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A NOTE ON THE FREDHOLM PROPERTY OF BOUNDARY VALUE
PROBLEMS FOR LINEAR FUNCTIONAL DIFFERENTIAL
EQUATIONS

(Reported on October 11, 1999)

The following standard notation will be used:
W is the Banach space of absolutely continuous functions z : [a,b] — R! with the
norm

b
lzlly = \I(a)|+/\i(8)\d8;

C is the Banach space of continuous functions z : [a,b] — R! with the norm

lzllc = max [z(t)];

t€la,b]

L is the Banach space of summable functions z : [a,b] — R! with the norm

b
llzIl,, :/IZ(t)\dI;
a

I is the identical operator in an appropriate space.
1. Consider the general boundary value problem in the space W

def .

(La)(t) =a(t) — (Tz)(t) = f(t), tE€[a,b], (1)

lr = «,

where T : W — L is a linear bounded operator, £ : W — R! is a linear bounded
functional.
We say that the boundary value problem (1) has the Fredholm property if the operator

(i) :W > Lx R!

has the Fredholm property, that is, it is a Noether operator with zero index.

In his paper [5] V. P. Maksimov proved that the problem (1) has Fredholm property
if T'is an U-bounded operator [6, p. 157] acting from C' into L. In this case, by definition
there exists a function u € L such that

[(Tz)(®)] <wu(t), tE€la,b],
for every z € C with ||z]|, < 1. Such an operator T acts from W into L completely

continuously.
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As we will show, the problem (1) has Fredholm property for T': C' — L without any
additional assumptions.

Theorem 1. Let T be bounded as an operator from C into L . Then boundary value
problem (1) has Fredholm property.

To prove Theorem 1 we need two lemmas.

Leema 1. Let T be a linear bounded operator from C to L. Then the operator T is
weakly completely continuous.

Proof. A linear bounded operator, acting from C' into any weakly complete Banach space,
is a weakly completely continuous operator [2, VI.7.6]. The space L is weakly complete
[2, IV.8.6]. Thus, the operator T is weakly completely continuous. O

Leema 2. LetT :C — L, S : L — C be linear bounded operators. Then the operators
I—-ST:C—CandI—-TS:L — L both have Fredholm property.

Proof. By Lemma 1, it follows that 7" is weakly completely continuous. A product of a
weakly completely continuous linear operator and a bounded linear operator is a weakly
completely continuous operator [2, VI.4.5]. So we see that the operators ST : C' — C and
TS : L — L are weakly completely continuous. Therefore, the operators (ST)2: C — C
(T'S)? : L = L both are completely continuous. Indeed, a product of weakly completely
continuous operators in the space C or in the space L is a completely continuous operator
[2, VI.7.5, VL.8.13].

By Nikol’skiis theorem (see [3, p. 504]), since the squares of the operators ST and
TS are, since the squares of the operators ST and T'S are completely continuous, the
operators I — ST : C — C and I — TS : L — L have Fredholm property. O

Proof of Theorem 1. The boundary value problem (1) has Fredholm property if and only
if the operator Qdef LA : L — L, where (Az)(t) = f:z(s)ds, t € [a,b], has Fredholm
property. This is shown in [1].

We have Q =T — TA.

The operator A : L — C' is bounded. By Lemma 2 for S = A, it follows that @ has
Fredholm property. [

2. Let us obtain criteria of Fredholm property for the singular boundary value problem

(Laz)(t) def(t — a)(b — t)2E(t) — (Tx)(t) = f(t), t€E [a,b],

lix = 3, (2)

where T': W — L is a linear bounded operator and ¢; : W — R2? is a linear bounded
functional.

Consider the problem (2) in the space D of all functions = : [a,b] — R! such that

1) x is absolutely continuous on [a, b];

2) & is locally absolutely continuous on (a, b);

3) [7(t —a)(b — D)E()| dt < +oo.

We say that boundary value problem (2) has the Fredholm property if the operator

(ﬁ}) :D— L x R?

Theorem 2. Let T be bounded as an operator from C into L. Then the boundary
value problem (2) has Fredholm property.

has the Fredholm property.
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Proof. In the article [4] it was proved that the space D with the norm
b
lzllp = [z(a)] + [(b)] + /(t —a)(b —1)|E(t)] dt

a

is continuously embedded into the space W. Moreover, the space D is isomorphic to the
direct product I x R?. The isomorphism J : I x R? — D is defined by the equality:

j{z7ﬁ}:Alz+Yﬁa
where A1 : L - D,Y : R? - D,
t b

(Alz)(t):—/b_tz(s)ds—/t_az(s)ds, t € [a,b],

b—s s—a
a t
YB=(t—a)p +(b—t)B2, t€]a,b]

The Fredholm property of the boundary value problem (2) is equivalent to the Fred-
holm property of the operator Q1 def LAy : L — L.

We have Q1 =1 — TA;.

Since the operator A1 : L — C is bounded, the assertion of the theorem follows from
Lemma 2 for S = A1. O
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