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1. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN RESULTS

Let R be the set of real numbers, Cj,.(R,R) be the space of continuous functions w :
R — R with the topology of uniform convergence on every compact interval, Cjoc(R;R4) =
{u € Coc(R;R) : u(t) > 0 for t € R}, Lipc(R,R) be the space of locally summable func-
tions u : R — R with the topology of convergence in the mean on every compact interval,
and Ljoe(R;R4) = {u € Lioe(R;R) : w(t) > 0 for almost all ¢ € R}. Consider the system
of differential equations

n
Tt =piOzi®) + > Lx(@)O+a®)  G=1,...0), (1)
k=1
where £ : Cloc(R,R) — Li(R,R) (¢,k = 1,...,n) are linear continuous operators,

pi and g; € Lipe(R,R) (¢ = 1,...,n). Moreover, there exist linear positive operators
it = Cloc(R,R) — Lige(R,R) (i,k = 1,...,n) such that for any u € Cioc(R,R) the
inequalities

k(@) O] < Lr(lu)(®) (G k=1,...,n)
are fulfilled almost everywhere on R.

The simple but important case of (1) is the system of differential equations with
deviating arguments

20 =YY vk Oek(ring () +ailt)  (=1,...,n), (1)

k=1 j=1

where g; and p;g; € Lioc(R;R), 7;1; : R — R are measurable functions, and 7;;1(t) = t.
A locally absolutely continuous vector function (z;)?* ; : R — R is called a nonnegative
bounded solution of the system (1) if it satisfies this system almost everywhere on R,

n
sup { Z |zi ()] : t € R} < 400,
i=1

and
zi(t) >0 for teR (i=1,...,n).
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I. Kiguradze [3], [4] has established optimal in some sense sufficient conditions of the
existence and uniqueness of nonnegative bounded solutions of the differential system

d:vi(t)
dt

= pirm®) +alt)  (=1,....n).
k=1

In the present paper these results are generalized for the systems (1) and (1’).
Before formulating the main results we want to introduce some notation.
d;1 is Kronecker’s symbol, i.e., §;; = 1 and §;, = 0 for i # k.

A= (@)} =, 18 an X n matrix with components a;;, (i,k =1,...,n).
r(A) is the spectral radius of the matrix A.

Pr is the set of linear operators mapping Cioc(R;R4) into Lige (R; Ry ).
Ift; e RU{—00,+o0} (i =1,...,n), then

No(tl,. cotn) ={i:t; R}
If u € Lioe(R,R), then

8

n(u)(t, s) = /u(ﬁ) d¢ for t and s €R.
t
For t; E RU {—o00,4+00} (i =1,...,n) put
oi(t) = sgn(t — t;) if t; € R,
oi(t)y=1 ift; = —o0, oi(t)=—-1 ift; = +oo.

Theorem 1. Let there exist t; € RU {—o0,+o0} (1 = 1,...,n), a matric A =
(k)] =y € Rixn, and a nonnegative number a such that

r(A) <1, (2)

t t
| / exp / PE)dE) ik (1)(5) s
AR

<aj forteR (i,k=1,...,n), (3)

t t
Z ‘ /exp (/pi(f)dﬁ)\qi(s)his <a for teR (4)
=1 t; s
and
t
sup{/pi(g)dﬁzteR} < 400 for i € No(t1,...,tn). (5)

t;
Let, moreover, o;l;;, € PR, 0iq; € L1oc(R;Ry). Then for any ¢; ERy (i € No(t1,..-,tn))
the system (1) has at least one nonnegative bounded solution satisfying

x,(t,) =c; for iENo(tl,...,tn). (6)

Theorem 2. Let all the assumptions of Theorem 1 be fulfilled and

0

liminf/pi(g)dﬁ = —o0 for i€ {1,...,n} \ No(t1,...,tn).

t—t;
t
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Then for any ¢; € Ry i € No(t1,...,tn) the system (1) has a unique bounded solution
satisfying (6), and this solution is nonnegative.

If t; € {00,400} (i =1,...,n), then No(t1,...,tn) = &. In that case in Theorems
1 and 2 the conditions (5) and (6) become unnecessary. Consequently, these theorems
are formulated as follows:

Corollary 1. Let there exist t; € {—oo,+00} (i =1,...,n), a matriz A = (aik)?kzl
€ Rixn and a nonnegative number a such that the conditions (2) — (4) are fulfilled.

Let, moreover, oil;r, € Pr, 0iqi € Lioc(R;R4). Then the system (1) has at least one
nonnegative bounded solution.

Corollary 2. Let all the assumptions of Corollary 1 be fulfilled and
0

liminf/pi(ﬁ)df = -0 (i=1,...,n).

t—=t;
t

Then the system (1) has a unique bounded solution, and this solution is nonnegative.
The above theorems yield the following statements for the system (5.1").

Corollary 1'. Lett; € RU{—o00,+o0} (i=1,...,n),

(1 = 0;1051)0iPik; € Lioc(R;RY), 0iqi € Lioc(R;R4) (7
(i,k=1,...,n; m=1,2,...),
there exist a matriz A = (a;)],_, € Rixn and a nonnegative number a such that

r(A) <1,

t t
Z/eXp (/pm(f)df) (1 = 0ir0j1)pinj(s)ds < az,  for tER (8)
= )

(i,k=1,...,n),

t t
Z/exp (/piil({)dﬁ)qi(s)ds <a for teR (9)
=1y s

and
t
sup{/piil(g)dﬁztER} < 400 for i € No(t1,...,tn).
t;
Then for any ¢; € Ry (i € No(t1,...,tn)) the system (5.1") has at least one nonnegative

bounded solution satisfying the conditions (6).

Corollary 2'. Let all the assumptions of Corollary 1' be fulfilled and
0

liminf/piil(ﬁ)df = —00 for i€ {l,...,n} \ No(t1,-..,tn)-

t—=t;
t

Then for any ¢; € Ry (i € No(t1,-..,tn)) the system (5.1') has a unique bounded
solution satisfying the conditions (6), and this solution is nonnegative.
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Corollary 3'. Let there exist t; € RU{—00,+00}, b; €]0,+00[, b;, € [0,400[ (i,k =
1,...,n) such that the condition (7) is fulfilled, the real part of every eigenvalue of the
matriz (—0;kb; + bix)? . _, is negative and the inequalities

oi(O)pii (t) < =by, Z(l = 0ir051)0i(O)pigs (1) < by, (5,k=1,...,n)
i=t

hold almost everywhere on R. Moreover, let
t41

sup /|qi(s)\ds:t€R <400 (i=1,...,n). (10)
¢

Then for any ¢; € Ry (i € No(t1,-..,tn)) the system (5.1') a unique bounded solution
satisfying conditions (6), and this solution is nonnegative.

Corollary 4. Let there exist t; € {—00,+00} (i =1,...,n), a matriz A = ()",
€ R™™™ and a nonnegative number a such that r(A) < 1 and the conditions (7) — (9) be
fulfilled. Then the system (5.1') has at least one nonnegative bounded solution.

Corollary 5. Let all the assumptions of Corollary 4' be fulfilled and

0

lirninf/piﬂ(s) ds=—-o00 (i=1,...,n).
t—=t;
t
Then the system (5.1') has a unique bounded solution, and this solution is nonnegative.
Corollary 6. Let there ezist o; € {—1,1}, b; €]0,400[, bix € [0,+00[ (i,k =
1,...,m) such that the condition (7) is fulfilled, the real part of every eigenvalue of
the matriz (—0;,b; + bix),_, is negative and the inequalities

m

oipiin (t) < —by, Z(l — 05k 051)0iPik; (t) < b (i,k=1,...,n)
j=1
hold almost everywhere on R. Moreover, if the conditions (10) are fulfilled, then the

system (5.1') has a unique bounded solution, and this solution is nonnegative.

2. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. By Theorem 1.1 in [1] we obtain that under the assumptions of
Theorem 1 there exists at least one bounded solution (z;)]_; of the equation (1), which
is a uniform limit of the sequence of functions

Tim (t) = €im (Yim ) (t) (i=1,...,n; m=1,2,...),

where (yim ), is the solution of the problem

n
Yi(®) = Pim WYi () + Y Likm (Ui) () + Gim (1),
k=1
Yi(tim) = Cim,
on the segment [am ,bm], {am};‘;"l, {bm};‘;"l are sequences of real numbers such that

am < bm, ti € [am,bm] for i € No(t1,...,tn) (m=1,2,...),

lim ap = —o0, lim by, = 400,
m— 400 m— +o0o
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Pim and ¢;m are the restrictions of the functions p; and ¢; on the segment [am ,bm],
Likm (w)(t) = Lir(em (w))(1),
where
u(t) for am <t <bpy
def
em(u)(t) = < ulam) for t<am )
u(by) for t>bm
Cim = ¢ ifi € No(tl, N ,tn), cim =0ifi € {1, . ..,n}\./\fo(th Lo ,tn), tim = t; ift; € R,
tim = am if t; = —00, tim = bm if t; = 400 (i,k=1,...,n; m=1,2,...).
On the other hand, we have
Yim (t) >0 for t € [am,bm] (i=1,...,m; m=1,2,...).

Consequently,
zi(t) >0 for teR (i=1,...,n). O
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