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N. A. IzoBoV AND S. N. BATAN

ON EXACTNESS OF UPPER ESTIMATES OF THE CHARACTERISTIC
EXPONENT OF A LINEAR SYSTEM WITH EXPONENTIALLY
DECREASING PERTURBATIONS

(Reported on May 19, 1997)

Consider a linear system
z=A(t)z, z€R", t>0, (14)

with piecewise continuous bounded coefficients and a binormal [1, p. 49] system of
solutions X 4 (t) ordered in increasing exponents. Let A\;(A) be the characteristic exponent
of the i-th column of the matrix X (t) and §; be the characteristic exponent of the i-th
row of the matrix Xgl(t). By means of the sums o;(A) = X\;(A) + §;(A), we introduce

(see [2]) the number go(A) = w, in which the indices m € {1,...,n} and
l € {1,...,n}, I # m, are defined by the equalities om(A) = max{o;(A)}, 01(A) =
3
i(A)}.
max{oi(A)}

In [2] it is established that the characteristic exponents A\ (A+ Q) < --- < Ap(A+Q),
of the perturbed system (144¢g) with a piecewise continuous perturbation Q(-) whose
Lyapunov exponent A[Q] satisfies \[Q] < —o0(A), admit the estimates

ok (A) = 0i(4)

ey (A + Q) < Ni(A) + 5 y i=1,...,n. (2)
The question of attainability of these estimates arises. The following theorem gives the

positive answer to it in a rather general case.

Theorem. For any numbers2 <n €N, m € {1,...,n}, A1 <--- <A, 0< 01 < 02
and any € € (0, (02 —01)/2) satisfying the additional condition € < Ap — Ay + (02 —01)/2
if there is (the least) p € {1,... ,m — 1} for which A\m < X\p + (02 — 71)/2, there exist:
(3) a system (14) with infinitely differentiable bounded coefficients such that \;(A) = X\,
i=1,...,n, om(A) = o2 and 0;(A) = o1 for m # i € {1,...,n}; (i) an analytical
perturbation Q(-) with the Lyapunov exponent A\[Q] < —op = 70“;’2 such that the
perturbed system (1a4q) has all different characteristic exponents and: 1) in the absence
of the aboves pecified p, Am (A + Q) = Am and

— 01 14+n—1
— €

o
M(A+Q) =X+ = , (3)

2 n
form # i =1,...,n; 2) in the presence of such p, \p(A + Q) = Am, Ni(A+ Q) =
Aio1 + 5 — 1+Z_'5, i = p+1,...,m, and other exponents, determined by the

formula (3).
Proof. We will construct not the system (14) itself but its fundamental system of so-

lutions X (t) = diaglexptfi(t),...,exptfn(t)]. Fix @ > 1 and a rather small ¢ > 0
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satisfying the necessary conditions. On the segments v/ (y) = [0¥17,0F+1], k > 0, with
the determined below number v € (0,1), we define the functions f;(t) by

f’L(t): {A“ tEng(’Y),

m#i=1,...,n,
—0i, t € Vart1(7),

() = Am,  t € Vart1(7),
—0m, t€ V()
On the initial segment [0, 1] let’s assume f;(t) = —d;,, m Zi=1,...,n, fm(t) = Am.
On other intervals Ag(y) = (0%,0%+7), & > 0, the functions f;(t), i = 1,...,n, are
defined by means of a special infinitely differentiable function

F(t;m1,a3m2,b) = a + (b — a) exp{—In">(t/n1) x
X exp[f 1n72(t/772)]}7 m < t< 2,
updating [3] the standard function from [4, p. 54]. The functions f;(t) on the interval
Ar(7), k > 0, are defined by the equality
fl(t) = f(ty 17%) fl(tk')i tk+’y) fi(tk+‘)’))7 t=1,...,n,

where to = 0%. It is easy to see that the system (14) so constructed has infinitely
differentiable coefficients with all derivatives bounded.

We construct an n-th order matrix of perturbation Q(-) as having nonzero elements
only in the m-th line, except ¢mm(t) = 0, t > 0. These elements look like

gmi(tyei) = exp(—oo0 —egi)t, i#m, t>0, (4)
with specially determined below constant £;, i Z m.
We choose v > 0 involved in the definition of the system (14) so small that
2(An — A1) + 02 —01](07 — 1) < 2¢/n. (5)
Denote the i-th solutionof the system (144¢), by Y;(t,€;), i # m. Its components are
Yii(t,e:) =0, j#i,m; Yii(t,e;) = xi(t) = exptfi(t);
t
Ymi(t,ei) = zm(t) [Ymi(si) + /q““'(T’ ei)zi(T)T,  (T)dT |,
0

where the constant Y;,i(¢;) = 0, if the Lyapunov exponent A[¢mi%;/zm] of the integrand
+oo

is not less than zero, and Yi,i(ei) = — f gmiTiTm dr. It is obvious that the m-th
0

solution of the system (144¢) is the vector-function Y, (t) with the unique different
from zero component Yimm (t) = &m (t).

For any fixed i # m, let’s establish now the existence of a constant ¢; = &; > 0 that the
corresponding solution Y;(t,£;) has an exponent A[Y;] = X\j+ (02 —01)/2—(1+n—i)e/n.
For this purpose at first we shall establish existence of a constant sgl) > 0 such that the
inequality A[Y;] > A\i + (62 — 01)/2 — ¢/n be true. Really, in the case A\; + dm — g0 > 0,
due to the condition (5) a constant 551) > 0 exists such that A\; + d,n —0g —; > 0 and
for sequence {tap414~} the following estimates are fulfilled

Al > klirréot;kl+1+7lnYmi(t2k+l+7,5(1)) > A+ (N +6m — 00 — )07 >

i il

>+ (02 -01)/2=Pn— A+ (02 —01)/2(1—07) Mo 7 >
>+ (02 —01)/2 —¢/n. (61)
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In the case A\; + 0m — 00 < 0, on the basis of the same condition (5), there exists a
constant 551) > 0 such that for a sequence {to} the inequalities

topty+1
T — 1 T - —
AY:] > kl;rr;ot2k1ln\Ymi(t2k,ag ))\ > Am + kl;n:o t%1 / qmixixmldr =
2kt

=+ N+ 0m — 00— )07 > N + (02 — 01)/2+ M — An—

—(02 —01)/2)(07 —1) =07 > \; + (02 — 01)/2 — &/n. (62)

Let’s establish now the existence of a constant 552) > agl) such that A[Ymi(~,a§2))] <
(2

Ai + (02 — 01)/2 —e. In the first place, choose this constant ¢;*’ so large, that the

Ai +0m —o0p — 552) < 0. Then, due to the Lyapunov lemma concerning the exponent of
the integral, we have

AYomi (e < A+ Xi 4+ 0m —00 =P < N+ (02 —01)/2 — ¢ (7)

under the second additional condition 852) >eon 552). Thus, the inequality A\[Y;(-, 552))] <
Ai + (02 — 01)/2 — € becomes obvious. Due to established in [5] continuous dependence
of the exponent A[Y;(-,&;]) on the parameter ¢; > 0, from (61), (62) and (7) it follows
the existence of the required &; € (551),552)).

For the completion of the proof of the theorem it is necessary to order the solutions
Yi(t,€;), ¢ # m, and Y (t) according to increase of their exponents. In the first case
Am > Am—1+ (02 —01)/2, mentioned in the formulation of the theorem, we have obvious
inequalities A\[Y1] < -+ < A[Ym—1] < A[Yim] = Am < A[Vim+1] < -+ < A[Ya] and
so all characteristic exponents of the perturbed system (144¢g) are different. In the
second case of existence of (the least) p € {1,...,m — 1} for which A\, < A\p + (02 —
01)/2, the fundamental system, ordered in decreasing of the exponents, looks like Y (t) =
YVi(t)y ooy Yp1(t), Y (£), Yp(t)s - o, Yin—1(t), Yin+1(t), .. ., Yn ()], and the exponents of
its solutions are all various, because of the choice, in this case, of the number £ > 0, and
for the obtained exponents A[Y;] the inequalities

AYp—1]=Xp—1+ (02 —01)/2— (2+n—p)e/n<
<Ap-1+ (02 =01)/2 < A = A[Ym] < Ap + (02 —01)/2—€e <
<AYpl=Xp+(o2—01)/2—(1+n—p)/n<
<or K AYm—1] < AYVm41] < -+ < A[YR]

are true. Thus, the fundamental matrix Y'(t) is normal and the system (144q), in
this case, has all different characteristic exponents specified in the formulation of the
theorem. W

Remark. For the characteristic exponents of the systems (14) and (144¢) constructed
in the proof of the theorem, the attainability of the estimates (2) is shown by the in-
equalities Ay ;) (A + Q) > Xi(A) + (02 —01)/2 —¢, i=1,...,n, which are valid for the
permutation

i, if i=1,...,p—1,...,m+1,...,n,
k(i) = < p, if i =m,
i+1, if ¢=p,...,m—1.
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