Mem. Differential Equations Math. Phys. 20(2000), 129-132

L. Kokilashvili

ON A NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM FOR HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

(Reported on September 27, 1999)

The present paper deals with the problem of existence of solution of the n-th order nonlinear nonautonomous ordinary differential equation

$$u^{(n)} + \sum_{k=1}^{n-1} p_k(t) u^{(k)} = f(t, u, u', \dots, u^{(n-1)})$$
⁽¹⁾

satisfying the nonlinear two-point boundary conditions

$$u^{(i)}(a) = \varphi_{1i}(u(a), u'(a), \dots, u^{(n-1)}(a)) \quad (i = 0, \dots, n_0 - 1),$$

$$u^{(j)}(b) = \varphi_{2j}(u(b), u'(b), \dots, u^{(n-1)}(b)) \quad (j = 0, \dots, n - n_0 - 1),$$
(2)

where $n \geq 2, \ 0 < a < b < +\infty, \ n_0$ is the entire part of $\frac{n}{2}$, each of the functions $p_k : [a,b] \to \mathbb{R}$ for $k \in \{1,\ldots,n-1\}$ is absolutely continuous together with its derivatives up to the order k-1 inclusive, the function $f : [a,b] \times \mathbb{R}^n \to \mathbb{R}$ satisfies the local Carathéodory conditions and the functions $\varphi_{1i} : \mathbb{R}^n \to \mathbb{R}$ $(i = 0,\ldots,n_0-1)$ and $\varphi_{2j} : \mathbb{R}^n \to \mathbb{R}$ are continuous and satisfy the conditions

$$\sum_{i=0}^{n_0-1} \left| \varphi_{1i}(x_0, x_1, \dots, x_{n-1}) \right| \le c_1 \left(1 + \sum_{k=n_0}^{n-1} |x_k| \right)^{-\vartheta_1},$$

$$\sum_{j=0}^{n-n_0-1} \left| \varphi_{2j}(x_0, x_1, \dots, x_{n-1}) \right| \le c_2 \left(1 + \sum_{k=n-n_0}^{n-1} |x_k| \right)^{-\vartheta_2}$$
(3)

on \mathbb{R}^n , where $c_i \geq 0$ and $\vartheta_i \in [0,1]$ (i = 1, 2).

The above-given theorems on the existence and uniqueness of a solution of the problem (1), (2) supplement the results of the works [1-3, 6].

Everywhere in the sequel we will assume that $\mathbb{R} =] - \infty, +\infty[$, $\mathbb{R}_+ = [0, +\infty[$ and \mathbb{R}^n is an *n* dimensional real Euclidean space.

Following [4], by $\mu_i^k(k=1,2,\ldots; k=2i,2i+1,\ldots)$ we denote real constants defined by the recurrence relation

$$\mu_0^{i+1} = 1/2, \quad \mu_i^{2i} = 1, \quad \mu_{i+1}^k = \mu_{i+1}^{k-1} + \mu_i^{k-2} \quad (i = 0, 1, \dots; \ k = 2i+3, \dots).$$

²⁰⁰⁰ Mathematics Subject Classification. 34B15.

Key words and phrases. Higher order ordinary differential equation, linear two-point boundary value problem, solvability, uniqueness.

Below in Theorems 1 and 2 it will be assumed that the function f satisfies the inequalities

$$(-1)^{n-n_0-1} f(t, x_0, x_1, \dots, x_{n-1}) s_0 \ge -\sum_{i=0}^{n_0-1} \alpha_i(t) |x_i|, -\alpha(t),$$
(4)

$$\left| f(t, x_0, x_1, \dots, x_{n-1}) \right| \le h(t, |x_0|, |x_1|, \dots, |x_{n_0-1}|)$$
(5)

on $[a, b] \times \mathbb{R}^n$, where the functions $\alpha_0 : [a, b] \to \mathbb{R}$ and $\alpha_i : [a, b] \to \mathbb{R}_+$ $(i = 1, \ldots, n_0 - 1)$ are summable and $\alpha : [a, b] \to \mathbb{R}$ is square summable, while the function $h : [a, b] \times \mathbb{R}^{n_0}_+ \to \mathbb{R}_+$ is summable in the first argument, nondecreasing in the last n_0 arguments and for any $\rho_0 > 0$ satisfies the conditions

$$\limsup_{\substack{t \to a_k \\ \rho \to +\infty}} \frac{1}{\rho^2} \left(\int_{a_k}^t h(\tau, \rho_0, \rho, \dots, \rho) \, d\tau \right)^{1-\lambda_k} < +\infty \quad (k = 1, 2), \tag{6}$$

where $\lambda_k \in [0, 1]$, $a_1 = a$ and $a_2 = b$.

Theorem 1. Let there exist constants $\gamma_i \leq 0$ $(i = 1, ..., n_0 - 1)$, $\eta > 0$, and $\delta > 0$ such that

$$\mu_{n_0}^n - \sum_{i=1}^{n-1} \frac{i\gamma_i}{n_0} \eta^{i-n_0} \delta \tag{7}$$

and the inequalities

$$\sum_{k=2i}^{n-1} (-1)^{n-n_0+k-i-1} \mu_i^k \left[t^{n-2n_0} p_k(t) \right]^{(k-2i)} + t^{n-2n_0} \alpha_i(t) \le \gamma_i \quad (i = 1, \dots, n_0 - 1),$$

$$\sum_{k=1}^{n-1} (-1)^{n-n_0+k} \mu_0^k \left[t^{n-2n_0} | p(t) \right]^{(k)} - t^{n-2n_0} \sum_{i=0}^{n_0 - 1} \alpha_i(t) \ge \sum_{i=1}^{n_0 - 1} \frac{(n_0 - i)\gamma_i}{n_0} \eta^i + \delta$$
(8)

hold on [a, b]. Then the problem (1), (2) is solvable.

In the case where n is odd, we complement Theorem 1 with

Theorem 2. Let $n = 2n_0 + 1$ and there exist a constant $\delta > 0$ such that the inequalities

$$p_{n-1}(t) \leq -\delta, \quad \sum_{k=2i}^{n-1} (-1)^{n-n_0+k-i} \mu_i^k \left[p_k(t) \right]^{(k-2i)} \leq 0 \quad (i = 1, \dots, n_0 - 1),$$

$$\sum_{k=1}^{n-1} (-1)^{n_0+k-1} \mu_0^k \left[p_k(t) \right]^{(k)} - \sum_{i=0}^{n_0-1} \alpha_i(t) \geq \delta$$
(9)

hold on [a, b]. Then the problem (1), (2) is solvable.

130

In the special case where

$$\begin{aligned} f(t, x_0, x_1, \dots, x_{n-1}) &\equiv f(t, x_0, x_1, \dots, x_{n_0-1}), \\ \varphi_{1i}(x_0, x_1, \dots, x_{n-1}) &\equiv 0 \quad (i = 0, \dots, n_0 - 1), \\ \varphi_{2j}(x_0, x_1, \dots, x_{n-1}) &\equiv 0 \quad (j = 0, \dots, n - n_0 - 1), \end{aligned}$$

i.e., when the problem (1), (2) is of the form

$$u^{(n)} + \sum_{k=1}^{n-1} p_k(t) u^{(k)} = f(t, u, u', \dots, u^{(n_0 - 1)}),$$
(10)

$$u^{(i)}(a) = 0$$
 $(i = 0, ..., n_0 - 1), u^{(j)}(b) = 0$ $(j = 0, ..., n - n_0 - 1),$ (20)

we have the following results on the unique solvability of the problem (1_0) , (2_0) .

Theorem 3. Let the inequality

$$(-1)^{n-n_0-1} \left[f(t, x_0, x_1, \dots, x_{n_0-1}) - f(t, y_0, y_1, \dots, y_{n_0-1}) \right] \ge - - \sum_{i=0}^{n_0-1} \alpha_i(t) |x_i - y_i|$$

$$(10)$$

hold on $[a, b] \times \mathbb{R}^{n_0}$, where the functions $\alpha_0[a, b] \to \mathbb{R}$ and $\alpha_i : [a, b] \to \mathbb{R}_+$ $(i = 1, \dots, n_0 - 1)$ are summable. Moreover, assume that the condition

$$\int_{a}^{b} \left| f(t,0,0,\ldots,0) \right|^{2} dt < +\infty$$
(11)

is fulfilled and there exist constants $\gamma_i \geq 0$ $(i = 1, ..., n_0 - 1)$, $\eta > 0$ and $\delta > 0$ satisfying (7) and such that the inequalities (8) hold on [a, b]. Then the problem (1_0) , (2_0) is uniquely solvable.

Theorem 4. Let $n = 2n_0+1$, the inequality (10) hold on $[a, b] \times \mathbb{R}^{n_0}$ and the condition (11) be fulfilled. Moreover, assume that there exists a constant $\delta > 0$ such that the inequalities (3) are satisfied on [a, b]. Then the problem (1₀), (2₀) is uniquely solvable.

For proving the above-formulated theorems the use was made of the method of a priori estimates and the principle of a priori boundedness proven in [5].

References

1. G. T. GEGELIA, On boundary value problems of periodic type for ordinary odd order differential equations. *Arch. Math.* **20**(1984), No. 4, 195–204.

2. G. T. GEGELIA, On boundary value problems of periodic type for ordinary differential equations. (Russian) Proc. I. N. Vekua Inst. Appl. Math. 17(1986), 60-93.

3. G. T. GEGELIA, On bounded and periodic solutions of nonlinear ordinary differential equations. (Russian) *Differentsial'nye Uravneniya* **22**(1986), No. 3, 390–396.

4. I. T. KIGURADZE, On bounded and periodic solutions of linear higher order differential equations. (Russian) *Mat. Zametki* **37**(1985), No. 1, 48-62.

5. I. KIGURADZE AND B. PŮŽA, On the solvability of boundary value problems for systems of nonlinear differential equations with deviating arguments. *Mem. Differential Equations Math. Phys.* **10**(1997), 157-161.

6. I. KIGURADZE AND G. TSKHOVREBADZE, On the two-point boundary value problems for systems of higher order ordinary differential equations with singularities. *Georgian Math. J. I.* 1(1994), No. 1, 31-45.

Author's address: Faculty of Mechanics and Mathematics I. Javakhishvili Tbilisi State University 2, University St., Tbilisi 380043 Georgia

132