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Consider a linear system

_x = A(t)x; x 2 R

n

; t � 0; (1

A

)

with a piecewise continuous bounded matrix of coe�cients A(�), the characteristic ex-

ponents �

1

(A) � � � � � �

n

(A), the incorrectness coe�cients of Perron [1] �

P

(A) and

Grobman [1] �

G

(A), and with a normal ordered system X(t) = [X

1

(t); : : : ;X

n

(t)] of

its solutions X

i

(t). Along with the system (1

A

) consider perturbed systems (1

A+Q

)

with piecewise continuous Perron perturbations Q(�) determined by the condition �[Q] �

lim

t!+1

1

t

ln kQ(t)k < ��

P

(A).

For Perron perturbations only three following results are known: 1) the upper expo-

nents �

2

(A) and �

2

(A+Q) of the two-dimensional systems (1

A

) and (1

A+Q

),respectively,

coincide [1]; 2) generally speaking, the lower exponents �

1

(A) and �

1

(A+Q) of these sys-

tems have not this property [2]; 3) all characteristic exponents of three and higher-order

systems (1

A

) are, generally speaking, unstable (N. A. Izobov, S. N. Batan). There-

fore, two-dimensional systems play a special role in the study of the behaviour of their

characteristic exponents (lower and upper) under Perron perturbations.

For the two-dimensional system (1

A

), introduce the angle 
(t) � ]fX

1

(t), X

2

(t)g

between the solutions X

1

(t) and X

2

(t) forming its normal system of solutions.

Theorem 1. For the lower exponent �

1

(A+Q) of the two-dimensional system under

any Perron perturbation Q(�) the following is true: 1) �

1

(A + Q) = �

1

(A) if �

P

(A) =

�

G

(A); 2) �

2

(A) > �

1

(A+Q) > 2�

1

(A)� �

2

(A) and nonstrict �

1

(A+Q) � �[X

1

sin 
]

otherwise.

Scheme of proof. 1. The equality �

1

(A + Q) = �

1

(A) if �

P

(A) = �

G

(A) is a

consequence of the Grobman theorem.

2. Supposing without loss of generality (1

A

) to be a lower-triangular system, we

transform (1

A+Q

) by y = X(t)z to

_z =

~

Q(t)z; z 2 R

2

; t � 0; (2)

a system of linear asymptotic balance (�[

~

Q] < 0). This allows us to prove the inequalities

�[X

1

sin 
] � �

1

(A+Q) < �

2

: (3)

3. In the case due to (3) �[X

1

sin 
] � 2�

1

(A) � �

2

(A) we establish that the Perron

lower-triangular perturbation Q

T

(�) preserves the characteristic exponents of the initial

system (1

A

), as well as of the conjugate one (1

�A

T

), and their Perron incorrectness

coe�cient is invariant. This allows to include the lower-triangular part Q

T

(�) of the
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Perron perturbation Q(�) into the very matrix A(t) and to suppose that only the element

q

12

(t) with the exponent �[q

12

] < ��

P

(A) of the matrix Q(t) is nonzero.

4. Assume that the inequality �(A+Q) � 2�

1

(A)��

2

(A), the opposite to one under

investigation, is satis�ed. Then the second component y

2

(t) = x

12

(t)z

1

(t)+x

22

(t)z

2

(t) of

the solution y(t) = X(t)z(t) of (1

A+Q

), realizing the lower exponent �

1

(A+Q) with the

appropriate solution z(t) = (z

1

(t); z

2

(t)) of (2) (or (1

eQ

)) has the exponents of its terms

�[x

21

z

1

] = �

1

(A), �[x

22

z

2

] < �

1

(A), and, as a result, it has the exponent �[y

2

] = �

1

(A+

Q) = �

1

(A), which contradicts to the assumption and to the inequality �

1

(A) < �

2

(A)

following from the condition �

P

(A) < �

G

(A). �

The exactness of the bounds of the lower exponent �(A+Q) of (1

A+Q

) is established

by Theorems 2 and 3 below.

Theorem 2. For any numbers �

2

> �

1

, �

0

� 2(�

2

��

1

), � 2 (2�

1

��

2

; �

1

] and � 2

[�;�+�

2

��

1

) there exists a two-dimensional system (1

A

) with an in�nitely di�erentiable

bounded matrix of coe�cients A(�), the characteristic exponents �

i

(A) = �

i

, i = 1; 2,

and the Perron incorrectness coe�cient �

P

(A) = �

0

. Moreover, for any � 2 [�; �] there

exists an analytical Perron perturbation Q

�

(�) such that the system (1

A+Q

�

) has a lower

exponent �

1

(A+Q

�

) = �

Scheme of a proof. 1. Fix numbers � > 1 and �

0

2 (1; �

1=4

): Using the points

�

k

� (��

�1

0

)

k

and t

k

� (��

0

)

k

, k � 0, de�ne the functions f

1

(t) and f

2

(t) on the half-

axis t � 0 as follows. On the segments [t

k

; �

k+1

] with zero and even k de�ne them by

f

i

(t) = (i � 1)�

0

i

+ (i � 2)�

i

, i = 1; 2; while with odd k by f

i

(t) = (2 � i)�

0

i

+ (1 � i)�

i

,

i = 1; 2. Here �

0

1

= �, �

0

2

= �

2

, and the numbers �

1

and �

2

satisfy �

1

+�

2

= �

2

+�

1

= �

0

.

On the intervals (�

k

; t

k

) put

f

i

(t) = f [t; f

i

(�

k

); f

i

(t

k

)] �

� f

i

(�

k

) + [f

i

(t

k

)� f

i

(�

k

)] expf� ln

2

(t=�

k

) exp[� ln

�2

(t=�

k

)]g; (4)

using for this purpose an analogue of the well-known in�nitely di�erentiable function (see

B. Gelbaum and J. Olmsted \Counterexamples in Analysis"); on the interval [0; 1) these

functions are continued as the constants f

i

(1). It is easy to check that a

ii

(t) � d[tf

i

(t)]=dt

are bounded and in�nitely di�erentiable.

2. We will build the matrix A(�) of (1

A

) as lower-triangular with already de�ned diag-

onal coe�cients a

ii

(t) and the o�-diagonal coe�cient a

21

(t; �) = �e

��t

, t � 0, with such

� > �

0

that the second component x

21

(t; �) of its solution x(t) = (exp tf

1

(t); x

21

(t; �))

has the exponent �[x

21

] = �[x] = �

1

. For the proof of the existence of such � > 0 we

establish the Lipschitz condition j�[x

21

(�; �

2

)] � �[x

21

(�; �

1

)]j � �j�

2

� �

1

j with a con-

stant � = �("

0

) > 1, whose exponent �[x

21

(�; �)] satis�es �

1

; �

2

� �

0

+ "

0

, as well as the

estimates

�

1

+ � � " � �[x

21

(�; �

0

+ ")] �

� �

1

+ (� � ")�

2

0

� (�

2

� �

1

)(�

2

0

� 1) (5)

for all " > 0 satisfying �

2

� �

1

> � � ", where � = � � (2�

1

� �

2

). Due to the proved

continuity on � > 0 of the exponent �[x

21

(�; �)] and inequalities (5), we obtain now,

taking �

0

� 1 > 0 small enough, the existence of the required �

1

> �

0

: �[x

21

(�; �

1

)] =

�

1

. The required equality �

P

(A) = �

0

is established via the proof of the inequality

�[x

21

=(x

1

x

2

)] � �

2

.

3. Let B

�

(t) be an analytical Perron perturbation with the unique nonzero element

b

21

(t; �) = �a

21

(t; �) � exp(��t), � > �

0

, t � 0. Arguing as in the part 2, we establish

the existence of such number �

2

= �(�) > �

0

that the second component of the solution

y(t) = (exp tf

1

(t); y

21

(t; �)) of (1

A+B

�

2

) realizing its lower exponent �

1

(A+B

�

2

) has the

exponent �[y

21

(�; �

2

)] = �. To complete the proof, it is su�cient to put B

�(�)

� Q

�

(t),

t � 0.
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The condition � = �[X

1

sin 
] > 2�

1

(A) � �

2

(A) is carried out for the system (1

A

)

constructed in the proof of Theorem 2, with normal system of solutions X = [X

1

;X

2

].

There is the question: what will occur to a lower exponent �

1

(A + Q) of perturbed

system in case of Perron perturbation Q(�) and of the ful�lment of an opposite condition

� = �[X

1

sin]fX

1

;X

2

g] � 2�

1

(A) � �

2

(A). The partial answer to it is given by the

following

Theorem 3. For any numbers � � 2�

1

� �

2

< �

1

< � < �

2

and �

0

> �

2

�

� there exists a two-dimensional system (1

A

) with a bounded in�nitely di�erentiable

matrix of coe�cients A(�), a normal ordered system of solutions [X

1

(t); X

2

(t)] satisfying

�[X

1

sin]fX

1

; X

2

g] = �, the characteristic exponents �

i

(A) = �

i

, i = 1; 2, the Perron

incorrectness coe�cient �

P

(A) = �

0

and such, that for any � 2 [�

1

; �] there exists a

system (1

A+Q

) with in�nitely di�erentiable Perron perturbation Q(�) and lower exponent

�

1

(A+Q) = �.

Scheme of a proof. 1. Fix a parameter � satisfying 1 <

p

� < minf[�

0

+ (i �

1)(� � �)]=(�

0

+ � � �

i

)g, i = 1; 2, and introduce the points t

k

= �

k

, t

ik

= t

k

�

i=4

,

t

�

ik

= t

ik

�

�1=16

, i = 0; 1; 2; 3, and k � 0. De�ne the functions f

1

(t) = � for all t � 0 and

f

2

(t) as follows: 1) f

2

(t) = �

1

��

0

= ��

2

for t 2 [0; t

�

00

]; 2) on the segments [t

+

ik

; t

�

i+1;k

] for

i = 0; 1; 2; 3 and t

�

4k

= t

�

0;k+1

put f

2

(t) = ��

2

for t 2 [t

+

1k

; t

�

2k

]

S

[t

+

3k

; t

�

0;k+1

], f

2

(t) = �

2

for t 2 [t

+

0k

; t

�

1k

] and f

2

(t) = c

k

for t 2 [t

+

2k

; t

�

3k

], k � 0, with a number c

k

, de�ned

below; 3) on the remaining intervals (t

�

ik

; t

+

ik

) put (see (4)) f

2

(t) = f [t; f

2

(t

�

ik

); f

2

(t

+

ik

)],

i = 0; 1; 2; 3, k � 0. We de�ne the diagonal coe�cients of the required lower-triangular

matrix A(t) by a

ii

(t) = [tf

i

(t)]

0

, t � 0.

Let the coe�cient a

21

(t) be equal to 1 on the segments [t

+

1k

; t

�

2k

], k � 0, on the

segments [t

+

3k

; t

�

0;k+1

], let it be equal to a constant b

k

2 (�1; 0), which is equal to the ratio

of the integrals of the function exp(�+ �

2

)� over the segments [t

+

1k

; t

�

2k

] and [t

+

3k

; t

�

0;k+1

]

and on all remaining intervals of the half-axis t � 0 let it be equal to 0.

2. Using the form of the constructed functions a

ii

(t) and a

21

(t), for the second

component x

21

(t) of the solution x(t) of the solution lower-triangular system (1

A

) with

initial value x(0) = (1; 0) we establish the existence of a bounded sequence (fc

k

g the

numbers c

k

are used in the de�nition of f

2

(t) on the intervals [t

k

; t

k+1

)), that the equal-

ities x

21

(�

k

) exp(��

1

�

k

) = max

t

k

�t�t

k+1

[x

21

(t) � exp(��

1

t)] = (2� + 2�

2

)

�1

, k � k

0

, are

ful�lled. From them we have �[x] = �[x

21

] = �

1

. Let q

12

(t) be equal to exp(���

k

) on

the segments [�

k

; �

k

+ 1], 8k � k

1

, and be equal to 0 on the complement with respect

to the half-axis t � 0. Put all other elements of the matrix Q(�) to be zero. By the

transformation y = X(t)z we transform (1

A+Q

) to (1

~

Q

) of the form (2) with �[

~

Q] < 0.

3. Let a solution y(t) = (y

1

(t); y

2

(t)) of (1

A+Q

) realize the lower exponent �

1

(A+Q).

For an appropriate solution z(t) = (z

1

(t); z

2

(t)) of (1

~

Q

) we have: z

1

(t) ! d

1

6= 0 as

t ! +1, �[z

2

] < 0. We detect the exponent �[x

22

z

2

] from the parameter � > �

0

and

the existence of such its value � = �

1

> �

0

, for which �[x

22

z

2

] = � 2 (�

1

; �]. Then we

receive the required relations �[y

2

] = �[x

22

z

2

] = � > � = �[y

1

] from the representation

of y

2

(t).

4. We transform the constructed piecewise-constant functions a

21

(t) and q

12

(t) into

in�nitely-di�erentiable ones a

�

21

(t) and q

�

12

(t) by means of replacing of them by the func-

tions f [t; a

21

(�

k

); a

21

(t

k

)] and f [t; q

12

(�

k

); q

12

(t

k

)] on all intervals (�

k

; t

k

), one endpoint

of which concides with a point of discontinuity of these functions, of such a small length,

that the systems (1

A

) and (1

A

�

), (1

A+Q

) and (1

A

�

+Q

�

) are pairwise asymptoticaly

equivalent (this is possible according to the Yu. S. Bogdanov{S. A. Mazanik theorem). �

Problem. Find out whether Theorem 3 is true in the case � 2 (2�

1

� �

2

; �

1

).
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