
127 (2002) MATHEMATICA BOHEMICA No. 3, 437–448

A GALOIS CONNECTION BETWEEN DISTANCE FUNCTIONS

AND INEQUALITY RELATIONS

Árpád Száz, Debrecen

(Received October 17, 2000)
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Introduction

Extending and supplementing some of the results of R.DeMarr [6] we establish a

few consequences of the following definitions.

Let S be a nonvoid set, and denote by DS the family of all functions d on S2 such
that 0 � d(p, q) � +∞ for all p, q ∈ S.

Moreover, let XS = S × �, and denote by ES the family of all relations � on XS

such that (p, λ) � (q, µ) implies λ � µ.

If d ∈ DS , then for all (p, λ), (q, µ) ∈ XS we define

(p, λ) �d (q, µ) ⇐⇒ d(p, q) � µ − λ.

While, if �∈ ES , then for all p, q ∈ S we define

d�(p, q) = inf{µ − λ : (p, λ) � (q, µ)}.

The research of the author has been supported by the grants OTKA T-030082 and FKFP
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Moreover, if f is a function of S into S and α ∈ �, then for all (p, λ) ∈ XS we

define
F (p, λ) = (f(p), αλ).

Concerning the above definitions, for instance, we prove the following statements.

Theorem 1. The mappings

d �−→�d and � �−→ d�

establish a Galois conection between the posets DS and ES such that every element

of DS is closed.

Theorem 2. The family E−
S of all closed elements of ES consists of all relations

�∈ ES such that for all (p, λ), (q, µ) ∈ XS

(1) (p, λ) � (q, µ) implies (p, λ+ ω) � (q, µ+ ω) for all ω ∈ �;

(2) (p, λ) � (q, µ) if and only if (p, λ) � (q, µ+ ε) for all ε > 0.

Theorem 3. If d ∈ DS , then �d is a partial order on XS if and only if d is a

quasi-metric on S in the sense that

(1) d(p, p) = 0 for all p ∈ S;

(2) d(p, q) = 0 and d(q, p) = 0 imply p = q;

(3) d(p, r) � d(p, q) + d(q, r) for all p, q, r ∈ S.

Theorem 4. For the families of all fixed points of f and F we have

Fix (F ) = Fix (f)× � if α = 1 and Fix (F ) = Fix (f)× {0} if α �= 1.

Theorem 5. If α > 0 and d ∈ DS ,then the following assertions are equivalent:

(1) d(f(p), f(q)) � αd(p, q) for all p, q ∈ S;

(2) (p, λ) �d (q, µ) implies F (p, λ) �d F (q, µ).

Theorem 6. If 0 < α < 1 and d ∈ DS is such that d is finite valued, then for

any p, q ∈ S there exist λ0, µ0 ∈ � with λ0 � 0 � µ0 such that

(p, λ) �d F (p, λ) �d F (q, µ) �d (q, µ)

for all λ, µ ∈ � with λ � λ0 and µ0 � µ.

������. From Theorems 3, 5 and 6, by writing d� instead of d, we can get

some similar assertions for the relations �∈ E−
S . Namely, by Theorem 2, we have

�=�d� for all �∈ E−
S .
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The only prerequisites for reading this paper is a knowledge of some basic facts

on posets which will be briefly laid out in the next two preparatory sections. The
proofs of most of those facts can be found in [10].

1. Closure operations on posets

If � is a reflexive, antisymmetric and transitive relation on a nonvoid set X , then

the relation � is called a partial order on X , and the ordered pair X(�) = (X, �) is
called a poset (partially ordered set).

If A is a subset of a poset X , then inf
X
(A) and sup

X
(A) will denote the greatest

lower bound and the least upper bound of A in X , respectively. Further, the poset
X is called complete if inf(A) and sup(A) exist for all A ⊂ X .

The following useful characterization of infimum was already observed by Ren-
nie [9]. However, despite this, it is not included in the standard textbooks.

Lemma 1.1. IfX is a poset, and moreover A ⊂ X and α ∈ X , then the following

assertions are equivalent:

(1) α = inf(A);

(2) for each u ∈ X we have u � α if and only if u � x for all x ∈ A.

Concerning the completeness of posets, according to Birkhoff [1, p. 112] we can at
once state

Theorem 1.2. If X is a poset, then the following assertions are equivalent:
(1) X is complete;

(2) inf(A) exists for all A ⊂ X .

������ 1.3. To obtain the corresponding results for supremum, one can observe

that if X(�) is a partial ordered set, then its dual X(�) is also a partial ordered set.
Moreover, we have inf

X(�)
(A) = sup

X(�)
(A) for all A ⊂ X .

Definition 1.4. If − is a function of a poset X(�) into itself such that
(1) x � y implies x− � y− for all x, y ∈ X ,

(2) x � x−; and (3) x− = x−− for all x ∈ X ,

then the function − is called a closure operation on X(�), and the ordered triple
X(�,−) = (X, �,−) is called a closure space.
������ 1.5. Note that the expansivity property (2) already implies that x− �

x−− for all x ∈ X . Therefore, instead of the idempotency property (3), it suffices to
assume only that x−− � x− for all x ∈ X .
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The following useful characterization of closure operations was already observed

by Everett [3]. However, despite this, it is not included in the standard textbooks.

Lemma 1.6. If − is a function of a poset X into itself, then the following

assertions are equivalent:

(1) the function − is a closure operation on X ;

(2) for all x, y ∈ X we have x � y− if and only if x− � y−.

If X is a closure space, then the members of the family X− = {x− : x ∈ X} may
be called the closed elements of X . Namely, we have

Theorem 1.7. If X is a closure space and x ∈ X , then the following assertions

are equivalent:

(1) x− � x;

(2) x = x−;
(3) x ∈ X−.

������ 1.8. Note that if X is a closure space, then we have x− = inf{y ∈
X− : x � y} for all x ∈ X . Therefore, the closed elements of X uniquely determine
the closure operation of X .

A closure space will be called complete if it is complete as a poset. Concerning

the closed elements of complete closure spaces, according to Birkhoff [1, p. 112] we
can also state

Theorem 1.9. If X is a complete closure space, then X− is a complete poset.

������ 1.10. Note that if A ⊂ X−, then we have inf
X−
(A) = inf

X
(A) and

sup
X−
(A) = (sup

X
(A))−.

2. Galois connections between posets

Definition 2.1. If X and Y are posets and ∗ and # are functions of X and Y

into Y and X , respectively, such that

(1) x1 � x2 implies x∗
2 � x∗

1 for all x1, x2 ∈ X ,

(2) y1 � y2 implies y#2 � y#1 for all y1, y2 ∈ Y ,

(3) x � x∗# for all x ∈ X ,

(4) y � y#∗ for all y ∈ Y ,

then we say that the functions ∗ and # establish a Galois connection between the
posets X and Y .
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������ 2.2. Galois connections between posets were first investigated by

Ore [7] and Everett [3].

The following useful characterization of Galois connections was already observed

by J. Schmidt [1, p. 124]. However, despite this, it is not included in the standard
textbooks.

Lemma 2.3. If X and Y are posets and ∗ and # are functions of X and Y into

Y and X , respectively, then the following assertions are equivalent:

(1) the functions ∗ and # establish a Galois connection between X and Y ;

(2) for all x ∈ X and y ∈ Y we have x � y# if and only if y � x∗.

The following basic theorem has already been established by Ore [7] and Everett [3].

Theorem 2.4. If the functions ∗ and # establish a Galois connection between
the posets X and Y , then

(1) x∗ = x∗#∗ for all x ∈ X and y# = y#∗# for all y ∈ Y ;

(2) the functions ∗# and #∗ are closure operations on X and Y , respectively, such

that Y # = X∗# and X∗ = Y #∗;
(3) the restrictions of the functions ∗ and # to Y # and X∗, respectively, are injec-
tive, and they are inverses of each other.

������ 2.5. Note that actually A = Y # is the largest subset of X such that

the restriction of the function ∗ to A is injective and A∗# ⊂ A.

Definition 2.6. A Galois connection between posets X and Y established by
the functions ∗ and # will be called lower (upper) semiperfect if x = x∗# for all
x ∈ X ( y = y#∗ for all y ∈ Y ).

������ 2.7. Note that by Definition 2.1 we always have x � x∗# for all x ∈ X .

Therefore, to define the lower semiperfectness of the above Galois connection it
suffices to assume the reverse inequality.

The above definition and the following theorem are again due to Ore [7].

Theorem 2.8. A Galois connection between posets X and Y established by the

functions ∗ and # is lower semiperfect if and only if X = Y #, or equivalently the

function ∗ is injective.
������ 2.9. Note that if X is a poset, then the Galois connection between the

posets P(X) and P(X), established by the mappings
A �−→ lb (A) and A �−→ ub (A),

where lb (A) and ub (A) are the families of all lower and upper bounds of the set A

in X , respectively, is not, in general, lower or upper semiperfect.

441



The importance of this Galois connection lies mainly in the Dedekind-McNeille

completion of the poset X by the cuts lb (ub (A)) where A ⊂ X . (See, for instance,
[1, p. 126].)

3. A Galois connection between distance functions

and inequality relations

Definition 3.1. Let S be a nonvoid set, and denote by DS the family of all

functions d on S2 such that 0 � d(p, q) � +∞ for all p, q ∈ S.
Moreover, let XS = S × �, and denote by ES the family of all relations � on XS

such that (p, λ) � (q, µ) implies λ � µ for all (p, λ), (q, µ) ∈ XS .

������ 3.2. The members of the families DS and ES will be called distance

functions and inequality relations on S and XS , respectively.

The following theorems do not actually need the nonnegativity of distance func-
tions on S and the corresponding property of inequality relations on XS .

Theorem 3.3. The families DS and ES , equipped with the pointwise inequality

and the ordinary set inclusion, respectively, are complete posets.

���	. If D ⊂ DS , then by defining d∗(p, q) = inf
d∈D

d(p, q) for all p, q ∈ S we can

see that d∗ = inf(D).
On the other hand, if E ⊂ ES , then by defining �∗=

⋂ E if E �= ∅ and �∗=
⋃ ES

if E = ∅ we can see that �∗= inf(E). �

Definition 3.4. If d ∈ DS , then for all (p, λ), (q, µ) ∈ XS we define

(p, λ) �d (q, µ) ⇐⇒ d(p, q) � µ − λ,

while if �∈ ES , then for all p, q ∈ S we define

d�(p, q) = inf{µ − λ : (p, λ) � (q, µ)}.

������ 3.5. The relation �d, for an ordinary metric d, has formerly been
studied by DeMaar [6].

However, the function d� and the following theorem seem to be completely new.

Theorem 3.6. The mappings

d �−→�d and � �−→ d�
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establish a lower semiperfect Galois connection between the posets DS and ES .


����. If d ∈ DS and �∈ ES, then by the corresponding definitions it is clear
that �d∈ ES and d� ∈ DS . Therefore, by Lemma 2.3 and Remark 2.7, it suffices to

prove only that d � d� if and only if �⊂�d, and moreover d�d
� d.

If (p, λ), (q, µ) ∈ XS are such that (p, λ) � (q, µ), then by the definition of d�
we have d�(p, q) � µ − λ. Hence, if the inequality d � d� holds, we can infer
that d(p, q) � µ − λ. Thus, by the definition of �d, we also have (p, λ) �d (q, µ).
Therefore, the inclusion �⊂�d is also true.

Further, if p, q ∈ S and β ∈ � are such that d�(p, q) < β, then by the definition
of d� there exist λ, µ ∈ � such that (p, λ) � (q, µ) and µ − λ < β. Hence, if the

inclusion �⊂�d holds, we can infer that (p, λ) �d (q, µ). Thus, by the definition of
�d, we also have d(p, q) � µ− λ < β. Hence, letting β → d�(p, q), we can infer that

d(p, q) � d�(p, q). Therefore, the inequality d � d� is also true.
Finally, if p, q ∈ S and β ∈ � are such that d(p, q) < β, then by the definition

of �d we have (p, 0) �d (q, β). Hence, by the definition of d�d
, it follows that

d�d
(p, q) � β. Hence, letting β → d(p, q), we can infer that d�d

(p, q) � d(p, q).

Therefore, the inequality d�d
� d is also true. �

������ 3.7. Note that, by Theorem 3.6 and Definition 2.6, we actually have
d = d�d

for all d ∈ DS . Therefore, the mapping � �−→ d� is onto DS . Moreover, the

mapping d �−→�d is injective.

To briefly describe the range of the mapping d �−→�d or that of the closure
operation � �−→�d� , we shall need the following

Definition 3.8. Denote by E−
S the family of all relations �∈ ES such that for

all (p, λ), (q, µ) ∈ XS

(1) (p, λ) � (q, µ) implies (p, λ+ ω) � (q, µ+ ω) for all ω ∈ �;

(2) (p, λ) � (q, µ) if and only if (p, λ) � (q, µ+ ε) for all ε > 0.

The appropriateness of the above definition is apparent from

Theorem 3.9. If �∈ ES , then the following assertions are equivalent;

(1) �∈ E−
S ;

(2) �=�d�;

(3) �=�d for some d ∈ DS .


����. Suppose that the assertion (1) holds, and (p, λ), (q, µ) ∈ XS are such
that (p, λ) �d� (q, µ). Then, by the definition of �d� , we have d�(p, q) � µ − λ.

Therefore, by the definition of d� , for each ε > 0 there exist ω, τ ∈ � such that
(p, ω) � (q, τ) and τ − ω < µ − λ + ε. Hence, by the property 3.8 (2), it follows
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that (p, ω) � (q, µ − λ+ ε+ ω). However, by the property 3.8 (1), this is equivalent

to (p, λ) � (q, µ + ε). Hence, again by the property 3.8 (2), it follows that (p, λ) �
(q, µ). Therefore, �d�⊂�. And now, since the converse inclusion is automatic by
Theorem 3.6, the assertion (2) also holds.

Now, since the implication (2)=⇒(3) trivially holds, and the implication (3)=⇒(1)
follows immediately from the definition of �d, the proof is complete. �

������ 3.10. By Theorem 3.9, it is clear that the Galois connection established
in Theorem 3.6 is not upper semiperfect, and the mapping d �−→�d is only a partial

inverse of the mapping � �−→ d�.

4. Some further properties of the relations �d and d�

By using the definition of the relation �d we can easily prove the following theo-

rems.

Theorem 4.1. If d ∈ DS , then the following assertions are equivalent:

(1) �d is reflexive on XS ;

(2) d(p, p) = 0 for all p ∈ S.

������ 4.2. More generally, we can also easily see that a relation �∈ ES is
reflexive on XS if and only if d�(p, p) = 0 for all p ∈ S.

Theorem 4.3. If d ∈ DS , then the following assertions are equivalent:

(1) �d is antisymmetric;

(2) d(p, q) = 0 and d(q, p) = 0 imply p = q.

���	. If (p, λ) �d (q, µ) and (q, µ) �d (p, λ), then by the definition of �d we
have d(p, q) � µ − λ and d(q, p) � λ − µ. Hence, by using the nonnegativity of d,

we can infer that λ = µ. Therefore, we actually have d(p, q) = 0 and d(q, p) = 0.
Hence, if the assertion (2) holds, we can infer that p = q. Therefore, (p, λ) = (q, µ),

and thus the assertion (1) also holds. �

������ 4.4. Note that the relation �d is reflexive (antisymmetric) if and only

if its restriction to S × {0} is reflexive (antisymmetric).

Theorem 4.5. If d ∈ DS , then the following assertions are equivalent:

(1) �d is transitive;

(2) d(p, r) � d(p, q) + d(q, r) for all p, q, r ∈ S.
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���	. If d(p, q) < +∞ and d(q, r) < +∞, then by the definition of �d we have

(p, 0) �d (q, d(p, q)) and (q, d(p, q)) �d (r, d(p, q) + d(q, r)).

Hence, if the assertion (1) holds, we can infer that

(p, 0) �d (r, d(p, q) + d(q, r)).

Therefore, by the definition of �d, we also have d(p, r) � d(p, q) + d(q, r), and thus
the assertion (2) also holds. �

������ 4.6. Now, by using a reasonable modification of the usual definition of
quasi-metrics [4, p. 3], we can also state that a function d ∈ DS is a quasi-metric on

S if and only if the relation �d is a partial order on XS .

Theorem 4.7. If d ∈ DS , then the following assertions are equivalent:

(1) d(p, q) = d(q, p) for all p, q ∈ S;

(2) (p, λ) �d (q, µ) implies (q, λ) �d (p, µ).

���	. If d(p, q) < +∞, then by the definition of �d we have

(p, 0) �d (q, d(p, q)).

Hence, if the assertion (2) holds, we can infer that (q, 0) �d (p, d(p, q)). Therefore,
by the definition of �d, we also have d(q, p) � d(p, q). Hence, by changing the roles of

p and q, we can see that the converse inequality is also true. Therefore, the assertion
(1) also holds. �

������ 4.8. The latter theorem shows that symmetry is a less natural property
of distance functions than the properties considered in the previous three theorems.

This may be another reason why quasi-pseudo-metrics are more natural objects than
pseudo-metrics.

Note that if d is only an extended real-valued quasi-pseudo-metric on S, then by
identifying p with (p, 0) for all p ∈ S we can already get a natural preorder �d on S

such that for all p, q ∈ S we have p �d q if and only if d(p, q) = 0.

Theorem 4.9. If d ∈ DS , then the following assertions are equivalent:

(1) �d is symmetric;

(2) d(p, q) = +∞ for all p, q ∈ S.

���	. If p, q ∈ S are such that d(p, q) < +∞, then by defining µ = d(p, q) + 1
we have (p, 0) �d (q, µ). Hence, if the assertion (1) holds we can infer that (q, µ) �d

(p, 0). Therefore, we also have d(q, p) � −µ. Hence, by using the nonnegativity of d,
we can infer that 0 < −1. Therefore, the implication (1)=⇒(2) is true. �
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������ 4.10. Hence, it is clear that the relation �d is symmetric if and only if

�d= ∅.

5. A relationship between the functions of S and XS

Definition 5.1. Let f be a function of S into itself, α ∈ �, and

F (p, λ) = (f(p), αλ)

for all (p, λ) ∈ XS.

������ 5.2. The relationships between the functions f and F have formerly
been studied by DeMarr [6].

The following theorems will only extend and supplement some of the observations
of the above mentioned author.

Theorem 5.3. For the families of all fixed points of f and F we have

Fix (F ) = Fix (f)× � if α = 1 and Fix (F ) = Fix (f)× {0} if α �= 1.


����. By the corresponding definitions, for any (p, λ) ∈ XS we have

(p, λ) ∈ Fix (F ) ⇐⇒ F (p, λ) = (p, λ) ⇐⇒ (f(p), αλ) = (p, λ) ⇐⇒
⇐⇒ f(p) = p and αλ = λ ⇐⇒ p ∈ Fix (f) and (α − 1)λ = 0.

Consequently, the assertions of the theorem are immediate. �

Under the notation of Definition 5.1, we can also easily prove the following theo-

rems.

Theorem 5.4. If α > 0 and d ∈ DS , then the following assertions are equivalent:

(1) d(f(p), f(q)) � αd(p, q) for all p, q ∈ S;

(2) (p, λ) �d (q, µ) implies F (p, λ) �d F (q, µ).


����. If (p, λ), (q, µ) ∈ XS are such that (p, λ) �d (q, µ), then by the de-

finition of �d we have d(p, q) � µ − λ. Hence, if the assertion (1) holds, we can
infer that d(f(p), f(q)) � αµ − αλ. Therefore, by the definition �d, we also have

(f(p), αλ) �d (f(q), αµ). Hence, by the definition of F , it follows that F (p, λ) �d

F (q, µ). Therefore, the assertion (2) also holds.
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On the other hand, if p, q ∈ S are such that d(p, q) < +∞, then by the definition of
�d we have (p, 0) �d (q, d(p, q)). Hence, if the assertion (2) holds, we can infer that
F (p, 0) �d F (q, d(p, q)). Therefore, by the definition of F , we also have (f(p), 0) �d

(f(q), αd(p, q)). Hence, again by the definition of �d, it follows that d(f(p), f(q)) �
αd(p, q). Therefore, the assertion (1) also holds. �

Theorem 5.5. If 0 � α � 1 and d ∈ DS is such that d(p, p) = 0 for all p ∈ S,

then

(p, λ) �d F (p, λ) �d F (p, µ) �d (p, µ)

for all p ∈ Fix (f) and λ, µ ∈ � with λ � 0 � µ.


����. Under the above conditions, we have

d(p, f(p)) � αλ − λ; d(f(p), f(p)) � αµ − αλ; d(f(p), p) � µ − αµ.

Hence, by the definition of �d, it follows that

(p, λ) �d (f(p), αλ) �d (f(p), αµ) �d (p, µ).

Therefore, by the definition of F , the required equalities are also true. �

Theorem 5.6. If 0 < α < 1 and d ∈ DS is such that d is finite valued, then for

any p, q ∈ S there exist λ0, µ0 ∈ � with λ0 � 0 � µ0 such that

(p, λ) �d F (p, λ) �d F (q, µ) �d (q, µ)

for all λ, µ ∈ � with λ � λ0 and µ0 � µ.


����. Let p, q ∈ S, and define

λ0 =
d(p, f(p))
(α − 1) and µ0 = max

{d(f(p), f(q))
α

,
d(f(q), q)
(1 − α)

}
.

Then, by our assumptions on d and α, it is clear that λ0, µ0 ∈ � are such that
λ0 � 0 � µ0. Moreover, we can easily see that, for all λ, µ ∈ � with λ � λ0 and

µ0 � µ, we have

d(p, f(p)) � αλ − λ; d(f(p), f(q)) � αµ − αλ; d(f(q), q) � µ − αµ.

Hence, by the definitions of �d and F , it is clear that the required inequalities are
also true. �
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Theorem 5.7. If α > 1, d ∈ DS and (p, λ), (q, µ) ∈ XS are such that

(p, λ) �d F (p, λ) �d F (q, µ) �d (q, µ),

then λ = µ = d(p, f(p)) = d(f(p), f(q)) = d(f(q), q) = 0.


����. Again by the definitions of F and �d, it is clear that

d(p, f(p)) � αλ − λ; d(f(p), f(q)) � αµ − αλ; d(f(q), q) � µ − αµ.

Hence, by using our assumptions on d and α, we can easily see that

0 � d(p, f(p))
(α − 1) � λ � µ � d(f(q), q)

(1 − α)
� 0.

Therefore, λ = µ = 0, and thus the required equalities are also true. �

������ 5.8. Note that, by writing d� instead of d in the results of Sections 4
and 5, we can get some similar assertions for the relations �∈ E−

S . Namely, by

Theorem 3.9 we have �=�d� for all �∈ E−
S .

�������������	. The author is indebted to the referee for suggesting

some improvements in the presentation and the omission of several obvious corollar-
ies.
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