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Abstract. Right and Left chronological integrals are defined for a function
of real variable whose domain of values is endowed with minimal algebraic
and limiting structures. It is proved that an exponential function of a linear
(possibly unbounded) operator can be represented by means of a chrono-
logical integral which preserves a number of properties of a chronological
exponent.
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1. DEFINITION OF THE RIEMANN CHRONOLOGICAL INTEGRAL

1.1. Auxiliary Definitions and Facts. Denote by M an abstract monoid
whose algebraic structure is defined by a binary associative operation {(gi,
g2) — g1 % g2} : M x M — M and by the unity e. If some g € M is
invertible, then we denote its inverse by g.

The limiting structure in M is determined by means of directedness es.
This permits us to retain simplicity and generality. As usual, a family
G = {guw}wea is said to be a directedness in M if (2,>) is a directed set,
and w — g¢,, maps  into M. Given two directednesses G = {guw; fw,eq,
and F' = {fu, }wseq, in M, G is said to be a subdirectedness of F' when
there exists a mapping N : 3 — Q5 such that:

(a) Guwr = fN(wl)a Vw; € Ql;

(b) for every wy € Qo there exists wy; € Q4 such that from w € w; and
w > wy it follows N(w) > wa.

The limiting structure in M is defined by a system £ composed of the
pairs (G, g) (g9 € M, G is a directedness in M) and satisfying the following
restrictions:

(i) if G = {gw}wea is a directedness such that g, = g for every w € Q,
then (G, g) € £;

(ii) if (G, g1) € £ and (G, g2) € £, then g; = go;

(iii) if F' is a subdirectedness in G, and (G, g) € £, then (F,g) € L.

In the sequel, using the conventional terminology, if (G,g) € £ we will
say that G converges to g and ¢ is a limit of G.

The limiting and algebraic structures are compatible, i.e.,

{(g1,92) —> g1 % g2} : M x M — M

is a continuous mapping.  Under our notation this means that if

{Gw, }w,eq, converges to g and {fu,}w.cq, converges to f, then {g,, *
Juws }(wrws) €01 x0, CONVErges to g x f. (21 x ) denotes a directed product
of the directed sets:

(w1, ws2) > (wy,ws) is equivalent to (wy > w1 and ws > Ws).
1.2. Definition of the Chronological Integral and Some Examples. Let (¢, s)
— f(t,s) map the triangle [a,b] x [0,7] into M, where [a,b] C R, and n
is a positive number. X(a,b) denotes the set of all partitions of the form
o={a=s5)<& <81 <o <y <5 = b}, and

As; =s; — si—1, |o|=max{As;li=1,...,n}.

Y(a,b) is a directed set, the relation o1 < op meaning |o1| > |o2|.
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For a sufficiently fine partition o we denote

S F = f&,As) * f(&, Asy) # - x f(En, Asy),

> F = FGns Asp) k- x f(&, Asy) * f(&, Asy),

the arrow showing the order of co-factors in the right-hand side, which is
important in the non-commutative case.

Definition 1. We say that g € M is the right (left) chronological integral
(or simply, integral) of the function f from a to b, and write

g= /b f(7,dr) (gz /b f(?,dr)>,

if for some oo € X(a,b) the directedness

(£ e (2000 @

is defined correctly and converges to g. When

g= /b f(7,dr) (gz /b f(?,dr)>,

is invertible, we say that g € M is the right (left) integral of the function f
from b to a, and write

azbjf(?,dr> (yzb/afﬁ,dr)).

The directedness (1) is defined for every oq such that |og| < 1. £(a,b) is
a directed set, and for every o1, oo there exists their majorant. Therefore
in Definition 1 the values of the integral do not depend on the choice of oyg.

In what follows, the notation {, },,<vex(a,p) Mmeans that we consider the
given directedness starting from some vy.

When the values of the right and of the left integrals coincide, we can

b
omit the arrow and write [ f(r,dr). Such cases arise usually when M is a

a
commutative monoid, or when the values of the function f commute, since
for a sufficiently fine o there takes place .7 f = 3°° £, and therefore the
arrow can be omitted.
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Remark 1. In case of necessity (for example, when on the support M
we can determine in two ways a structure of monoid consistent with the
limiting structure), in our notation the binary operation will be indicated
regarding to which the integral is taken

N b
3 1. ®/f(r,d7-).

Example 1. (The Riemann integral). Let ¢t — f(¢) map [a,b] into R. If
we consider R with the ordinary convergence and with the operations O, +,
then Definition 1 for the function {(¢,s) — f(¢)s} : [a,b] X R = R provides
the Riemann’s integral of the function f.

Example 2. (the multiplicative integral). Let us consider the limit of
products of the form

[ = exp(Alsn) (s = s0-1)) -~ exp(A(s1) (51 = 50)), 2)

where 0 = {a =59 < -+ < s, =b} and A(s) is a continuous function from
[a, b] to the space B(E) of bounded linear operators in the Banach space E.
The limit is taken as |o| — 0, is denoted as

b

f exp(A(s)ds)

and is called the multiplicative integral ([1]).

If we consider B(FE) with the operation of addition, f : [a,b] — B(E),
and apply Definition 1, then we obtain the ordinary Riemann integral (as

b b
in the foregoing example): [ f(r)dr = @ [f(r)dr.
a a
Consider B(FE) with the operation of composition and apply for (¢,s) —
b
exp(A(t)s) Definition 1. Then from the existence of ® fexp(A)(?ds) there

a

b
follows that of [ exp(A(s)ds), and hence their equality.

Example 3. (T-exponent). Let A(t), t € [a,b], be a piecewise-continuous
family in a noncommutative Banach algebra.

t
By the definition ([2]), the T-exponent U = Exp [ A(s)ds is the solution

of the Cauchy problem for the evolution equation

%_[t] = A(t)U, Uli—q = 1(unity of the algebra),
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and the following condition is fulfilled:

|o]—0

Exp / A(s)ds = lim exp(A(sn)(sn — $n1)) -~ exp(A(s1)(s1 — s0)-

The Banach algebra with its limiting structure and operations of composi-
tion and unity is a monoid such that one can apply Definition 1 to the map-

t
ping (7, s) — exp(A(7)s). Obviously, from the existence of exp N fA(g)ds

t

there follows that of Exp [ A(s)ds and hence their equality (we can prove
a

that these integrals exist simultaneously).

Example 4. Let A(t), t € [a,b] be a family of unbounded linear operators
on the Banach space X. Under certain conditions (see [3]), for any a <
s <t < b and for sufficiently fine ¢ = {s = 59 < --- < s, = t} the
limit of products (2) is defined correctly, and there exists a strong limit
lim [[=U(s,t).

lo|—0 "5
1.3. Algebraic Properties of Integrals. Directly from the definition we have
Proposition 1. Let for some n > 0 f : [a,b] x [0,7] = M and f(¢t,0) =e
t
for every t. Then [ f(r,dr) =e, Vi € [a,b].
t
The following result is analogous to the formula of arrow inversion for

the chronological exponent ([4]).

Proposition 2. (Formula of arrow inversion). Let f : [a,b] x [0,17] = M,
n > 0, let there exist f(t,s), V(t,s) € [a,b] x [0,n] and let for some ¢,

t2 tp— tno
ty € [a,b] there exist [ f(7,dr) and [ f(7,dr). Then 3 [ f(7,dr) and
t1 2

t1

if(?,dr):ff(?,dr). (3)

Proof. For the sake of simplicity, let us consider first the case t; <
t2. By our condition, there exists sufficiently fine oo € X(t1,%t2) such

— — _
that{Zf} and{Zf
00<aEX(t1,t2)

} converge respectively to
o o 00<TED(t1,ta)

tg t27
[r (7,dr) and Ir (7, dr). The binary operation is continuous in M. There-
t1 tl

fore

— “
(z)-(27)} ®
oo (00,00)<(01,02) EX(t1,t2) X E(t1,t2)

o1
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converges to <tf2f(?,d7')> * (jgf(?,dr)) Consequently, {(if) *
1 t1 o

(7 —
<Z f > } , being the subdirectedness in (4), con-
o (00,00)<(0,0)EX(t1,t2) XX (t1,t2)

verges to the same limit. Taking into account that for every o > oy

() (57) - (£9)"(55) e o (700
(j7m) =

Analogously we obtain that <ff T,dr) > <ff 7,dr) ) =e. Thus we

have determined both sides in (3), hence (3) holds.
Let now ts < t1. By Definition 1, from the condition of our proposition
there follows the existence of the integrals

/der (/deT> /deT (jf(r,dr)).

Applying the case considered above, we can see that

]Qf(?,dr) :if(?,dr).
t1 to
Consequently,
t1
[ 1.0 - (/f ?.am) = (Z/WT,M)) _
:h/f(?,dr). n

Proposition 3. Let n > 0, f : [a,b] x [0,n] = M and ¢y, t2, t3 € [a,b].
Then:

to N ts N ts N
(a) if there exist [ f(7,dr), [ f(7,dr) and [ f(7,dr), then
t1 to t1

ff(?,dﬂ - (fﬂ?,dr)) ' <]3f(?,df)>; )
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t2 tg t3
(b) if there exist [ f(7,dr), [ f(7,dr) and [ f(T,dr), then
t1 t2 t1

ts ts ta
tl/f(T,dT):tz/f(T,dT)*tl/f(T,dT).

Proof. Let us prove the case (a) (the case (b) can be proved analogously).
Let t; < ty < t3. Owing to the continuity of the binary operation in M, the
directedness

— —
{(29)-(21)]
o1 o2 (09,09)<(01,02) €B(t1,t2) X B(t2,t3)

converges to the right-hand side of (5). On the other hand, being the

—
subdirectedness of the directedness {Z f} , it also converges
o0<oEX(t1,t3)
to the left-hand side of (5). Thus (5) holds.
The remaining five cases are reduced to that proven above. As an exam-
ple, consider the case t3 < ts < ty:

_ (]f(?,dr)) " ( tgf(?,d7)> u

Proposition 4. Let for some n > 0 f; : [a,b] x [0,n7] = M, i € {1,2},
fi(t,s)xfa(t,s) = fa(t, s)x f1(t,s), Y(t, s) € [a,b] x[0,n] and let t1,t2 € [a, b].
Then:

to to
(a) if there exist [ fi(7,dr), i € {1,2}, then [(fi(7,dr)* fo(7,dr)) does
t1 t1
to

to
exist and equals the product (ffA?,dT)) * (f f3i(?,d7')> , Vi€ {1,2}.
t1

t1



55
t2 t2 — —
(b) if there exist [ f;(7T,dr), i € {1,2}, then [(fi(7,dr)*f2(7,dr)) does
t1 tl

to to
exist and equals the product (ffi(?,d7)> * (f f3_i(<7_',d7')> , Vi e {1,2}.
t1 tl

Proof. We prove here only the case (a), because the case (b) can be proved
similarly.
Consider the case t; < t5. Introduce the notation

agzim*m, Bos.om (Zf)(if) u(e) = (0,0),

that is, u : B(t1,t2) — X(t1,t2) X X(t1,t2). By the condition, ay = By(s),
and we can easily see that for every (o1,02) € X(t1,12) x X(t1,12) Jo €
>_(t1,t2) such that u(o) > (01,02), Vo > 7. Hence {as }5o<oex(ty tz) is the
subdirectedness of the directedness

{/6(0'1,0'2)}(UO,UO)S(Jl,Jz)EZ(tl,tz)XZ(tl,tg) .

Taking into consideration the continuity of operation and also the equality
50'1,0'2 (Zg2 f2> * <E;; fl)awe get

ta

[t arye a7 i) =(/fde> (/fg,”m), vie (12).

t1

If t; > to, then with regard for the case considered above, we arrive at

/flrdr % fo(7T,dr)) :</fz7-d7-> (/f317d7)>, Vi € {1,2}.

Equating the elements inverse to the left and right-hand sides, we com-
plete the proof of the case (a). H

2. ONE-PARAMETER INTEGRAL AND FORMULAS OF PARTIAL
INTEGRATION

2.1. One-parameter Integral. Let f :[0,n7] — M, n > 0. For every interval
[a,b] we may assume f to be the mapping with respect to ¢ : (¢,s) — f(s)
maps the rectangle [a,b] x [0,7] into M. Hence for 0 = {a =59 < & < s1 <

<&, < s, =b}suchthat [o| <n, S f = f(As)xf(Asa)x - -xf(Asy,),
and Y0 f = f(Asy,) x -« f(Ass) x f(Asy) are defined correctly, and we
may speak on the integrability of f in terms of Definition 2.

It appears that there may exist simultaneously the left and the right
integrals of such (incomplete) subintegral functions; and if they do, then
they are equal (notation, of course, reflects this fact). Indeed, given a < b,
let us define u : X(a,b) — X(a,b): if 0 = {a =50 < & <51 < -+ <
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&n < sp = b}, then u(o) = {a =uwp < m < up <0y < uy = b}, where
up=a+(b—sp—), k€ {0,1,...;n}, e =a+(b—Ep—py1), k€ {l,...,n}.
Clearly, u(u(o)) = o (i-e., u is one-to-one), |u(o)| = |o|, and Z:(a) f=
Se Y f= Z:(a) f for sufficiently fine o. Thus each of the following

directednesses
N
{27}

is a subdirectedness of the other.
The case a > b can be easily reduced to that considered above.

-
(2]
go<o€X(a,b) o go<o€X(a,b)

Proposition 5. Let for some n >0 f :[0,7] = M, a,b € R, and let there

b b+t
exist [ f(dr). Then there exists [ f(dr), Vt € R, and
a a+t
b bt
/ Fdr) = / f(dr), VieR (6)
a a+t

Proof. Evidently, it suffices to consider the case a < b. Denote

1

> =%(ab), Y =3(a+tb+t)

and define u : ¥(a,b) = X(a +t,b+t) as follows: to every o = {a = 59 <
& < sp <-0- <&,y < sp, = b} there corresponds

ulo)={a+t=s50+t<&E+t<s1+t<--- <&+t <s,+t=b+1t}.

It is clear that u is one-to-one and |u(s)| = |o|, Vo € S'. More-
over, for sufficiently fine o € 22, we have Zml(g) f =23, f- Therefore

{ng} is the subdirectedness of the directedness {ng}
o€> ?ol<n

Consequently, (6) holds. W

o€> ol<n

Proposition 6. Let for some n > 0 f : [0,7] = M and let for every ¢t > 0
¢ ¢
there exist [ f(d7). Then {ff(dT)} is a one-parameter semigroup in
0 0 t>0
M,ie., -

t1+to t1 t2

/ fldr) = </f(dr)> ) </f(dr)>, Vi, s > 0.

0 0 0
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Proof. Combining the results of Propositions 3 and 5, we can prove the
above proposition:

t1+t2 t1 t14ta

0/ ftan) = ( / )« ([ san) -

t1

_ (Zﬂdﬂ) " / ). m

Corollary 1. If in the conditions of Proposition 6 there is also f(0) = e,

¢
then {ff(dT)} is a one-parameter submonoid in M.
0 >0

Denote by f](a, b) the set of all partitions of the interval [a, b] of the form
o={a=1ty <---<t, =0} (weimply that a < b). As usual,
Ati :ti_ti—l, |0’| :maX{Atiﬁ: 1,...,TL}.

Y.(a,b) is ordered as follows: o1 < o5 if |o1| > |o2].

Lemma 1. Let for somen >0 f:[0,n] = M, f(0) =e and t > 0. Then
each of the following two directednesses

{ Z f} and
o g0<o€X(0,t)
{f(ATl) * f(AT2) koK f(ATn)}35{0:7—0<...<7—n:t}6§(07t)

is the subdirectedness of the other.

Proof. Denote
o, = Zf, oo <o € X(0,1),
By = f(ATL) % f(AT2) -+ % f(ATn),
I/()SI/:{O:TU<"'<Tn:t}€§(0,t),

and construct the mappings u : $(0,¢) — £(0,¢) and v : £(0,t) — (0, )
as follows.
Let o ={0=1<& <71 <+ <& <1 =t} € ¥(0,¢). Denote

so = 70, 851 = {1 € {T0,...,Tu}|Tj=1 = S0,7; > so} and so on. If the
constructed in such a way set {so,..., st} does not involve {rg,...,7,},
then sgi1 = {Tj € {10, .., T }Tj—1 = Sk, 75 > sk}.
Not more than in n steps we obtain {so,...,sp} such that
{s0s---,sp} ={10,---, T}

Now we can determine v : u(o) = {0 =s0 < --- < sp =1t} € f]((),t).
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The mapping v can be defined in a more simple manner: to every v =
{0 =19 <+ < 7, =t} there corresponds
v(w)={0=71 <& =1 < <&y =T =t} € 3(0,1).

Taking into account the properties of v and v, the following identities
complete the proof:

) =By, W<v={0=19< <7, =1} € Z(0,1),
ﬁu(a) = Qg, 00 S o€ E(O,t) [ |

Corollary 2. Under the conditions of the lemma, g € M is the integral of
the function f on [0,t] (from 0 to t) if and only if the directedness

{f(AT1) % f(AT2) % - - - % f(ATn)}VoS{0:T0<"'<Tn:t}6§(07t)
converges to g.

Proposition 7. Let for some n > 0 f : [0,n] — M, f(0) = e and t > 0.
Then the existence of each of the following two integrals

O/f(dT) and O/f(t-dT)

implies the existence of the other one and their equality.
Proof. Consider the nontrivial case ¢ > 0 and introduce the notation:
a, = f(Asy) x f(Asy) -+ % f(Asp),

o <v={0=80< - <sm=t}€30,1),
Be = ftx Amy) % f(t % Amz) * - % f(t x ATy,),

oo<o={{0=7<-- <7 =1} € 3(0,1)},

where oy and vy are fixed sufficiently fine partitions.

Determine u : f]((), 1) — f]((),t) as follows: to every o = {0 =715 < --- <
7, = 1} € £(0,1) there corresponds u(c) = {0 = trg < -+- < tT, =t} €
fJ(O, t). Obviously, u is one-to-one and

lu(o)| = t|o|, Vo e £(0,1), |u (o) =t 0|, Voe (0,t).
The identities
Qy(e) = Bs, Vo € f]((), 1), o> oo,
Bu-1(v) = @y, YvE€E fJ(O,t), v > v,
with regard for the properties of the mapping u prove that

{O‘”}uogue’z\(mt) and {ﬂ”}ao <oeS(0,1)
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are subdirectednesses of each other, which by virtue of Lemma 1 proves out
proposition. H

2.2. Formulas of “Partial Integration”. For every invertible g € M, let us
determine an automorphism of the monoid M:

Adyf =gxfxg, VfeM.
It is easily seen that Ad,je = e, Ad,(fi*f2) = Ad, fixAd, f>, Ad,(f) = Ad, f
when f is invertible in M and if {p(¢)}+>0 is a one-parameter semi-group in

M, then {Ad,p(t)}+>0 is also a one-parameter semi-group.

Proposition 8. Let ¢ : [0,7] = M, n > 0, {p(t)}+>0 be a one-parameter

b
subgroup in M, and for some a, beR let there exist the integral fAdp ) g(dr)
a

b b+t b+t
<fAdp(<;)g(dT)). Then3 [ Adp(?)g(dT) < [ Adp(?)g(dr)> ,and Vt € R

a+t a4+t
we have.

b+t b

[ Ady iz gtar) = Ady [ / Adp(¢)g(d7)] (7)
a4+t a

b+t b

< / Adp(<;)g(d7') = Ad,) [ Adp(<;)g(d7')] )

a4+t a

b
Proof. Let a < b and let there exist fAdp(?)g(dT). Take some t € R and

determine u : X(a+t,b+1t) = X(a,b) as follows: to every o = {a+t = s <
& <81 <0 <&y < 8y = b+ t} there corresponds u(o) = {a =59 —t <
H-t<s—t<--- <& —t <s,—t=>b}. Clearly, |u(o)| = |o| and u is
one-to-one. For the sake of simplicity we also denote f(7,s) = Adp,-)g(s).
The evident equality Y7 f = Adyp Z:(a) f, with regard for the properties
of u, proves that

—
{1} ®)
o ceX(a+t,b+t),|o|<n

is a subdirectedness of the directedness {Adp(t) SOf }

o€X(a,b),|o|<n
which converges to the right-hand side of (7). Consequently, (8) also con-
verges to the right-hand side of (7). By the definition of the integral, this
means that (8) converges to the left-hand side (7) as well. Thus, by virtue
of the uniqueness of the limit, (7) holds.
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b
Let now a > b, and let there exist [ Adp(?)g(dT). Hence there also exists

b
its inverse {Adp(?

)g(dT). Since b < a, for every t we have

a+t a
b+t b

and both sides are invertible. Equating their inverse elements, we obtain
(7).

The version of Proposition 8 given in square brackets is proved in a similar
way. H

Proposition 9. Let {p(t)}+>0 and {¢(t)}+>0 be one-parameter subgroups

b
in M, and for some a, b € R let there exist the integral [ Adq(;» p(d7). Then

a

)

b
there exists [ Adp(?)q(dT), and the equality
a

b b
/Adp(?)q(dr) = p(a) * q(—a) * [/Adq(—r»)p(dT)} *q(b) xp(=b) (9)
takes place.

b
Proof. Let a < b and there exist fAdq(—T»)p(dT). We construct u:3(a,b) —

Y(a,b) as follows: to every 0 = {a = sp < & < 51 < - <&, < s = b} there
corresponds u(o) ={a =& =59 <& <81 <2 <& < 8p = Epgr = b}
By the construction, |u(0)| < 2|o]|.

> (Adprya(dr)) =

=p(&1) * q(—s0) * q(s1) * p(=&) * -+ % p(&n) * q(—8n—1) * q(sn) * p(=&n) =
= p(&o) * ¢(—s0) * [q(s0) * P(—&o) * p(&1) * q(—s0)] *
#[q(s1) * p(—&1) * p(&2) * q(—s1)] *
ok [q(sn—1) ¥ p(—En—1) * P(€n) * q(—8n—1)] *
#[q(sn) * p(=&n) * p(Ent1) * q(—5n)] * q(sn) * P(=E€nt1) =

— p(a) * g(~a) * { Z(Adqmp(dﬂ)] « q(b) * p(—b).
u(o)
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Consequently,

N
{S dymatary} (10)
o oc€X(a,b)
is a subdirectedness of the directedness

—

() vat-0)« [ Stateptar| a0 pn)}

v veX(a,b)
which, by the conditions of the proposition and due to the continuity of
the binary operation in M, converges to the right-hand side of (9). Hence,
(10) converges to the right-hand side of (9) which, by the definition of the
integral, proves (9).

The case where a > b easily follows from the above proven. B

Proposition 10. Let {p(t)}:>0 and {q(t)}+>0 be one-parameter subgroups

b
in M and for some a,b € R let there exist the integral fAdq(_<;)p(—dT).
a

b
Then there exists fAdp(<;)q(dT), and
a

/b Ad, s aldr) = p0) <) | /b Ady s pl=in)] xa=a) s p(-a)

Proof. Just as in the case of Proposition 9, the proof is actually a simple
checking. W

The results proved in Propositions 9 and 10 are naturally associated
with the formulas of partial integration. As is seen, the formula for the left
integral is of more familiar form.

3. INTEGRAL REPRESENTATION OF ¢g-SUBGROUPS OF OPERATORS

Let A : D(A) — X be a linear operator acting in the Banach space X.
One of the basic results of the theory of subgroups of operators, the Hille-
Tosida-Phillips theorem ([5], Ch. VIII. p. 1), states that the linear (possibly
unbounded) operator A in the Banach space X generates a strongly contin-
uous semi-group of operators {U(t)};>o (i.e., a co-semi-group) if and only
if A is densely defined, closed and has a resolvent satisfying

|(A_A)_n|B(1‘) Sa(/\_ﬂ)_na n:1727"'7A>ﬁ7 (11)

for some constants a > 1 and 8 > 0.
n

In this case, U(t) is a strong limit of operators of the type (I — %A) -

as n — oo ([6], Ch. IX), where I is the identical mapping of the space
X onto itself. This fact is contained in the definition of the exponent of
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the unbounded operator A and also in the notation U(t) = exp(tA) (some
authors write U (t) = exp(—tA)).

Despite the fact that such a definition of the exponent for an unbounded
generating operator is accepted and widespread, it gives rise to a dissatis-
faction: in the general case, for calculation of exp(tA) it is impossible to use

i n
the series Y. % or the strong limit of operators of the type (I + %A)
(as n — o), since the domain of definition of A™ contracts with the growth
of n. Thus the definition of the exponent of the unbounded operator con-

tains certain conditionality. In our opinion, application of the Riemann
chronological integral allows us to achieve as much clearness as possible.

Theorem 1. Let a linear operator A in the Banach space X generate the
strongly continuous semi-group {U(s)}s>o0. Then

U(s) = @/(I—dt-A)—l, Vs > 0. (12)

The integral is taken in the monoid B(X) (which is considered to have the
unity I, operation of composition and the strong convergence).

Proof. Let us consider the case nontrivial s > 0 and divide the proof into
several parts. R

(a) For any sufficiently fine partition og € X(0,s), the following direct-
edness is defined correctly:

{S(U)}JOSJG/Z\)(O,S)’ (13)
where
So)y=I—-Ar -A) - (I-A1p A7, 0={0=1<-- <7y =5}

A generates a c¢p-semi-group. Therefore, by the Hille-Tosida-Phillips the-
orem, A is closed, densely defined, and for some a > 1 and 8 > 0 there
takes place (11).

(I —tA) =t(t~! — A). Therefore for every t € (0,47 1), I(I —tA)~! and

-1
(I —tA)t = %(% - A) . (14)
Thus, if o9 € fJ(O,s) such that |og| < ﬁ (in the sequel, this will be
assumed to be the case), then every term of the directedness (13) is defined
correctly.

(b) Directedness (13) is bounded in B(X).

(11) is equivalent to the following condition ([3], p. 244, Prop. 3.3):

-4t

k
Jj=

k
<a[-=-8)"Y N>8, k=12,...
B(X) j=1
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which along with (14) for every 0 = {0 =19 < -+ < t,, = s} > 09 yields
1S(@)|Bx) = (I = Aty - A)7h o (I = Aty - A7 |px) <
<a(l= At B) (1= Aty B)
For an arbitrary j € {1,...,m}, we have
1 At; - At -
T A 5
= 1+ Aty - B(B+1) < exp(Aty (3 + 82)).
Consequently,
(I — Aty - A7 (T = Aty - A) 7Y px) <
< a-exp((Aty + -+ + Aty) (B + 5%)), (15)
1S(0)|B(x) < a-exp(s(B + 7). (16)
(c) D(A?) is dense in X since for every A > 3
D(A%) = (A= A)"'D(A), D(A)=(\—-A4)"'X,

where D(A) is dense and (A — A) ! is the bounded operator.
(d) For every z € D(A?),

{5}, 50, (17)

is a converging directedness.
Let z € D(a®), 0 ={0 =19 < -+ < T = s}, and let oy be a refinement,
of o:

o1 ={0=m <0< <Tipa)=T1 =T20 < < Tpmp(m) = Tm = S},
and o, o1 > 0y.
|S(o)x — S(o1)z| = |(I— Ar - A (I - A7y - A) 7l —
—(I=Ar - AT = Aria- A7 (T = ATy piom) -A)_la:| <
ST =Ar - A) ' =T =Ar - A7) (T = AT paya) ) -
(I = A - A7 e (I = A - A) 72| +
H(I = A7y - A7 (T = ATy - A) 7
((IT=Ary - AT = (I = Ay - A)7' (I = ATy oy - A)71) -
(IT—Ar- A (I = A1y - A) 72| +
+oH (T = A A7 (= AT 1yp(me) - A) 7!
(I =Arp - A7 = (I = AT - A) 7 (I = ATy p(m) - 4) 1) 2. (18)
For an arbitrary A > 3,
AN— Az =\ - A)""Az, Vz € D(A). (19)
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Therefore for every ti,ta € (0,87!/2), on D(A?) there takes place the
following operator equality:

(I—(t+t) AT —(I—t1- A (I -t A" =
= ([— (tl —l—tg) -A)71 — (I— (tl +t2) . A)il(I— (t1 +t2) A) .
(I -t -A)’l(I—t2 AT =T = (t +t2) - A) T -
(I (t1+t2 1{[ t1+t2) A)—([—tQ-A)([—tl'A)]+
+(I —to -A)(I—t1 AL =t AT T -ty AT =
=tito(I — (ty +t2) - AT =t - A7 (T —ty - A)71 A% (20)
Taking into account (19) and (20), for every j € {1,...,m} on D(A?) we
have
(I—Ar- A7 = (I=Ar - A7 (T = Arypyy - A)7h =
= {([ — ATZ' . A)_l — (I — ATil . A)_I(I — (ATiQ + L + ATip(i))A)_l} +
H{I = Ay - AT = (Aria + -+ Aryp)A) T -
—(I - ATil . A)l([ - ATZ'Q . A)_l .
+{(I — ATy - A)71 s (I = ATi(p(i)72) : A)71
-1
(I = (A7i(p(i) = 1) + ATipi)A) =
—~(I A7 - A (I - AT pi) - A) 1=
= A1i1(ATia 4+ + ATypiy) - (I — ATy - A)7 "I —Ary - A
(I = (ATio 4 -+ AT p))A) A%
+AT 2 (ATiz + - AT ) -
(1= ATy - )7 I = (Ariz + o4 Aip)A) -
(I = Atin - A) NI = (Amig + -+ Ary ) A) A% +
+e d ATigp(i)-1) ATip() °
(I — ATy - A)il (I = ATi(p(i)_Q) - A)il
-1
(1= (ATigp(iy 1) + ATip(i))4)
-(I - ATi(p(i)_l)A)_l(I - ATip(i) . A)_1A2.
By virtue of this fact and because of (15), the inequality (18) results in
1S(0)z — S(o1)a] < sa* - exp(3s(3 + F2))|o]| A% 1)
Given an arbitrary € > 0, let A%z # 0. We take & € (0, s) such that

)
5] < min {|oo|, (250 - exp(3s(3 + 8%))|A%z]) "}
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Then for any oy > ¢ and 03 > & we have
|S(o1)x — S(o2)z| < |S(01)x — S(0o3)x| + |S(02)x — S(03)z| < €

where the partition o3 is inscribed in o; and oy simultaneously. Due to the
arbitrariness of ¢, the directedness (17) is fundamental. If A%z = 0, then
the fundamentality (17) is obvious.

Thus X is a complate space, and therefore the directedness (17) converges
for every x € D(A?). Denote its limit by Sx.

(e) In the monoid B(X) with the operation of composition and with a

strong convergence there exists © (I —dt- A).

0

Indeed, the directedness (13) is bounded in B(X), the directedness (17)
converges for every z € D(A?) and D(A?) is dense in X. Therefore, accord-
ing to the well-known corollary of the principle of uniform boundedness ([5],
Ch. II, p. 1), there exists the limit Sz = lim, S(o)z for every z € X and S
is a continuous operator. Hence (13) converges strongly to some operator
S from B(X). By the definition of the integral, this implies that there ex-

S
ists © J(I —dt-A)~" which is equal to S.

0

(f) Prove finally that the equality (12) holds.

{Sn}nen is a subdirectedness of the directedness (13), where S,, = (I —
SA)TH (I = 2A)7 = (I — £A)™" (this is olzvious if we consider the
mapping n — {0 < £ < 28 <... 28 =4} : N — %(0,s)). Consequently, in
the monoid B(X)

S

© _ ) -1 _ 1 T _ f _n

/(I dt- A~ = nh_}rr;o Sp = nh_}rr;o(f nA) . (22)
0

On the other hand, the semi-group U(-) generated by the operator A is

constructed with the help of the strong limit U(f) = lim,oo(/ — £A)™"

([6], Ch. IX, p. 594), which together with (22) provides us with (12). W
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