A GALOIS CONNECTION BETWEEN DISTANCE FUNCTIONS AND INEQUALITY RELATIONS

ÁRPÁD SZÁZ, Debrecen

(Received October 17, 2000)

Abstract. Following the ideas of R. DeMarr, we establish a Galois connection between distance functions on a set S and inequality relations on $X_S = S \times \mathbb{R}$. Moreover, we also investigate a relationship between the functions of S and X_S .

Keywords: distance functions and inequality relations, closure operators and Galois connections, Lipschitz and monotone functions, fixed points

MSC 2000: 54E25, 06A06, 47H10, 06A15

INTRODUCTION

Extending and supplementing some of the results of R. DeMarr [6] we establish a few consequences of the following definitions.

Let S be a nonvoid set, and denote by \mathcal{D}_S the family of all functions d on S^2 such that $0 \leq d(p,q) \leq +\infty$ for all $p,q \in S$.

Moreover, let $X_S = S \times \mathbb{R}$, and denote by \mathcal{E}_S the family of all relations $\leq on X_S$ such that $(p, \lambda) \leq (q, \mu)$ implies $\lambda \leq \mu$.

If $d \in \mathcal{D}_S$, then for all (p, λ) , $(q, \mu) \in X_S$ we define

$$(p,\lambda) \leq_d (q,\mu) \iff d(p,q) \leq \mu - \lambda.$$

While, if $\leq \in \mathcal{E}_S$, then for all $p, q \in S$ we define

$$d_{\leq}(p,q) = \inf\{\mu - \lambda \colon (p,\lambda) \leq (q,\mu)\}.$$

The research of the author has been supported by the grants OTKA T-030082 and FKFP 0310/1997.

Moreover, if f is a function of S into S and $\alpha \in \mathbb{R}$, then for all $(p, \lambda) \in X_S$ we define

$$F(p,\lambda) = (f(p),\alpha\lambda).$$

Concerning the above definitions, for instance, we prove the following statements.

Theorem 1. The mappings

 $d \longmapsto \leq_d \qquad and \qquad \leq\longmapsto d_{\leq}$

establish a Galois conection between the posets \mathcal{D}_S and \mathcal{E}_S such that every element of \mathcal{D}_S is closed.

Theorem 2. The family \mathcal{E}_S^- of all closed elements of \mathcal{E}_S consists of all relations $\leq \in \mathcal{E}_S$ such that for all $(p, \lambda), (q, \mu) \in X_S$

(1) $(p,\lambda) \leq (q,\mu)$ implies $(p,\lambda+\omega) \leq (q,\mu+\omega)$ for all $\omega \in \mathbb{R}$;

(2) $(p,\lambda) \leq (q,\mu)$ if and only if $(p,\lambda) \leq (q,\mu+\varepsilon)$ for all $\varepsilon > 0$.

Theorem 3. If $d \in \mathcal{D}_S$, then \leq_d is a partial order on X_S if and only if d is a quasi-metric on S in the sense that

(1) d(p,p) = 0 for all $p \in S$;

(2) d(p,q) = 0 and d(q,p) = 0 imply p = q;

(3) $d(p,r) \leq d(p,q) + d(q,r)$ for all $p,q,r \in S$.

Theorem 4. For the families of all fixed points of f and F we have

 $\operatorname{Fix}\left(F\right)=\operatorname{Fix}\left(f\right)\times\mathbb{R}\quad if\quad \alpha=1\quad and\quad \operatorname{Fix}\left(F\right)=\operatorname{Fix}\left(f\right)\times\{0\}\quad if\quad \alpha\neq1.$

Theorem 5. If $\alpha > 0$ and $d \in \mathcal{D}_S$, then the following assertions are equivalent: (1) $d(f(p), f(q)) \leq \alpha d(p, q)$ for all $p, q \in S$; (2) $(m, \lambda) \leq (q, \mu)$ implies $F(p, \lambda) \leq F(q, \mu)$

(2) $(p,\lambda) \leq_d (q,\mu)$ implies $F(p,\lambda) \leq_d F(q,\mu)$.

Theorem 6. If $0 < \alpha < 1$ and $d \in \mathcal{D}_S$ is such that d is finite valued, then for any $p, q \in S$ there exist $\lambda_0, \mu_0 \in \mathbb{R}$ with $\lambda_0 \leq 0 \leq \mu_0$ such that

$$(p,\lambda) \leq_d F(p,\lambda) \leq_d F(q,\mu) \leq_d (q,\mu)$$

for all $\lambda, \mu \in \mathbb{R}$ with $\lambda \leq \lambda_0$ and $\mu_0 \leq \mu$.

Remark. From Theorems 3, 5 and 6, by writing d_{\leq} instead of d, we can get some similar assertions for the relations $\leq \in \mathcal{E}_S^-$. Namely, by Theorem 2, we have $\leq = \leq_{d_{\leq}}$ for all $\leq \in \mathcal{E}_S^-$.

The only prerequisites for reading this paper is a knowledge of some basic facts on posets which will be briefly laid out in the next two preparatory sections. The proofs of most of those facts can be found in [10].

1. CLOSURE OPERATIONS ON POSETS

If \leq is a reflexive, antisymmetric and transitive relation on a nonvoid set X, then the relation \leq is called a partial order on X, and the ordered pair $X(\leq) = (X, \leq)$ is called a poset (partially ordered set).

If A is a subset of a poset X, then $\inf_X(A)$ and $\sup_X(A)$ will denote the greatest lower bound and the least upper bound of A in X, respectively. Further, the poset X is called complete if $\inf(A)$ and $\sup(A)$ exist for all $A \subset X$.

The following useful characterization of infimum was already observed by Rennie [9]. However, despite this, it is not included in the standard textbooks.

Lemma 1.1. If X is a poset, and moreover $A \subset X$ and $\alpha \in X$, then the following assertions are equivalent:

(1) $\alpha = \inf(A);$

(2) for each $u \in X$ we have $u \leq \alpha$ if and only if $u \leq x$ for all $x \in A$.

Concerning the completeness of posets, according to Birkhoff [1, p. 112] we can at once state

Theorem 1.2. If X is a poset, then the following assertions are equivalent:

- (1) X is complete;
- (2) $\inf(A)$ exists for all $A \subset X$.

R e m a r k 1.3. To obtain the corresponding results for supremum, one can observe that if $X(\leq)$ is a partial ordered set, then its dual $X(\geq)$ is also a partial ordered set. Moreover, we have $\inf_{X(\geq)} (A) = \sup_{X(\leq)} (A)$ for all $A \subset X$.

Definition 1.4. If - is a function of a poset $X(\leq)$ into itself such that

(1) $x \leq y$ implies $x^- \leq y^-$ for all $x, y \in X$,

(2) $x \leq x^{-}$; and (3) $x^{-} = x^{--}$ for all $x \in X$,

then the function – is called a closure operation on $X(\leq)$, and the ordered triple $X(\leq, -) = (X, \leq, -)$ is called a closure space.

R e m a r k 1.5. Note that the expansivity property (2) already implies that $x^- \leq x^{--}$ for all $x \in X$. Therefore, instead of the idempotency property (3), it suffices to assume only that $x^{--} \leq x^-$ for all $x \in X$.

The following useful characterization of closure operations was already observed by Everett [3]. However, despite this, it is not included in the standard textbooks.

Lemma 1.6. If - is a function of a poset X into itself, then the following assertions are equivalent:

- (1) the function is a closure operation on X;
- (2) for all $x, y \in X$ we have $x \leq y^-$ if and only if $x^- \leq y^-$.

If X is a closure space, then the members of the family $X^- = \{x^- : x \in X\}$ may be called the closed elements of X. Namely, we have

Theorem 1.7. If X is a closure space and $x \in X$, then the following assertions are equivalent:

- (1) $x^- \leqslant x;$
- (2) $x = x^{-};$
- (3) $x \in X^{-}$.

Remark 1.8. Note that if X is a closure space, then we have $x^- = \inf\{y \in X^-: x \leq y\}$ for all $x \in X$. Therefore, the closed elements of X uniquely determine the closure operation of X.

A closure space will be called complete if it is complete as a poset. Concerning the closed elements of complete closure spaces, according to Birkhoff [1, p. 112] we can also state

Theorem 1.9. If X is a complete closure space, then X^- is a complete poset.

Remark 1.10. Note that if $A \subset X^-$, then we have $\inf_{X^-}(A) = \inf_X(A)$ and $\sup_{X^-}(A) = (\sup_X(A))^-$.

2. Galois connections between posets

Definition 2.1. If X and Y are posets and * and # are functions of X and Y into Y and X, respectively, such that

- (1) $x_1 \leqslant x_2$ implies $x_2^* \leqslant x_1^*$ for all $x_1, x_2 \in X$,
- (2) $y_1 \leq y_2$ implies $y_2^{\#} \leq y_1^{\#}$ for all $y_1, y_2 \in Y$,
- (3) $x \leq x^{*\#}$ for all $x \in X$,
- (4) $y \leq y^{\#*}$ for all $y \in Y$,

then we say that the functions * and # establish a Galois connection between the posets X and Y.

Remark 2.2. Galois connections between posets were first investigated by Ore [7] and Everett [3].

The following useful characterization of Galois connections was already observed by J. Schmidt [1, p. 124]. However, despite this, it is not included in the standard textbooks.

Lemma 2.3. If X and Y are posets and * and # are functions of X and Y into Y and X, respectively, then the following assertions are equivalent:

- (1) the functions * and # establish a Galois connection between X and Y;
- (2) for all $x \in X$ and $y \in Y$ we have $x \leq y^{\#}$ if and only if $y \leq x^*$.

The following basic theorem has already been established by Ore [7] and Everett [3].

Theorem 2.4. If the functions * and # establish a Galois connection between the posets X and Y, then

- (1) $x^* = x^{*\#*}$ for all $x \in X$ and $y^{\#} = y^{\#*\#}$ for all $y \in Y$;
- (2) the functions *# and #* are closure operations on X and Y, respectively, such that $Y^{\#} = X^{*\#}$ and $X^* = Y^{\#*}$;
- (3) the restrictions of the functions * and # to $Y^{\#}$ and X^* , respectively, are injective, and they are inverses of each other.

Remark 2.5. Note that actually $A = Y^{\#}$ is the largest subset of X such that the restriction of the function * to A is injective and $A^{*\#} \subset A$.

Definition 2.6. A Galois connection between posets X and Y established by the functions * and # will be called lower (upper) semiperfect if $x = x^{*\#}$ for all $x \in X$ ($y = y^{\#*}$ for all $y \in Y$).

R e m a r k 2.7. Note that by Definition 2.1 we always have $x \leq x^{*\#}$ for all $x \in X$. Therefore, to define the lower semiperfectness of the above Galois connection it suffices to assume the reverse inequality.

The above definition and the following theorem are again due to Ore [7].

Theorem 2.8. A Galois connection between posets X and Y established by the functions * and # is lower semiperfect if and only if $X = Y^{\#}$, or equivalently the function * is injective.

R e m a r k 2.9. Note that if X is a poset, then the Galois connection between the posets $\mathcal{P}(X)$ and $\mathcal{P}(X)$, established by the mappings

$$A \longmapsto \operatorname{lb}(A)$$
 and $A \longmapsto \operatorname{ub}(A)$,

where lb(A) and ub(A) are the families of all lower and upper bounds of the set A in X, respectively, is not, in general, lower or upper semiperfect.

The importance of this Galois connection lies mainly in the Dedekind-McNeille completion of the poset X by the cuts lb(ub(A)) where $A \subset X$. (See, for instance, [1, p. 126].)

3. A Galois connection between distance functions and inequality relations

Definition 3.1. Let S be a nonvoid set, and denote by \mathcal{D}_S the family of all functions d on S^2 such that $0 \leq d(p,q) \leq +\infty$ for all $p,q \in S$.

Moreover, let $X_S = S \times \mathbb{R}$, and denote by \mathcal{E}_S the family of all relations \leq on X_S such that $(p, \lambda) \leq (q, \mu)$ implies $\lambda \leq \mu$ for all $(p, \lambda), (q, \mu) \in X_S$.

R e m a r k 3.2. The members of the families \mathcal{D}_S and \mathcal{E}_S will be called distance functions and inequality relations on S and X_S , respectively.

The following theorems do not actually need the nonnegativity of distance functions on S and the corresponding property of inequality relations on X_S .

Theorem 3.3. The families \mathcal{D}_S and \mathcal{E}_S , equipped with the pointwise inequality and the ordinary set inclusion, respectively, are complete posets.

Hint. If $\mathcal{D} \subset \mathcal{D}_S$, then by defining $d_*(p,q) = \inf_{d \in \mathcal{D}} d(p,q)$ for all $p, q \in S$ we can see that $d_* = \inf(\mathcal{D})$.

On the other hand, if $\mathcal{E} \subset \mathcal{E}_S$, then by defining $\leq_* = \bigcap \mathcal{E}$ if $\mathcal{E} \neq \emptyset$ and $\leq_* = \bigcup \mathcal{E}_S$ if $\mathcal{E} = \emptyset$ we can see that $\leq_* = \inf(\mathcal{E})$.

Definition 3.4. If $d \in \mathcal{D}_S$, then for all $(p, \lambda), (q, \mu) \in X_S$ we define

$$(p,\lambda) \leq_d (q,\mu) \iff d(p,q) \leq \mu - \lambda,$$

while if $\leq \in \mathcal{E}_S$, then for all $p, q \in S$ we define

$$d_{\leq}(p,q) = \inf\{\mu - \lambda \colon (p,\lambda) \leq (q,\mu)\}.$$

Remark 3.5. The relation \leq_d , for an ordinary metric d, has formerly been studied by DeMaar [6].

However, the function d_\leqslant and the following theorem seem to be completely new.

Theorem 3.6. The mappings

 $d \longmapsto \leq_d \qquad \text{and} \qquad \leq \longmapsto d_{\leq}$

establish a lower semiperfect Galois connection between the posets \mathcal{D}_S and \mathcal{E}_S .

Proof. If $d \in \mathcal{D}_S$ and $\leq \in \mathcal{E}_S$, then by the corresponding definitions it is clear that $\leq_d \in \mathcal{E}_S$ and $d_{\leq} \in \mathcal{D}_S$. Therefore, by Lemma 2.3 and Remark 2.7, it suffices to prove only that $d \leq d_{\leq}$ if and only if $\leq \subset \leq_d$, and moreover $d_{\leq_d} \leq d$.

If $(p, \lambda), (q, \mu) \in X_S$ are such that $(p, \lambda) \leq (q, \mu)$, then by the definition of d_{\leq} we have $d_{\leq}(p,q) \leq \mu - \lambda$. Hence, if the inequality $d \leq d_{\leq}$ holds, we can infer that $d(p,q) \leq \mu - \lambda$. Thus, by the definition of \leq_d , we also have $(p, \lambda) \leq_d (q, \mu)$. Therefore, the inclusion $\leq \subset \leq_d$ is also true.

Further, if $p, q \in S$ and $\beta \in \mathbb{R}$ are such that $d_{\leq}(p,q) < \beta$, then by the definition of d_{\leq} there exist $\lambda, \mu \in \mathbb{R}$ such that $(p, \lambda) \leq (q, \mu)$ and $\mu - \lambda < \beta$. Hence, if the inclusion $\leq \subset \leq_d$ holds, we can infer that $(p, \lambda) \leq_d (q, \mu)$. Thus, by the definition of \leq_d , we also have $d(p,q) \leq \mu - \lambda < \beta$. Hence, letting $\beta \to d_{\leq}(p,q)$, we can infer that $d(p,q) \leq d_{\leq}(p,q)$. Therefore, the inequality $d \leq d_{\leq}$ is also true.

Finally, if $p, q \in S$ and $\beta \in \mathbb{R}$ are such that $d(p,q) < \beta$, then by the definition of \leq_d we have $(p,0) \leq_d (q,\beta)$. Hence, by the definition of d_{\leq_d} , it follows that $d_{\leq_d}(p,q) \leq \beta$. Hence, letting $\beta \to d(p,q)$, we can infer that $d_{\leq_d}(p,q) \leq d(p,q)$. Therefore, the inequality $d_{\leq_d} \leq d$ is also true.

Remark 3.7. Note that, by Theorem 3.6 and Definition 2.6, we actually have $d = d_{\leq d}$ for all $d \in \mathcal{D}_S$. Therefore, the mapping $\leq \longmapsto d_{\leq}$ is onto \mathcal{D}_S . Moreover, the mapping $d \longmapsto \leq_d$ is injective.

To briefly describe the range of the mapping $d \mapsto \leq_d$ or that of the closure operation $\leq \mapsto \leq_{d_{\leq}}$, we shall need the following

Definition 3.8. Denote by \mathcal{E}_S^- the family of all relations $\leq \in \mathcal{E}_S$ such that for all $(p, \lambda), (q, \mu) \in X_S$

(1) $(p, \lambda) \leq (q, \mu)$ implies $(p, \lambda + \omega) \leq (q, \mu + \omega)$ for all $\omega \in \mathbb{R}$;

(2) $(p, \lambda) \leq (q, \mu)$ if and only if $(p, \lambda) \leq (q, \mu + \varepsilon)$ for all $\varepsilon > 0$.

The appropriateness of the above definition is apparent from

Theorem 3.9. If $\leq \in \mathcal{E}_S$, then the following assertions are equivalent;

- $(1) \leq \in \mathcal{E}_{S}^{-};$ $(2) \leq = \leq_{d_{\leq}};$ $(2) \leq = \leq_{d_{\leq}};$
- (3) $\leq = \leq_d$ for some $d \in \mathcal{D}_S$.

Proof. Suppose that the assertion (1) holds, and $(p, \lambda), (q, \mu) \in X_S$ are such that $(p, \lambda) \leq_{d_{\leq}} (q, \mu)$. Then, by the definition of $\leq_{d_{\leq}}$, we have $d_{\leq}(p, q) \leq \mu - \lambda$. Therefore, by the definition of d_{\leq} , for each $\varepsilon > 0$ there exist $\omega, \tau \in \mathbb{R}$ such that $(p, \omega) \leq (q, \tau)$ and $\tau - \omega < \mu - \lambda + \varepsilon$. Hence, by the property 3.8 (2), it follows

that $(p, \omega) \leq (q, \mu - \lambda + \varepsilon + \omega)$. However, by the property 3.8 (1), this is equivalent to $(p, \lambda) \leq (q, \mu + \varepsilon)$. Hence, again by the property 3.8 (2), it follows that $(p, \lambda) \leq (q, \mu)$. Therefore, $\leq_{d_{\leq}} \subset \leq$. And now, since the converse inclusion is automatic by Theorem 3.6, the assertion (2) also holds.

Now, since the implication $(2) \Longrightarrow (3)$ trivially holds, and the implication $(3) \Longrightarrow (1)$ follows immediately from the definition of \leq_d , the proof is complete.

R e m a r k 3.10. By Theorem 3.9, it is clear that the Galois connection established in Theorem 3.6 is not upper semiperfect, and the mapping $d \mapsto \leq_d$ is only a partial inverse of the mapping $\leq \mapsto d_{\leq}$.

4. Some further properties of the relations \leq_d and d_{\leq}

By using the definition of the relation \leq_d we can easily prove the following theorems.

Theorem 4.1. If $d \in \mathcal{D}_S$, then the following assertions are equivalent:

- (1) \leq_d is reflexive on X_S ;
- (2) d(p,p) = 0 for all $p \in S$.

Remark 4.2. More generally, we can also easily see that a relation $\leq \in \mathcal{E}_S$ is reflexive on X_S if and only if $d_{\leq}(p,p) = 0$ for all $p \in S$.

Theorem 4.3. If $d \in D_S$, then the following assertions are equivalent:

- (1) \leq_d is antisymmetric;
- (2) d(p,q) = 0 and d(q,p) = 0 imply p = q.

Hint. If $(p, \lambda) \leq_d (q, \mu)$ and $(q, \mu) \leq_d (p, \lambda)$, then by the definition of \leq_d we have $d(p,q) \leq \mu - \lambda$ and $d(q,p) \leq \lambda - \mu$. Hence, by using the nonnegativity of d, we can infer that $\lambda = \mu$. Therefore, we actually have d(p,q) = 0 and d(q,p) = 0. Hence, if the assertion (2) holds, we can infer that p = q. Therefore, $(p, \lambda) = (q, \mu)$, and thus the assertion (1) also holds.

R e m a r k 4.4. Note that the relation \leq_d is reflexive (antisymmetric) if and only if its restriction to $S \times \{0\}$ is reflexive (antisymmetric).

Theorem 4.5. If $d \in D_S$, then the following assertions are equivalent:

- (1) \leq_d is transitive;
- (2) $d(p,r) \leq d(p,q) + d(q,r)$ for all $p,q,r \in S$.

Hint. If $d(p,q) < +\infty$ and $d(q,r) < +\infty$, then by the definition of \leq_d we have

 $(p, 0) \leq_d (q, d(p, q))$ and $(q, d(p, q)) \leq_d (r, d(p, q) + d(q, r)).$

Hence, if the assertion (1) holds, we can infer that

$$(p,0) \leq_d (r,d(p,q) + d(q,r)).$$

Therefore, by the definition of \leq_d , we also have $d(p,r) \leq d(p,q) + d(q,r)$, and thus the assertion (2) also holds.

R e m a r k 4.6. Now, by using a reasonable modification of the usual definition of quasi-metrics [4, p. 3], we can also state that a function $d \in \mathcal{D}_S$ is a quasi-metric on S if and only if the relation \leq_d is a partial order on X_S .

Theorem 4.7. If $d \in D_S$, then the following assertions are equivalent:

- (1) d(p,q) = d(q,p) for all $p,q \in S$;
- (2) $(p,\lambda) \leq_d (q,\mu)$ implies $(q,\lambda) \leq_d (p,\mu)$.

H i n t. If $d(p,q) < +\infty$, then by the definition of \leq_d we have

 $(p,0) \leqslant_d (q,d(p,q)).$

Hence, if the assertion (2) holds, we can infer that $(q, 0) \leq_d (p, d(p, q))$. Therefore, by the definition of \leq_d , we also have $d(q, p) \leq d(p, q)$. Hence, by changing the roles of p and q, we can see that the converse inequality is also true. Therefore, the assertion (1) also holds.

R e m a r k 4.8. The latter theorem shows that symmetry is a less natural property of distance functions than the properties considered in the previous three theorems. This may be another reason why quasi-pseudo-metrics are more natural objects than pseudo-metrics.

Note that if d is only an extended real-valued quasi-pseudo-metric on S, then by identifying p with (p, 0) for all $p \in S$ we can already get a natural preorder \leq_d on S such that for all $p, q \in S$ we have $p \leq_d q$ if and only if d(p, q) = 0.

Theorem 4.9. If $d \in \mathcal{D}_S$, then the following assertions are equivalent:

(1) \leq_d is symmetric;

(2) $d(p,q) = +\infty$ for all $p,q \in S$.

Hint. If $p,q \in S$ are such that $d(p,q) < +\infty$, then by defining $\mu = d(p,q) + 1$ we have $(p,0) \leq_d (q,\mu)$. Hence, if the assertion (1) holds we can infer that $(q,\mu) \leq_d (p,0)$. Therefore, we also have $d(q,p) \leq -\mu$. Hence, by using the nonnegativity of d, we can infer that 0 < -1. Therefore, the implication $(1) \Longrightarrow (2)$ is true. \Box

R e m a r k 4.10. Hence, it is clear that the relation \leq_d is symmetric if and only if $\leq_d = \emptyset$.

5. A relationship between the functions of S and X_S

Definition 5.1. Let f be a function of S into itself, $\alpha \in \mathbb{R}$, and

$$F(p,\lambda) = (f(p),\alpha\lambda)$$

for all $(p, \lambda) \in X_S$.

R e m a r k 5.2. The relationships between the functions f and F have formerly been studied by DeMarr [6].

The following theorems will only extend and supplement some of the observations of the above mentioned author.

Theorem 5.3. For the families of all fixed points of f and F we have

 $\operatorname{Fix}\left(F\right) = \operatorname{Fix}\left(f\right) \times \mathbb{R} \quad if \quad \alpha = 1 \quad and \quad \operatorname{Fix}\left(F\right) = \operatorname{Fix}\left(f\right) \times \{0\} \quad if \quad \alpha \neq 1.$

Proof. By the corresponding definitions, for any $(p, \lambda) \in X_S$ we have

$$(p,\lambda) \in \operatorname{Fix}(F) \iff F(p,\lambda) = (p,\lambda) \iff (f(p),\alpha\lambda) = (p,\lambda) \iff$$

 $\iff f(p) = p \text{ and } \alpha\lambda = \lambda \iff p \in \operatorname{Fix}(f) \text{ and } (\alpha - 1)\lambda = 0.$

Consequently, the assertions of the theorem are immediate.

Under the notation of Definition 5.1, we can also easily prove the following theorems.

Theorem 5.4. If $\alpha > 0$ and $d \in \mathcal{D}_S$, then the following assertions are equivalent: (1) $d(f(p), f(q)) \leq \alpha d(p,q)$ for all $p, q \in S$; (2) $(\alpha, \beta) \leq (\alpha, \beta)$ implies $E(\alpha, \beta) \leq E(\alpha, \beta)$

(2) $(p,\lambda) \leq_d (q,\mu)$ implies $F(p,\lambda) \leq_d F(q,\mu)$.

Proof. If $(p, \lambda), (q, \mu) \in X_S$ are such that $(p, \lambda) \leq_d (q, \mu)$, then by the definition of \leq_d we have $d(p,q) \leq \mu - \lambda$. Hence, if the assertion (1) holds, we can infer that $d(f(p), f(q)) \leq \alpha \mu - \alpha \lambda$. Therefore, by the definition \leq_d , we also have $(f(p), \alpha \lambda) \leq_d (f(q), \alpha \mu)$. Hence, by the definition of F, it follows that $F(p, \lambda) \leq_d F(q, \mu)$. Therefore, the assertion (2) also holds.

446

On the other hand, if $p, q \in S$ are such that $d(p,q) < +\infty$, then by the definition of \leq_d we have $(p,0) \leq_d (q,d(p,q))$. Hence, if the assertion (2) holds, we can infer that $F(p,0) \leq_d F(q,d(p,q))$. Therefore, by the definition of F, we also have $(f(p),0) \leq_d (f(q), \alpha d(p,q))$. Hence, again by the definition of \leq_d , it follows that $d(f(p), f(q)) \leq \alpha d(p,q)$. Therefore, the assertion (1) also holds.

Theorem 5.5. If $0 \leq \alpha \leq 1$ and $d \in \mathcal{D}_S$ is such that d(p,p) = 0 for all $p \in S$, then

$$(p,\lambda) \leq_d F(p,\lambda) \leq_d F(p,\mu) \leq_d (p,\mu)$$

for all $p \in Fix(f)$ and $\lambda, \mu \in \mathbb{R}$ with $\lambda \leq 0 \leq \mu$.

Proof. Under the above conditions, we have

$$d(p, f(p)) \leq \alpha \lambda - \lambda; \quad d(f(p), f(p)) \leq \alpha \mu - \alpha \lambda; \quad d(f(p), p) \leq \mu - \alpha \mu.$$

Hence, by the definition of \leq_d , it follows that

$$(p,\lambda) \leq_d (f(p),\alpha\lambda) \leq_d (f(p),\alpha\mu) \leq_d (p,\mu).$$

Therefore, by the definition of F, the required equalities are also true.

Theorem 5.6. If $0 < \alpha < 1$ and $d \in \mathcal{D}_S$ is such that d is finite valued, then for any $p, q \in S$ there exist $\lambda_0, \mu_0 \in \mathbb{R}$ with $\lambda_0 \leq 0 \leq \mu_0$ such that

$$(p,\lambda) \leq_d F(p,\lambda) \leq_d F(q,\mu) \leq_d (q,\mu)$$

for all $\lambda, \mu \in \mathbb{R}$ with $\lambda \leq \lambda_0$ and $\mu_0 \leq \mu$.

Proof. Let $p, q \in S$, and define

$$\lambda_0 = \frac{d(p, f(p))}{(\alpha - 1)} \quad \text{and} \quad \mu_0 = \max\Big\{\frac{d(f(p), f(q))}{\alpha}, \frac{d(f(q), q)}{(1 - \alpha)}\Big\}.$$

Then, by our assumptions on d and α , it is clear that $\lambda_0, \mu_0 \in \mathbb{R}$ are such that $\lambda_0 \leq 0 \leq \mu_0$. Moreover, we can easily see that, for all $\lambda, \mu \in \mathbb{R}$ with $\lambda \leq \lambda_0$ and $\mu_0 \leq \mu$, we have

$$d(p, f(p)) \leq \alpha \lambda - \lambda; \quad d(f(p), f(q)) \leq \alpha \mu - \alpha \lambda; \quad d(f(q), q) \leq \mu - \alpha \mu.$$

Hence, by the definitions of \leq_d and F, it is clear that the required inequalities are also true.

447

Theorem 5.7. If $\alpha > 1$, $d \in \mathcal{D}_S$ and $(p, \lambda), (q, \mu) \in X_S$ are such that

$$(p,\lambda) \leq_d F(p,\lambda) \leq_d F(q,\mu) \leq_d (q,\mu),$$

then $\lambda = \mu = d(p, f(p)) = d(f(p), f(q)) = d(f(q), q) = 0.$

Proof. Again by the definitions of F and \leq_d , it is clear that

$$d(p, f(p)) \leq \alpha \lambda - \lambda; \quad d(f(p), f(q)) \leq \alpha \mu - \alpha \lambda; \quad d(f(q), q) \leq \mu - \alpha \mu.$$

Hence, by using our assumptions on d and α , we can easily see that

$$0 \leqslant \frac{d(p, f(p))}{(\alpha - 1)} \leqslant \lambda \leqslant \mu \leqslant \frac{d(f(q), q)}{(1 - \alpha)} \leqslant 0.$$

Therefore, $\lambda = \mu = 0$, and thus the required equalities are also true.

R e m a r k 5.8. Note that, by writing d_{\leq} instead of d in the results of Sections 4 and 5, we can get some similar assertions for the relations $\leq \in \mathcal{E}_S^-$. Namely, by Theorem 3.9 we have $\leq = \leq_{d_{\leq}}$ for all $\leq \in \mathcal{E}_S^-$.

A c k n o w l e d g e m e n t. The author is indebted to the referee for suggesting some improvements in the presentation and the omission of several obvious corollaries.

References

- [1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Providence, Rhode Island, 1967.
- [2] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353.
- [3] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514–525.
- [4] Fletcher, P., Lindgren, W. F.: Quasi-Uniform Spaces. Marcel Dekker, New York, 1982.
- [5] Jachymski, J. R.: Fixed point theorems in metric and uniform spaces via the Knaster-Tarski principle. Nonlinear Anal. 32 (1998), 225–233.
- [6] DeMarr, R.: Partially ordered spaces and metric spaces. Amer. Math. Monthly 72 (1965), 628–631.
- [7] Ore, O.: Galois connexions. Trans. Amer. Math. Soc. 55 (1944), 493–513.
- [8] *Pataki*, G.: On the extensions, refinements and modifications of relators. To appear in Math. Balk.
- [9] Rennie, B. C.: Lattices. Proc. London Math. Soc. 52 (1951), 386–400.
- [10] Szász, G.: Introduction to Lattice Theory. Academic Press, New York, 1963.

Author's address: Árpád Száz, Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary, e-mail: szaz@math.klte.hu.