattice ordered group G such that the partially ordered set ConvA is

isomorphic to a convex subset of the partially ordered set ConvG.
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From this we conclude that each interval of the partially ordered set ConvA is a

complete lattice satisfying the infinite distributive law

(∗)
(∨

i∈I

αi

)
∧ β =

∨
i∈I

(αi ∧ β).

This generalizes a result from [9].

For an analogous relation between sequential convergences on MV -algebras and

sequential convergences on lattice ordered groups cf. [8].

We apply the results and methods of [5], [6], [7].

1. Preliminaries

Through the paper A denotes a generalized Boolean algebra with the least ele-
ment 0. Let � be the set of all positive integers. Then the direct power A� is also a

generalized Boolean algebra; its elements will be denoted by (xn)n∈� or, shortly, by
(xn). They are called sequences in A. If a ∈ A and xn = a for each n ∈ �, then we
put (xn) = const a.

For x, y ∈ A with x � y we denote by y�x the relative complement of the element

x in the interval [0, y] of A.

If α � A� × A, then the relation ((xn), x) ∈ α will be expressed by writing

xn →α x.

1.1. Definition. A subset α of A� × A is said to be a convergence on A if the
following conditions are satisfied:

(i) If xn →α x and (yn) is a subsequence of (xn), then yn →α x.

(ii) If (xn) ∈ A�, x ∈ A and if for each subsequence (yn) of (xn) there exists a
subsequence (zn) of (yn) such that zn →α x, then xn →α x.

(iii) If a ∈ A and (xn) = const a, then xn →α a.
(iv) If xn →α x and xn →α y, then x = y.

(v) If xn →α x and yn →α y, then xn ∨ yn →α x ∨ y, xn ∧ yn →α x ∧ y.
(vi) If xn � yn � zn is valid for each n ∈ � and if xn →α x, zn →α x, then

yn →α x.
(vii) For x ∈ A and (xn) ∈ A� the relation xn →α x holds if and only if the

relations

x � (x ∧ xn)→α 0, (x ∨ xn)� x →α 0

are valid.
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We denote by ConvA the system of all convergences on A; this system is partially

ordered by the set-theoretical inclusion.

By an elementary calculation we can verify

1.2. Lemma. Let A be a Boolean algebra and let u, v ∈ A, u � v. Then

v � u = v ∧ u′,

where u′ is the complement of u in A.

1.3. Lemma. Let A be a Boolean algebra and α ⊆ A� × A. Suppose that the

conditions (iii), (v), (vi) from 1.1 are satisfied and that, moreover, the implication

(c) tn →α t ⇒ t′n →α t′

holds. Then the condition (vii) from 1.1 is also valid.

�����. Assume that xn →α x. Then in view of (iii) and (v) we obtain

un →α x,

where un = x ∧ xn. Thus according to (c),

u′
n →α x′.

Applying (iii) and (v) we get

xn ∧ u′
n →α x ∧ x′.

Since x ∧ u′
n = x � un (cf. 1.2), we have

x � (x ∧ xn)→α 0.

By a similar argument we obtain

(u ∨ xn)� x →α 0.

Conversely, suppose that the conditions

x � (x ∧ xn)→α 0, (x ∨ xn)� x →α 0
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are satisfied. Thus under the notation as above we have x�un →α 0. In view of 1.2,

x ∧ u′
n →α 0.

Hence by (c) we get x′ ∨ un →α 1, where 1 is the greatest element of A. According
to (iii) and (v),

x ∧ (x′ ∨ un)→α x ∧ 1,
thus un →α x. Similarly we can verify that vn →α x, where vn = x ∨ xn. Then we
conclude from (vi) that xn →α x. �

1.4. Lemma. Let A be a Boolean algebra, α ∈ ConvA, xn →α x. Then

x′
n →α x′.

�����. Let un and vn be as in the proof of 1.3. Thus

un →α x, vn →α x

and un � xn � vn for each n ∈ �. Hence u′
n � x′

n � v′n for each n ∈ �. In view of
(vi) it suffices to verify that the relations

u′
n →α x′, v′n →α x′

hold. Let us prove the first of these relations.

In view of (vii) we have to show that

x′ � (x′ ∧ u′
n)→α 0 and (x′ ∨ u′

n)� x′ →α 0.

Since u′
n � x′, we have

x′ � (x′ ∧ u′
n) = x′ � x′ = 0,

whence x′ � (x′ ∧ u′
n)→α 0. Further,

(x′ ∨ u′
n)� x′ = u′

n � x′.

Thus according to 1.2,

(x′ ∨ u′
n)� x′ = u′

n ∧ x = x � un.

Since un →α x, we conclude from (vii) that x � un →α 0, thus

(x′ ∨ u′
n)� x′ →α 0.

Therefore u′
n →α x′. Similarly we obtain v′n →α x′. Thus x′

n →α x′. �
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Let us recall that Definition 1.1 in [5] differs from the above Definition 1.1 only in

the points that
(α) it is assumed that the structure under consideration is a Boolean algebra, and
(β) instead of the condition (vii) it is assumed that the condition (c) is satisfied.

Hence in view of 1.3 and 1.4 we have

1.5. Proposition. If A is a Boolean algebra, then the definition of ConvA

given in 1.1 coincides with that considered in 1.1 of [5].

2. The system Conv0A

For each α ⊆ A� × A we put

α0 = {(xn) ∈ A� : ((xn), 0) ∈ α}.

Further we denote

Conv0A = {α0 : α ∈ ConvA}.
The system Conv0A is partially ordered by the set-theoretical inclusion.

2.1. Lemma. Let α, β ∈ ConvA, α0 = β0. Then α = β.

�����. Assume that (xn) ∈ A�, x ∈ A, xn →α x. Hence in view of (vii),

x � (x ∧ xn)→α 0, (x ∨ xn)� x →α 0.

Thus we have also

x � (x ∧ xn)→β 0, (x ∨ xn)� x →β 0.

Applying (vii) again we get xn →β x. Hence α � β. In the same way we obtain
β � α. Therefore α = β. �

The following lemma generalizes Lemma 1.5 of [5] (some steps in the proof are the
same as in the proof of the lemma mentioned).

2.2. Lemma. Let T1 be a nonempty subset of A�. There exists α ∈ ConvA

with α0 = T1 if and only if the following conditions are satisfied:

(i1) If (xn) ∈ T1, then each subsequence of (xn) belongs to T1.

(ii1) If (xn) ∈ A� and if each subsequence (yn) of (xn) has a subsequence which

belongs to T1, then (xn) ∈ T1,

(iii1) For a ∈ A we have const a ∈ T1 if and only if a = 0.

(iv1) If (xn) and (yn) belong to T1, then (xn ∨ yn) ∈ T1.

(v1) If (xn) belongs to T1, (yn) ∈ A� and yn � xn for each n ∈ �, then (yn) ∈ T1.
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�����. Assume that there is α ∈ ConvA such that T1 = α0. Then from 1.1 we

immediately obtain that the conditions (i1)–(v1) hold.
Conversely, assume that T1 is a subset of A� such that the conditions (i1)–(v1)

are satisfied. For (xn) ∈ A� and x ∈ A we put

xn →α x

if

(∗1) (x � (x ∧ xn)) ∈ T1 and ((x ∨ xn)� x) ∈ T1.

Consider the conditions (i)–(v) from 1.1.
(i)–(iii): These conditions easily follow from (i1)–(iii1).

(v): Assume that xn →α x and yn →α y. Denote

xn ∨ yn = zn, x ∨ y = z,

z ∧ zn = un, z ∨ zn = vn,

x ∧ xn = u1n, x ∨ xn = v1n,

y ∧ yn = u2n, y ∨ yn = v2n.

Let n be a fixed element of �. Consider the lattice [0, vn] = L; for t ∈ L let t′ be
the complement of t in the lattice L. In view of 1.2 we have

z � un = z ∧ u′
n,

whence

z � un = z ∧ (z ∧ zn)′ = z ∧ (z′ ∨ z′n) = z ∧ z′n = (x ∨ y) ∧ (xn ∨ yn)′

= (x ∨ y) ∧ (x′
n ∧ y′

n) = (x ∧ x′
n ∧ y′

n) ∨ (y ∧ x′
n ∧ y′

n).

Applying 1.2 again we obtain

x � u1n = x ∧ x′
n, y � u2n = y ∧ y′

n.

Thus

(1) z � un � (x � u1n) ∨ (y � u2n).

In view of the assumption we have

(x � u1n) ∈ T1, (y � u2n) ∈ T1
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and then, according to (iv1), (v1) and (1) we get

(2) (z � un) ∈ T1.

By an analogous method we prove

(3) (vn � z) ∈ T1.

Hence, in view of (2) and (3), the definition of α yields zn →α z. We have verified

that xn ∨ yn →α x∨ y. Similarly we can verify that the relation xn ∧ yn →α x∧ y is
valid.

(vi): Suppose that xn � yn � zn for each n ∈ � and that xn →α x, zn →α x.
Then

x � (x ∧ zn) � x � (x ∧ yn),

(x ∨ zn)� x � (x ∨ yn)� x

for each n ∈ �, and

(x � (x ∧ xn)) ∈ T1, ((x ∨ zn)� x) ∈ T1.

Thus in view of (v1),

(x � (x ∧ yn)) ∈ T1, ((x ∨ yn)� x) ∈ T1.

Hence yn →α x.
(iv): Assume that xn →α x and xn →α y. By way of contradiction, suppose that

x 	= y. Then in view of (v),

xn = xn ∧ xn →α x ∧ y.

We have either x∧y 	= x or x∧y 	= y. Thus without loss of generality we can suppose
that x < y.

Put tn = (xn ∨ x) ∧ y. Then x � tn � y. Applying (iii) and (v) we obtain

(4) tn →α x, tn →α y.

Let us consider the lattice [0, y] = L and for p ∈ L let p′ be the complement of p in
L. In view of (4),

(tn � x) ∈ T1, (y � tn) ∈ T1,
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hence according to 1.2,

(tn ∧ x′) ∈ T1, (y ∧ t′n) ∈ T1.

The second relation yields (t′n) ∈ T1. Thus from (iv1) we conclude

((tn ∧ x′) ∨ t′n) ∈ T1.

Hence (x′ ∨ t′n) ∈ T1. Clearly x′ ∨ t′n = x′, whence constx′ ∈ T1. Then in view of
(iii1) we get x′ = 0 and thus x = y; we arrived at a contradiction.

(vii): For proving the validity of this condition it suffices to verify that

T1 = α0.

Let (xn) ∈ α0, hence xn →α 0. Then the condition (∗1) is satisfied for x = 0. The
second relation in (∗1) yields (xn) ∈ T1.

Conversely, suppose that (xn) belongs to T1. We have

0� (0 ∧ xn) = 0, (0 ∨ xn)� 0 = xn,

hence in view of (∗1), xn →α 0. �

For each α ∈ ConvA we put f1(α) = α0.

2.3. Proposition. f1 is an isomorphism of the partially ordered set ConvA

onto the partially ordered set Conv0A.

�����. According to the definition of Conv0A, f1 is a mapping of ConvA

onto the set Conv0A. Moreover, it is obvious that if α, β ∈ A and α � β, then
f1(α) � f1(β).

Let T1 ∈ Conv0A. We apply Lemma 2.2. By means of the condition (∗1) we
assign to T1 an element α of ConvA; we denote

f2(T1) = α.

In view of (∗1), whenever T1, T2 ∈ Conv0A and T1 � T2, then f2(T1) � f2(T2). Next,
from that part of the proof of 2.2 which concerns the condition (vii) we conclude that

f2(T ) = α ⇒ f1(α) = T,

whence f2 = f−1
1 . Thus f1 is an isomorphism of ConvA onto Conv0A. �
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3. Auxiliary results

Let A be as above and let A1 be a nonempty subset of A�. We denote by

δA1—the set of all subsequences of sequences belonging to A1;

A∗
1—the set of all (xn) ∈ A� such that for each subsequence (yn) of (xn) there is

a subsequence (zn) of (yn) which belongs to A1;

[A1]—the ideal of the generalized Boolean algebra A� generated by the set A1.

3.1. Definition. Let A1 be as above. A1 is called regular in A� if there exists

α0 ∈ Conv0A such that A1 ⊆ α0.

By the same method as in Section 2 of [5] we obtain the following results 3.2

and 3.3.

3.2. Proposition. Let ∅ 	= A1 ⊆ A�. Then the following conditions are

equivalent:

(i) A1 is regular in A�.

(ii) If (y1n), (y
2
n), . . . , (y

m
n ) are elements of δA1 and b is an element of A such that

b � y1n ∨ y2n ∨ . . . ∨ ym
n is valid for each n ∈ �, then b = 0.

3.3. Lemma. Let A1 be a regular subset of A�. Then

(i) [δA1]∗ ∈ Conv0A.

(ii) If α0 ∈ Conv0A and A1 ⊆ α0, then [δA1]∗ ⊆ α0.

If A1 is regular in A, then in view of 3.3 we say that [δA1]∗ is the element of
Conv0A which is generated by the set A1.

Now let G be an abelian lattice ordered group. For the definition of ConvG,

cf., e.g., [6]. Thus ConvG is a nonempty subset α of G� × G satisfying conditions
analogous to (i)–(vi) in 1.1 with the distinction that in (v) also the validity of the

relation xn + yn →α x + y is assumed. Similarly as in the case of a generalized
Boolean algebra we define Conv0G. Both the systems ConvG and Conv0G are

partially ordered by the set-theoretical inclusion and, under this partial order, they
are isomorphic.

A nonempty subset M of (G+)� is called regular in (G+)� if there exists α0 ∈
Conv0G with M ⊆ α0.

Let ∅ 	=M ⊆ (G+)�. The sets δM , M∗ and [M ] are defined analogously as above
(instead of the lattice A1 we consider now the lattice G+). Further, let 〈M〉 be the
subsemigroup of the semigroup (G+)� generated by the set M .
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3.4. Proposition. (Cf. [3]). Let ∅ 	=M ⊆ (G+)�. Then the following conditions
are equivalent:

(a) M is regular in (G+)�.
(b) If g ∈ G, const g ∈ [〈δM〉], then g = 0.

3.5. Lemma. Let ∅ 	= M ⊆ (G+)�. Then the following conditions are equiva-
lent:

(i) M is regular in (G+)�.

(ii) If (h1n), (h
2
n), . . . , (h

k
n) are subsequences of some sequences belonging to M

and if hn = h1n ∨ h2n ∨ . . . ∨ hk
n (n = 1, 2, . . .), then

∧
n∈�

hn = 0.

�����. The method is the same as in the proof of Lemma 2.5 in [6] with the

distinction that the set {(gn)} considered in the lemma mentioned is replaced by the
set M (we have to apply Proposition 3.4 above and Lemma 2.4 from [6]). �

An element x ∈ G+ is called singular if the interval [0, x] of G is a Boolean algebra.

Let S(G) be the set of all singular elements of G. The following assertion is easy to
verify.

3.6. Lemma. S(G) is a convex sublattice of the lattice (G+, �).

3.7. Corollary. S(G) is a generalized Boolean algebra.

Let us denote S(G) = A.

3.8. Lemma. Let ∅ 	= A1 ⊆ A�. Then the following conditions are equivalent:

(i) A1 is regular in A�.

(ii) A1 is regular in (G+)�.

�����. This is implied by 3.2 and 3.5. �

Let α1 ∈ Conv0A. Then α1 is regular in A�. Hence in view of 3.8, α1 is regular

in (G+)�. Then according to [2] there exists T (α1) ∈ Conv0G such that

(i) α1 ⊆ T (α1),
(ii) if β ∈ Conv0A and α1 ⊆ β, then T (α1) ⊆ β.

(Namely, T (α1) = [〈δα1〉]∗).

3.9. Lemma. (Cf. [7], Lemma 3.3). Let (xn) ∈ (G+)�. Under the above
assumptions and notation, the following conditions are equivalent:

(i) (xn) ∈ T (α1).
(ii) There are m ∈ � and (zn) ∈ (α1) such that xn � mzn for each n ∈ �.
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3.10. Lemma. Let x, y ∈ A, m ∈ �, x � my. Then x � y.

�����. Denote v = x ∨ y. Then in view of 3.6, v ∈ A, hence the interval [0, v]
of G is a Boolean algebra. By way of contradiction, assume that x � y. Then there

is x1 ∈ [0, v] such that 0 < x1 � x and x1 ∧ y = 0. Hence x1 ∧ my = 0, which is a
contradiction. �

For a related result (under a stronger assumption) cf. [7], Lemma 3.5.

Applying 3.9 and 3.10 and using the same method as in the proof of 3.6 in [7] we
get

3.11. Lemma. The mapping T is an isomorphism of the partially ordered set

Conv0A into the partially ordered set Conv0G.

The system Conv0A has the least element, let us denote it by α0. A sequence
(xn) in A belongs to α0 if and only if there is m ∈ � such that xm+n = 0 for each

n ∈ �. It is obvious that T (α0) is the least element of Conv0G.

3.12. Lemma. Let x ∈ G+, a ∈ A, m ∈ � and x � ma. Put a1 = x ∧ a. Then

x � ma1.

�����. Since the interval [0, a] of G is a Boolean algebra, there exists a2 ∈ [0, a]
such that a1∧a2 = 0 and a1∨a2 = a. Denote x∧a2 = a3. If a3 > 0, then a1∨a3 � x.
Moreover, a1∧a3 = 0, whence a1∨a3 = a1+a3 > a1, which is a contradiction. Thus

a3 = 0 and hence x ∧ a2 = 0. This yields that x ∧ ma2 = 0. Therefore

x = x ∧ ma = x ∧ m(a1 ∨ a2) = x ∧ (ma1 ∨ ma2) = x ∧ ma1.

�

Now let α1 ∈ Conv0A and β ∈ Conv0G. Assume that β � T (α1). Let (xn) ∈ β.
Thus (xn) ∈ T (α1). Hence the condition (ii) from 3.9 is valid. For each n ∈ � we
put

(1) z1n = xn ∧ zn.

Then we have (z1n) ∈ β. Let us denote by Z1 the system of all sequences (z1n) which

can be constructed in this way. Hence Z1 ⊆ β and thus Z1 is regular in (G+)�.
Moreover, Z1 ⊆ A� and consequently, in view of 3.8, Z1 is regular in A�. Thus there

exists α2 ∈ Conv0A such that α2 is generated by Z1. The relation Z1 ⊆ β implies
T (α2) � β.
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If (xn) is as above, then in view of (1) and 3.12 we get

xn � mz1n for each n ∈ � .

From this and from 3.9 we infer that β � T (α2). Summarizing, β = T (α2). Hence

we have

3.13. Lemma. T (Conv0A) is a convex subset of the partially ordered set

Conv0G.

4. Elementary Carathéodory functions

The system E(B) of elementary Carathéodory functions corresponding to a

Boolean algebra B was used by Gofman [1] and the author [4], [8].
The definition of E(B) can be applied without any modification for the case when

instead of a Boolean algebra B we have a generalized Boolean algebra A. For the
sake of completeness, we recall the definition. For any u, v ∈ A we put

v �1 u = v � (v ∧ u).

Let A be a generalized Boolean algebra. If x, y ∈ A and x � y, then the symbol
y � x has the same meaning as above.

We denote by E(A) the set consisting of all forms

(1) f = a1b1 + a2b2 + . . .+ anbn,

where ai 	= 0 are reals and bi ∈ A, bi > 0, bi(1) ∧ bi(2) = 0 for any distinct i(1), i(2) ∈
{1, 2, . . . , n}, and of the “empty form”. If g is another such form,

g = a01b
0
1 + a02b

0
2 + . . .+ a0mb0m,

then f and g are considered as equal if

n∨
i=1

bi =
m∨

j=1

b0j ,(i)

ai = a0j whenever bi ∧ b0j 	= 0.(ii)

The operation + in E(A) is defined by

f + g =
n∑

i=1

m∑
j=1

(ai + a0j)(bi ∧ b0j) +
n∑

i=1

ai

(
bi �1

m∨
j=1

b0j

)
+

m∑
j=1

a0j

(
b0j �1

n∨
i=1

bi

)
,
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where in the summation only those terms are taken into account in which ai+a0j 	= 0
and the elements

bi ∧ b0j , bi �1
m∨

j=1

b0j , b0j �1
n∨

i=1

bi

are non-zero. The multiplication by a real a 	= 0 is defined by

af = (aa1)b1 + . . .+ (aan)bn;

0f is the empty form. The form f is positive if ai > 0 for i = 1, 2, . . . , n. Then E(A)

is a vector lattice; the empty form is the zero element of E(A).
If we disregard the multiplication by reals, then E(A) is an abelian lattice ordered

group.
Let G(A) be the subset of E(A) consisting of the empty form f0 and of all forms

(1) such that all ai are integers, ai 	= 0. Then G(A) is an �-subgroup of the lattice
ordered group E(A).

If we identify the element f0 with the zero element of A and if, moreover, for each
0 	= b ∈ A we identify the form f = 1b with the element b, then A turns out to be a

subset of G(A).
The following assertion is easy to verify.

4.1. Lemma. A is the set of all singular elements of G(A).

4.2. Theorem. Let A be a generalized Boolean algebra and let G = G(A).

Then the mapping T defined in Section 3 is an isomorphism of the partially ordered
set Conv0A into the partially ordered set Conv0G such that T (Conv0A) is a convex
subset of Conv0G containing the least element of Conv0G.

�����. This is a consequence of 4.1 and of the results of Section 3 (cf. 3.12

and 3.13). �

In view of 2.3 and of the fact that ConvG is isomorphic to Conv0G for each lattice
ordered group we also have

4.3. Corollary. Let A be a generalized Boolean algebra. There exists an abelian
lattice ordered group G such that the partially ordered set ConvA is isomorphic to

a convex subset of the partially ordered set ConvG.

Further, from 2.2 and 3.3 we immediately obtain

4.4. Corollary. Let A be a generalized Boolean algebra. Then each interval

of the partially ordered set ConvA is a complete lattice satisfying identically the

relation (∗).
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