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COLOURING POLYTOPIC PARTITIONS IN �
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Abstract. We consider face-to-face partitions of bounded polytopes into convex polytopes
in �d for arbitrary d � 1 and examine their colourability. In particular, we prove that the
chromatic number of any simplicial partition does not exceed d+1. Partitions of polyhedra
in �3 into pentahedra and hexahedra are 5- and 6-colourable, respectively. We show that
the above numbers are attainable, i.e., in general, they cannot be reduced.
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1. Introduction

In 1890, P. J.Heawood formulated his famous map-colouring theorem (see [11]
and also [17], [19] for its proof), which determines an attainable upper bound of the

chromatic number of maps on two-dimensional compact orientable surfaces whose
genus is positive. The case of genus 0 (known as the four colour conjecture for

planar maps) was for a long time an open problem and served as a catalyst for
graph theory. In 1930, Kasimir Kuratowski introduced his well-known necessary and

sufficient condition for testing the planarity of a graph, see [15]. (An algorithm for
testing the planarity can be found, e.g., in [21].)

It was not until 1976 that K.Appel and W.Haken proved with the help of com-
puters that every planar map is 4-colourable (see [1], [2], [3]). A simpler proof, which

is also based on the use of computers, is given in [20]. For the history of theorems
on colouring we refer to [7] and [18]. Recall that the colouring of maps and graphs

has a lot of practical applications (storing chemical compounds, designing optimal
time-tables, allocating frequencies for mobile phones, etc.).

Let us consider now a three-dimensional “map”, i.e., a partition of a three-
dimensional bounded region into a finite number of subregions.
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Does there exist an analogue of the four colour theorem in �3?

In Figure 1 we see a simple example showing nonconvex three-dimensional subregions
each of which touches all the others. Such regions can be modelled by L-shaped flex-

ible pieces of paper with positive thickness (this can obviously also be done by poly-
hedra). The configuration of Figure 1 can be associated with a graph whose vertices

correspond to regions and such that two vertices are joined by an edge whenever the
corresponding regions are adjacent. For n such subregions we obtain the complete

graph Kn, which requires n different colours. It is obvious that the number of such
subregions, and therefore also the number of colours, can be arbitrarily large (see
the last column of Table 1 in Section 4).

Figure 1

In this paper we show that, if we allow only maps with convex subregions, we might
expect that there exists for each d ∈ {1, 2, 3, . . .} a fixed finite upper bound for the
“chromatic number” for arbitrarily many d-dimensional subregions. Figure 1 thus
illustrates that the assumption of convexity is essential for d � 3. Since according to
[22, p. 902], the only convex compact sets that tile the space �d are convex polytopes,
we shall from now on consider only subregions that are compact convex polytopes.

With the terminology of the finite element method in mind, we will call any

compact convex polytope in �d , d = 1, 2, 3, . . ., whose interior is nonempty, an
element. Its (d − 1)-dimensional faces will for simplicity be called faces.
Let Ω ⊂ �

d be a bounded polytopic domain and denote its boundary by ∂Ω. We

shall only consider ����-��-���� ��������	
 of Ω into convex d-dimensional
polytopes (the main reason for this assumption is given in Remark 4.1).
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A finite set T of elements is said to be a partition of Ω into elements if

(1.1) Ω =
⋃

T∈T
T,

if the interiors of any two elements from T are disjoint, and if any face of any element
T ∈ T is either a subset of the boundary ∂Ω, or a face of another element in the

partition. Two elements are called adjacent if they have a common face.
One of the most important features of the finite element method for solving three-

dimensional boundary value problems on a bounded polyhedral domain Ω is the
generation of a partition of Ω (see [13]) into elements. The existence of such a

partition into tetrahedra for an arbitrary bounded polyhedral domain is given in [12].
The visualization of such a three-dimensional partition into tetrahedra, pentahedra

(pyramids, triangular prisms), hexahedra, etc., is an important and difficult problem.
One way is to paint adjacent elements with different colours. Also in two-dimensional

space, elements are often coloured to emphasize their positions in the triangulation
considered (see, e.g., [4]). We meet a similar problem in domain decomposition

methods, where adjacent subdomains are painted with different colours to emphasize
their positions.

Colouring of subdomains in domain decomposition methods has another useful
application. When we employ Raviart-Thomas mixed finite elements (see, e.g., [6]),

which have no degrees of freedom at vertices (and edges for d = 3), then subdomains
which have no common face, have no common degree of freedom. For instance, we
may take lowest order Raviart-Thomas elements whose degrees of freedom correspond

to averaged values at midpoints of sides, or on tetrahedra at centroids of faces. Such
finite elements enable us to compute the finite element solution on subdomains of

the same colour simultaneously on parallel processors.
Let us point out that there are fast iteration methods that perform calculations

on subdomains having the same colour in parallel processors (see, e.g., [23]). The
number of processors has to be equal to the maximum number of subdomains painted

with one colour.
We now highlight several standard definitions from graph theory. A colouring of

a partition T is an assignment of colours to its elements such that no two adjacent
elements have the same colour. An n-colouring of a partition T uses n colours. A

partition is said to be n-colourable if there exists a colouring of T that uses n colours
or fewer. The chromatic number χ(T ) is defined as the minimum n for which T has
an n-colouring.
So, we stress that a partition T is n-chromatic if χ(T ) = n, and n-colourable if

χ(T ) � n. Throughout the paper, colours will for convenience be denoted by the
numbers 1, 2, . . . , n.
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One of the aims of this paper is to prove that for any simplicial partition in �d there

exists a (d + 1)-colouring. We start with two-dimensional partitions into triangles
just to introduce the main idea of the proof of the general result, Theorem 3.3.

2. Colouring triangulations

By a triangulation we mean a (face-to-face) partition of a bounded polygon Ω ⊂ �
2

into (closed) triangles.
The famous PLTMG program (see [4]) for solving partial differential equations

generates triangulations of Ω, which are coloured with 5 different colours such that
any two adjacent triangles have different colours. According to the four colour the-

orem, this number could clearly have been reduced to 4.

����� 2.1. In contrast to the colouring of a general map, it is very easy to find
an algorithm for a 4-colouring of any triangulation. We can proceed, for instance,

by induction. Assume we have a map (triangulation) with k triangles. Remove an
arbitrary triangle and assign a colouring to the remaining map of k − 1 triangles.
Then add the kth triangle again and colour it differently than its (max. 3) neighbours.

By Brooks’ theorem (see, e.g., [16]), if G is a graph with maximum degree n � 3
and if G does not contain the complete graph Kn+1, then G is n-colourable. Propo-

sition 2.2 below is a special case of Brooks’ theorem with n = 3. However, our proof
differs from the one presented in [16] and is constructive, i.e., it can be used as a

simple colouring algorithm. We show that the number of colours can be reduced
to 3 for any triangulation (cf. Figure 2). The key point is the avoidance of colour-

ings containing a triangle surrounded by three triangles already coloured with three
different colours.

Figure 2
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Proposition 2.2. Any triangulation is 3-colourable.

�����. Let T be a triangulation of a bounded polygon Ω consisting of k

triangles (cf. (1.1)). First, number the triangles inductively as follows. Let M1 = Ω

and let i successively increase from 1 to k. Choose an arbitrary Ti ∈ T which has at
least one side on the boundary ∂Mi and then set

Mi+1 =Mi \ Ti.

We observe that Mk = Tk.

Second, let i successively decrease from k to 1. Since each Ti has at most two
neighbours with higher indices, we may assign to Ti any colour different from its at

most two neighbours.
In detail, we define the colour c(Ti) of the ith triangle Ti, for instance, by

(2.1) c(Ti) = min(Bi),

where

Bi = {1, 2, 3} \ Ai,

and Ai ⊂ {1, 2, 3} is the set of colours of those adjacent triangles of Ti ⊂ M i that

were already coloured. �

����� 2.3. The function min in (2.1) can be obviously replaced by max, or
in visual applications by rnd which (pseudo)randomly chooses an element from the

set Bi.

����� 2.4. With any given triangulation we may associate, in a standard way,

a graph whose nodes correspond to triangles and whose edges indicate that two trian-
gles are adjacent. Since every triangle in the triangulation has at most three adjacent

triangles, the degree of each node is at most 3. In Figure 3 we see a 4-colourable
graph K4 whose nodes all have degree 3. By the contrapositive of Proposition 2.2,

this graph cannot correspond to any (planar) triangulation. Note that the surface
of a ball can be decomposed into four “curved triangles”, by projecting the regular

tetrahedron from its centre of gravity into the circumscribed ball. The corresponding
graph is, indeed, exactly the one given in Figure 3.

����� 2.5. If some vertex in a triangulation is surrounded by an odd number

of triangles, then the number of colours cannot be 2 (see Figure 4). On the other
hand, standard periodic triangulations (uniform, chevron, criss-cross, union-jack) in

finite-element theory, which yield various superconvergence phenomena [14], are 2
colourable—see Figure 5. This follows from the classical theorem which states that

a graph is 2-colourable if and only if it has no odd-length cycles (see, e.g., [8, p. 37],
[10, p. 127], [24, p. 235]).
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Figure 3 Figure 4

Figure 5

����� 2.6. There are several theorems on 3-colouring. For instance, accord-

ing to the well-known Grötzsch’s theorem (see [9], [10, p. 131]), every planar graph
with fewer than 4 “triangles” is 3-colourable. (Here the word “triangle” has to be

understood in the context of graph theory.) Note that the graph in Figure 3 has
four “triangles”. It is obvious that Proposition 2.2 does not follow from Grötzsch’s

theorem, since there exist triangulations in which 4 different vertices are surrounded
by three triangles (see Figure 2, for example).
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3. Colouring polytopic partitions in �d

In this section we generalize Proposition 2.2 to �d , d = 1, 2, 3, . . ., and to arbitrary

elements (i.e., to compact convex polytopes whose interior is nonempty in �d).

����� 3.1. The chromatic number of a planar partition into convex polygons
is, in general, larger than the chromatic number of a triangulation. For instance, in

Figure 6 we see a planar partition whose elements are not all triangles and whose
chromatic number is 4 (the associated graph is in Figure 3). Similarly, for partitions

in �d we need, in general, more colours if the number of faces of each element is
greater than the number of faces of a d-simplex.

Figure 6

����� 3.2. Assume that the number of faces of each element of a partition T
in �d does not exceed a given number f . Clearly,

f > d,

since any d-simplex has d + 1 faces. A simple algorithm for an (f + 1)-colouring of
any such partition is as follows: We assign one of the f + 1 colours to each element

in turn, giving each element a colour not already assigned to any adjacent element.

The next theorem shows that the number of colours can be reduced to f . Our
proof is again constructive and differs from the proof of Brooks’ theorem given in

[16].

Theorem 3.3. Let the number of faces of each polytope of a partition T in �d

not exceed a given number f . Then T is f -colourable.

�����. Let T be a partition with k elements. First, let i successively increase

from 1 to k. We denote by T1 ∈ T any element whose face lies on the boundary of
Ω, by T2 any element whose face lies on the boundary of Ω \ T1, by T3 any element
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whose face lies on the boundary of Ω \ (T1 ∪ T2), etc. In other words, Ti ∈ T is any
element whose face lies on the boundary ∂Mi of the open set

Mi = Ω \
i−1⋃

j=1

Tj for i = 1, . . . , k.

In particular, M1 = Ω and Mk = Tk. We see that the boundary ∂Mi is nonempty
for i = 1, . . . , k.

Second, we shall colour elements contained in the set M i, where i successively
decreases from k to 1. We set

(3.1) c(Ti) = min(Bi),

where
Bi = {1, 2, . . . , f} \ Ai

and Ai ⊂ {1, 2, . . . , f} is the set of colours of those adjacent elements of Ti ⊂ M i

that were already coloured.
Further, we have to show that Bi is nonempty to guarantee that the colour c(Ti)

in (3.1) is well defined. Since Ti has at least one face in ∂Mi (�= ∅), the element Ti

has at most f −1 adjacent elements in the setMi, and thus the cardinality of the set

Ai is at most f −1. Consequently, Bi is nonempty and c(Ti) is correctly defined. �

To aid visualization, elements in three-dimensional partitions will be usually illus-

trated in “exploded configurations” in which they do not touch their neighbouring
elements.

Theorem 3.4. Any simplicial partition in �d is (d + 1)-colourable and this
number cannot, in general, be reduced.

�����. Any d-simplex has d+ 1 faces F1, F2, . . . , Fd, Fd+1. Thus the first part
of the theorem follows immediately from Theorem 3.3.

Now we show that there exists a simplicial partition T whose chromatic number is
exactly d+ 1. Let T be an arbitrary d-simplex in �d and let P ∈ T be an arbitrary

interior point (e.g., the center of gravity). Set T = {Ti}d+1
i=1 , where

Ti = conv(P, Fi) for i = 1, 2, . . . , d+ 1,

and where conv denotes the convex hull (see Figure 4 for d = 2 and Figure 7 for
d = 3). Then each Ti is also a d-simplex in �d and the chromatic number of T
is exactly d + 1. This is because each Ti has d common faces with all remaining
d-simplices Tj , j �= i, whose number is d. �
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Figure 7

A partition in �3 consisting only of tetrahedra is called a tetrahedralization. A

special case of Theorem 3.4 for d = 3 can be stated as follows:

Corollary 3.5 (The four colour theorem for tetrahedra in �3 ). Any tetrahedral-
ization is 4-colourable.

����� 3.6. Although any tetrahedralization is 4-colourable, the associated
graph is not planar, in general. Thus Corollary 3.5 is not a consequence of the

classical four colour theorem.

����� 3.7. In Figure 8 we see an example of a uniform tetrahedralization
which is only 2-colourable (cf. Remark 2.5) and whose associated graph is not planar.

A partition in �3 into tetrahedra and pentahedra (pyramids, triangular prisms) is
called a pentahedralization.

Theorem 3.8. Any pentahedralization is 5-colourable and this number cannot
be reduced, in general.

�����. By Theorem 3.3, the chromatic number of any pentahedralization is at
most 5.

The construction of a pentahedralization T whose chromatic number is exactly 5 is
sketched in Figure 9 (which represents a three-dimensional analogue of Figure 6). The

pentahedralization T consists of a tetrahedron which is surrounded by 4 pentahedra
such that each element touches all others. Therefore, the associated graph is K5 and

the chromatic number of T is exactly 5. �

A partition in �3 all of whose elements (convex polyhedra) have at most 6 faces
is called a hexahedralization.
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Figure 8

Figure 9
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Theorem 3.9. The chromatic number of any hexahedralization is at most 6 and
there exists a hexahedralization whose chromatic number is exactly 6.

�����. The upper bound 6 is again given by Theorem 3.3.

To obtain the lower bound, it is enough to modify the situation of Figure 9. We
dissect the little interior tetrahedron by a plane which is parallel to its two opposite

edges. In this way we obtain 2 pentahedra (topologically equivalent to triangular
prisms) whose common face is a quadrangle. If we slightly shrink this quadrangle, we

get a face-to-face partition containing 2 adjacent pentahedra which are surrounded
by 4 convex hexahedra. For instance, the tetrahedron with vertices (±6, 0, 2) and
(0,±6,−2) can be decomposed into 6 elements as follows:
The first interior pentahedron is the convex hull of the six points (±1,±1, 0)

and (±3, 0, 1), and the second congruent one is the convex hull of (±1,±1, 0) and
(0,±3,−1). Their common face is the square with vertices (±1,±1, 0). The two
pentahedra are surrounded by four congruent hexahedra. One of them is the convex
hull of the eight points (±6, 0, 2), (±3, 0, 1), (±1, 1, 0), (0, 3,−1), and (0, 6,−2). The
other are obtained by symmetry. It is easy to find that each of these 6 elements has
a common face with each of the other elements. �

����� 3.10. Figure 10 shows the partition T of a hexahedron (on the left)
which is also decomposed into 6 convex polyhedra such that each one touches all the
other polyhedra. Therefore, the associated graph is K6 and the chromatic number of

T is 6. A partition similar to Figures 6 and 10 in �d , d > 3, can be constructed by
induction. In this way, we obtain altogether 2d polytopes such that each one touches

all others.

Figure 10
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4. Endnotes and open problems

����� 4.1. Figure 11 illustrates a decomposition of a triangular domain into 4
triangles, which is not face-to-face and whose associated graph is K4. This example

shows why we considered only face-to-face partitions. Note that finite element grids
with the so-called hanging nodes require, in general, more colours than conforming

grids (i.e., face-to-face partitions).

Figure 11

����� 4.2. We can prove, in the same way as Proposition 2.2, that any

“triangulation” of the Möbius strip is 3-colourable.

����� 4.3. Analogously to Remark 2.1, we can prove that the chromatic

number of any “triangulation” of a torus (or a two-dimensional surface with a positive
genus) is at most 4. The next example illustrates that this number cannot be reduced,

in general. Consider a triangulation of a flexible piece of paper ABCD as marked
in Figure 12. We first glue up the segment AB with DC, and then AD with BC

to obtain a triangulation of a torus whose associated graph is K4. Moreover, let us
note that the surface of every toroidal polyhedron consisting of convex polygons is

6-colourable (see [5]).

D

A B

C

Figure 12

����� 4.4. Standard finite elements used for solving three-dimensional prob-

lems have at most 6 faces (cf. Theorem 3.9). Consider now partitions in �d , where
each element can have an arbitrary number of faces. In Table 1 we see the maximum
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chromatic numbers for any d. The numbers in the second column follow from Theo-

rem 3.4. The symbol ? in the third column indicates that we know only a lower bound
for the maximum chromatic number (see Theorem 3.9 and Remark 3.10). The upper
bound of the maximum chromatic number is known only for d � 2 (cf. Figure 6).
Finally, the last column corresponds to arbitrary regions, i.e., to connected domains
that are nonconvex, in general (cf. Figure 1).

dimension simplices convex polytopes arbitrary regions

1 2 2 2

2 3 4 4

3 4 6 ? ∞
...

...
...

...

d d+ 1 2d ? ∞
Table 1. Maximum chromatic numbers for arbitrary partitions �d . The symbol ∞ means

that the chromatic number can be arbitrarily large.

����� 4.5. The numbers in the above table hold for infinite partitions of

unbounded domains as well.

��	������� 4.6. Any partition of a polyhedron in �3 is 6-colourable.1
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