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Abstract. Suppose G is a p-mixed splitting abelian group and R is a commutative unitary
ring of zero characteristic such that the prime number p satisfies p /∈ inv(R)∪ zd(R). Then
R(H) and R(G) are canonically isomorphic R-group algebras for any group H precisely
when H and G are isomorphic groups.

This statement strengthens results due to W.May published in J.Algebra (1976) and
to W.Ullery published in Commun.Algebra (1986), Rocky Mt. J.Math. (1992) and Com-
ment.Math.Univ.Carol. (1995).
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1. Introduction

Let R(G) be the group algebra of G over R, where G is an arbitrary abelian

group written multiplicatively as is customary when discussing group rings, and

R is a commutative ring with identity 1R and characteristic zero abbreviated as

char(R) = 0. For such a ring R, the set inv(R) = {q : q · 1R is a unit in R} denotes

the set of all invertible primes q in R whereas zd(R) = {q : q is a zero divisor in

R} denotes the set of all primes q that are zero divisors in R. As usual, in all

that follows, R+ will designate the additive group of R with torsion part T (R+);

we emphasize that T (R+) is a proper ideal of R. For such a group G, the symbol

tG =
∐

∀p Gp denotes the maximal torsion subgroup of G with p-component Gp. All

other undefined notions or unexplained notation as well as the terminology from the

group algebra theory are standard and will follow the bibliography cited at the end
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of the paper, or more precisely the paper [2], in which the main result was previously

announced, together with [11]–[13].

To make the present study more nearly self-contained and readers friendly, we

shall give a brief introduction to some of the best principal achievements known in

this area.

The more global investigation of group algebras over special sorts of commutative

rings, mainly of zero characteristic, was started first by W.May in his remarkable

works [9] and [10]. Later on, W.Ullery refined in ([11], [12] and [13]) upon the results

of May. Actually, these explorations of Ullery are fundamental and established a

natural connection between the Isomorphism Problems of modular and semi-simple

group algebras of torsion abelian groups. We have studied in [4] some invariant

properties of such group algebras over certain rings.

Our purpose in this modest work is to extend some of the aforementioned state-

ments to the so-called p-mixed groups, whose only torsion is p-torsion. Particularly,

let p be a prime and R a commutative ring with identity of characteristic 0 such

that p is neither a unit nor a zero divisor in R. If G is a p-mixed abelian group that

splits, and R(G) ∼= R(H) as R-algebras, then H splits as well; and, if in addition

R(G) and R(H) are canonically R-isomorphic, in fact, G ∼= H . In order to do this,

we modify and develop the technique proposed by May-Ullery using moreover some

new useful assertions pertaining to the topic explored.

2. The main result

Foremost, before formulating the main result, we need the following definition

concerning certain properties of the isomorphisms between group algebras. It is well-

known by virtue of [7], [8], [9] (see e.g. [3] too) that if L is a commutative unitary ring

and if both A and B are abelian groups, then L(A) ∼= L(B) as L-algebras implies

that A/tA ∼= B/tB.

It is a simple matter to give an example so that not every L-isomorphism between

L(A) and L(B) is canonical. Indeed, consider an example in which A = B. Let

A = C × T , where C = 〈a〉 is an infinite cyclic group with a generator a of infinite

order o(a) = ∞ and T is a p-primary group, and let F be a field of characteristic p.

Besides, let v be a p-torsion unit in F (A) of augmentation 1 which is not a trivial unit,

i.e. does not come from T . Consider the F -homomorphism of F (A) to itself which

sends a to av and is the identity on T . This is an F -isomorphism (= automorphism)

since the reverse map sends a to av−1, but clearly A/tA ∼= C is not taken to itself. By

the same manner we can construct a non-canonical isomorphism of group algebras

over a commutative ring R of zero characteristic.
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Nevertheless, we conjecture that for any commutative unitary ring L and for any

abelian groups A and B it is true that L(A) ∼= L(B) are isomorphic over L if and

only if L(A) ∼= L(B) are canonically isomorphic over L. Because we may presume

with no loss of generality that L(A) = L(B), it would be necessary to find an L-

automorphism of the group algebra L(A) taking A/tA to itself. However, it is not

at all clear how this can be done.

That is why, the following is of some actuality.

Definition 1. Under the above conditions for L, A andB, given that Φ: L(A) →

L(B) is an L-isomorphism of group algebras, then Φ is called a canonical L-

isomorphism, and so L(A) and L(B) are called canonically L-isomorphic or canon-

ically isomorphic as L-algebras, provided that Φ(A/tA) = B/tB that is Φ isomor-

phically maps A/tA to B/tB.

This notion is important and plays a crucial role in our future study.

The major goal here is to proceed by proving the following assertion, which moti-

vated the present paper.

Central Theorem (Isomorphism). Suppose G is a p-mixed splitting abelian

group and R is a commutative ring with unity 1R of char(R) = 0 so that p /∈

inv(R) ∪ zd(R). Then R(H) ∼= R(G) are canonically isomorphic as R-algebras for

some other group H ⇐⇒ H ∼= G.

Before proceeding to our proof, we need a few technical conventions quoted in

several steps.

It is well-known and elementary to verify that R+ is torsion-free ⇐⇒ zd(R) = ∅.

We now concentrate on another helpful property of R+ concerning its p-divisibility.

Before doing this, it is desirable to recall certain notions and characters from the

abelian group theory.

Definition 2. An additive abelian group Y is said to be p-divisible whenever

Y = pY .

Lemma 1. For any commutative ring R with identity,

R+ is p-divisible ⇐⇒ p ∈ inv(R).

���������
. First, take R+ to be p-divisible, i.e., by definition, R+ = pR+. Since

1R ∈ R+, there exists an element r ∈ R+ with 1R = pr. Thereby, p ∈ inv(R) and

the first implication follows.

Next, we choose p ∈ inv(R) whence pr = 1R for some r ∈ R. Furthermore, for

any f ∈ R we infer that f = p(rf) ∈ pR, hence R = pR, thus ending the proof. �
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�
	�������
. In view of the foregoing assertion inv(R) = ∅ ⇐⇒ R+ is not p-

divisible over all prime numbers p ⇐⇒ R+ is not divisible. So, in terms of numerical

divisions, that are structural invariants for R, we conclude that R+ is torsion-free

and not p-divisible ⇐⇒ zd(R) = ∅ and p /∈ inv(R).

Lemma 2. If p /∈ zd(R), then R+ is p-divisible ⇐⇒ R+/T (R+) is p-divisible.
���������

. The necessity is self-evident.

Next, we deal with the sufficiency. Let r ∈ R+, hence r = pr′+f for some r′ ∈ R+

and f ∈ T (R+) since by hypothesis R+ = pR+ + T (R+). Therefore, there exists

n > 0 with n(r − pr′) = 0. Further, we distinguish two cases:

1) p/n. Thus n = pkm; k, m ∈ � and (p, m) = 1. Henceforth pk(mr − mpr′) = 0.

But p /∈ zd(R), and so m(r − pr′) = 0. That is why we may consider

2) (p, n) = 1. Consequently, there exist integers s and t such that sn + tp = 1.

Moreover, 0 = sn(r−pr′) = (1−tp)(r−pr′) = r−p(r′+tr−ptr′), which is equivalent

to r = p(tr + r′ − ptr′) ∈ pR+. Thereby, R+ = pR+ and everything we wanted is

successfully proved. �

Actually, we have demonstrated that T (R+) ⊆ pR+, i.e. T (R+) is ever p-divisible,

whenever p 6∈ zd(R).

Lemma 3. Given that L is a commutative unitary ring of arbitrary characteristic

and A is an abelian group, then

(i) L(A) is unitary;

(ii) char(L(A)) = char(L);

(iii) p ∈ inv(L(A)) ⇐⇒ p ∈ inv(L);

(iv) p ∈ zd(L(A)) ⇐⇒ p ∈ zd(L).
���������

. The first two points are straightforward.

Next, we concern with the last two relationships.

First of all, it is apparent that inv(L) ⊆ inv(L(A)) because L ⊆ L(A) with 1L(A) =

1L ·1A and thereby the second relation concerning the “sufficiency” is obvious. Now,

to deal with the remaining part named “necessity”, choose p ∈ inv(L(A)). Hence

there exists
∑

k

rkak ∈ L(A) with the property that p
(

∑

k

rkak

)

=
∑

k

prkak = 1.

Therefore there is r ∈ L such that pr = 1, whence p ∈ inv(L) and so we are done.

Further, we observe that zd(L) ⊆ zd(L(A)) holds since L ⊆ L(A), so “sufficiency”

is fulfilled. To treat the other half, termed “necessity”, take p ∈ zd(L(A)). Hence-

forth, there exists a non-trivial element
∑

k

fkck ∈ L(A) such that p
(

∑

k

fkck

)

=
∑

k

pfkck = 0. Consequently, there is f ∈ L with pf = 0, whence p ∈ zd(L), complet-

ing the proof. �
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Proposition 1 ([5]). Let G be a multiplicative p-mixed abelian group and let C

be a multiplicative torsion-free abelian group which is not p-divisible. Then G splits

if and only if G⊗ � C splits, where � is regarded as the additive group of all integers.

Proposition 2 ([9], [6], [1]). For any commutative unitary ring L and any abelian

group G, the following implication holds:

L(G) ∼= L(H) ⇒ L+ ⊗ � G ∼= L+ ⊗ � H.

�
	�������
. Since L+ is an additive group while G and H are multiplicative ones,

for our further application, to be more precise, we may interpret the last isomorphism

relationship as C⊗ � G ∼= C⊗ � H , where C is a multiplicative group isomorphic to L+.

Proposition 3 ([13], [12]). Assume that R is a commutative ring with unity of

char(R) = 0 such that p /∈ inv(R) ∪ zd(R). If R(A) ∼= R(B) are R-isomorphic for

some p-group A and an arbitrary group B, then A ∼= B.

Proposition 4. For R a commutative ring with identity of characteristic zero

such that p /∈ inv(R) ∪ zd(R) and for abelian groups G and H , the R-isomorphism

R(G) ∼= R(H) yields P (G) ∼= P (H) as P -algebras for some commutative ring P with

identity and with char(P ) = 0 so that P + is not p-divisible and is torsion-free.

���������
. Because of the ring homomorphism R → R/T (R+) = P , which is

actually the natural map and endows P with the structure of an R-algebra, we

conclude that P (G) ∼= P ⊗R R(G) ∼= P ⊗R R(H) ∼= P (H), i.e.P (G) ∼= P (H), as

P -algebras. Referring to Lemmas 1 and 2, we find that P + is not a p-divisible group

and is torsion-free, i.e. p 6∈ inv(P ) and zd(P ) = ∅. That char(P ) = 0 follows trivially,

but for completeness of the exposition we give arguments like these (see also [13,

Proposition 2]). If the contrary, i.e. char(P ) 6= 0 holds, there is m ∈ � : m · 1R ∈

T (R+), hence there exists n ∈ � with nm · 1R = 0. But char(R) = 0 implies the

desired contradiction, so the proof is over. �

Now, we are ready to attack the
������������������	���	�������� "!���	�����	��

. Let ϕ : G → H be an isomorphism.

Clearly ϕ(tG) = tH and thus ϕ : G/tG → H/tH is also an isomorphism. On the

other hand, ϕ may be linearly extended to the isomorphism Φ: R(G) → R(H) so

that ΦG = ϕ. This allows us to deduce that Φ would carry G/tG to H/tH , i.e. in

terms of our definition Φ is taken to be canonical.

Turning to the necessity, since p /∈ inv(R), it is long-known that (see, for in-

stance, [7]) there is a maximal ideal J / R such that p ∈ J . Hence F = R/J is a
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field of char(F ) = p and by tensor multiplication with F over R, similarly to the

above, we derive F (G) ∼= F ⊗R R(G) ∼= F ⊗R R(H) ∼= F (G), that is F (G) ∼= F (H).

Furthermore, it is easily seen that H must be p-mixed, too (see, for example, [3]),

hence tH = Hp.

Besides, the application of [7] or [3] leads to G/tG ∼= H/tH .

Further, by combining Propositions 1, 2 and 4, we deduce that H is splitting as

well. Thus we write G ∼= tG × G/tG and H ∼= tH × H/tH . Consequently, R(G) ∼=

R(G/tG)(tG) = K(tG) and by symmetry R(H) ∼= R(H/tH)(tH) ∼= R(G/tG)(tH) =

K(tH) whence, under our additional circumstances that the R-isomorphism carries

G/tG onto H/tH , we detect that R(G) ∼= R(H) as R-algebras insures K(tG) ∼=

K(tH) as K-algebras via putting K = R(G/tG). Employing now Lemma 3, one

may conclude that K is a commutative ring with 1 of char(K) = 0 such that p /∈

inv(K) ∪ zd(K). That is why Proposition 3 applies yielding tG ∼= tH .

Finally, G ∼= tG×G/tG ∼= tH×H/tH ∼= H , i.e.G ∼= H , thus the proof is complete

in all generality. �

As is the tradition, J(R) denotes the Jacobson radical of a ring R.

Central Corollary. Suppose G is a splitting p-mixed abelian group and R is

a commutative ring with 1 of char(R) = 0 such that p ∈ J(R) \ inv(R). Then

R(H) ∼= R(G) being canonically isomorphic as R-algebras for another group H

implies that H ∼= G.
���������

. The assertion follows by combining Central Theorem and the proof of

Proposition 3 from [13]. This ends our proof. �

# $%��'&� (	
. The restriction on G to be p-mixed cannot be dropped. Indeed,

let p1, p2, . . . , pn (n > 2) be distinct primes, and consider the direct product R =

� [1/p1] × . . . × � [1/pn]. Plainly inv(R) ∪ zd(R) = ∅, hence R is a torsion-free

commutative ring with 1 of char(R) = 0 for which p 6∈ inv(R)∪zd(R) over each prime

number p. Even much more, R is not an ND-ring (= nicely decomposing) in the sense

of Ullery ([11], [12]) since inv(R) = ∅ while each direct factor of the decomposition of

R contains an invertible prime. Consulting ([11], Example 1) and ([12], Example 3.3)

there exist two mixed groups G and H such that G 6∼= H but R(G) ∼= R(H) as

R-algebras; it is not directly seen whether or not this R-isomorphism is canonical

or can be chosen by extending to be canonical. Note that, via the construction

of Ullery, G and H are not p-mixed for any prime p because supp (G) = supp (H)

possesses at least two prime numbers, specifically {p1, . . . , pn}. Therefore R does not

satisfy the Isomorphism Theorem in the terminology of Ullery ([11], [12]), namely

that R(G) ∼= R(H) as R-algebras does not always imply that G/
∐

∀q∈inv(R) Gq
∼=

H/
∐

∀q∈inv(R) Hq for all groups G and H .
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Generally, returning to the whole mixed case, we will formulate below a universal

algorithm, analogous to that of Ullery ([11]–[13]), about the isomorphism of group

algebras of mixed abelian groups.

Theorem 1 (Equivalence). The following two implications are equivalent:

(a) For each field F of char(F ) = p 6= 0 and for each p-mixed abelian group G,

the F -isomorphism F (H) ∼= F (G) for some group H implies H ∼= G.

(b) For every commutative unitary ring R of char(R) = 0 and for every p-mixed

abelian group G such that p /∈ inv(R), the R-isomorphism R(H) ∼= R(G) for any

group H yields H ∼= G.

���������
. What we need to prove is that F (G) ∼= F (H) ⇐⇒ R(G) ∼= R(H) for

appropriate objects F and R described above.

(a) ⇒ (b). Given that R(G) ∼= R(H) as R-algebras, then, since p /∈ inv(R), there

is a maximal ideal J of R such that p ∈ J . Henceforth, F = R/J is a field of

char(F ) = p > 0 and F (G) ∼= F ⊗R R(G) ∼= F ⊗R R(H) ∼= F (H) as F -algebras.

Therefore, under our hypothesis, G ∼= H , as expected.

(b) ⇒ (a). Assume now that F (G) ∼= F (H) as F -algebras. It is then clear that H

is p-mixed too. Hence by [7] and an assertion of Karpilovsky [6] we derive G/tG ∼=

H/tH and |tG| = |tH |. Constructing R = F ×E, where E is an algebraically closed

field of char(E) = 0, we deduce appealing to [8] that E(G) ∼= E(H) which along with

F (G) ∼= F (H) implies R(G) ∼= F (G) × E(G) ∼= F (H) × E(H) ∼= R(H). Moreover,

it is simply checked that char(R) = 0 since char(E) = 0 and that p /∈ inv(R) since

p /∈ inv(F ). Thereby, the hypothesis enables us that G ∼= H , as asserted. �

In what follows, we assume that the Splitting Group Bases Problem, namely that

the abelian group G being p-mixed splitting and F (G) ∼= F (H) as F -algebras for

some field F of non-zero characteristic p force that H is also a splitting p-mixed

abelian group and, as a consequence, that F (Gp) ∼= F (Hp), both hold in the affir-

mative.

Theorem 2 (Equivalence). The following two points are equivalent:

(a′) For every field F of char(F ) = p 6= 0 and for every abelian p-group G, the

F -isomorphism F (H) ∼= F (G) for some group H ensures H ∼= G.

(b′) For each commutative unitary ring R of char(R) = 0 and for each p-mixed

splitting abelian group G such that p /∈ inv(R), the R-isomorphism R(H) ∼= R(G)

for any group H ensures H ∼= G.

���������
. (a′) ⇒ (b′). Given that R(G) ∼= R(H), then, as in the preceding

Theorem 1, we infer F (G) ∼= F (H) for some field F of char(F ) = p > 0 that depends

on R and, under our circumstances, that G ∼= tG×G/tG as well as H ∼= tH ×H/tH
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with tG = Gp and tH = Hp. By virtue of our above noted assumption, which refines

the Ullery’s one for torsion groups ([12]), we have F (tG) ∼= F (tH). Consequently,

our assumption leads to tG ∼= tH . Besides, by the same argument as in the previous

point, G/tG ∼= H/tH . Finally, G ∼= H and we are done.

(b′) ⇒ (a′). Let F (G) ∼= F (H) and let G be an abelian p-group, whence H is

also p-torsion abelian. Same as above, we obtain R(G) ∼= R(H) for a suitable ring

R of char(R) = 0 such that p /∈ inv(R). Since both G and H being p-primary are

obviously p-mixed splitting, our assumption is applicable to get that G ∼= H , as

required. �

Theorem 3 (Equivalence). The following two conditions are equivalent:

(a′′) For each field F of char(F ) = p 6= 0 and for each p-mixed splitting abelian

group G, the group algebras F (H) and F (G) are canonically F -isomorphic over

another group H precisely when H and G are isomorphic.

(b′′) For every commutative unitary ring R of char(R) = 0 and for every abelian

p-group G such that p /∈ inv(R), the group algebras R(H) and R(G) are canonically

R-isomorphic over any group H only when H and G are isomorphic.
���������

. (a′′) ⇒ (b′′). Suppose that R(G) ∼= R(H) and that G is an abelian p-

group. In the same manner as in the foregoing theorem, we establish F (G) ∼= F (H)

for a field F of char(F ) = p > 0. But because H is obviously a p-group as well,

hence both G and H are p-mixed splitting, which is ensured via the hypothesis cited

above, the assumption from the text means that G ∼= H , as wanted.

(b′′) ⇒ (a′′) Let F (G) ∼= F (H) and let G as well as H be both p-mixed split-

ting abelian groups. Hence we write G ∼= tG × G/tG and H ∼= tH × H/tH so

that tG = Gp and tH = Hp. Invoking [7], G/tG ∼= H/tH . As we have ob-

served above, R(G) ∼= R(H) as R-algebras for a ring R of char(R) = 0 such

that p /∈ inv(R). Since R(G/tG) ∼= R(H/tH), we infer at once that R(G) ∼=

[R(G/tG)](tG) ∼= [R(H/tH)](tG) and that [R(H/tH)](tH) ∼= R(H), whence by

defining K = R(H/tH) and taking into account the extra requirements on the iso-

morphisms over F and R we have K(tG) ∼= K(tH) as K-algebras. Employing

Lemma 3, char(K) = 0 and p /∈ inv(K). That is why the hypothesis from the text

assures that tG ∼= tH . Finally, G ∼= tG × G/tG ∼= tH × H/tH ∼= H , as claimed. �

3. Concluding discussion and remarks

In closing, we comment some more specific aspects of the direction presented. In

fact, we first conjecture that both the restrictions p /∈ zd(R) and G is splitting can

be ignored, by stating the following
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Conjecture. Suppose G is a p-mixed abelian group and R is a commutative

unitary ring of char(R) = 0 such that p /∈ inv(R). Then R(H) and R(G) are R-

isomorphic group algebras for some arbitrary group H if and only if H and G are

isomorphic groups.

Notice that we have demonstrated above in three independent variants that the

last problem is equivalent to its modular analogue, by generalizing the corresponding

ones due to Ullery ([11]–[13]). Nevertheless, the full solution to the conjecture seems

to be in the distant future.
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