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1. STATEMENT OF THE PROBLEM. AN EXISTENCE THEOREM

Let J = [a, b] be a finite closed interval; O C R"—be an open set; K;, i = 0,1, U C R",
V C RP be compact sets; for each fixed (z1,x2,u1,us) € O x U? let the function
f:Jx0?x U? - R" be measurable with respect to t € J; for an arbitrary compact
K C O there exist measurable functions mp (t), Lk (t), t € J, such that

|f(t711a127u1au2)| < mK(t)a V(t,Il,I%Ul,U?) €Jx Kz X U2a
2

[F(t,@h, @y ur,uz) = f(t 22 ur,uo)l| < Lic() Y [af —all,

i=1
Y(t,xh, xh, @y ol ur,uz) € J x K4 x U4,

Further, let the functions 7(t), (t), ¢ € J, be absolutely continuous and satisfy the
conditions: 7(t) < t, #(t) > 0, 8(t) < t, 6(t) > 0; Q = Q(Jo,V,m, L) be the set
of piecewise continuous functions v : Jo = [ap,bp] — V satisfying the condition: for
each function v(-) € € there exists a partition ap = & < -+ < & = bp such that
the restriction of the function v(t) satisfies the Lipschitz condition on the open interval
(& €i41),1=0,...,m, ie., [v(t") —o(")| < LIt —t"|,V¢',t" € (&,&i+1), i =0,...,m,
where the numbers m and L do not depend on v € Q; let Qo = Q([7(a), b], Ko, mo, Lo),
elements of this set will be denoted by ¢(-); Q1 = Q([8(a),b],U,m1,L1), its elements
being denoted by u(-); let ¢° : 5 x 0> - R, i =0,... I, be continuous functions.
Consider the problem:

() = f(t, (), 2(7(t), u(t), u(0(1), € [to,tr] CJ, u(-) € (1)
2(t) = plt), 1€ [r(to),to), (o) =m0, () € Qo, a0 € K1, (2)
q'(to, t1, 0, @(t1)) =0, i =0,...,1, (3)

¢ (to, t1,m0,@(t1)) — min. (@)

Definition 1. The function z(t) = z(t,2) € O, t € [7(to),t1] , is said to be a solution
corresponding to the element z = (to,t1, o, p(-),u()) € A = J2 x K1 x Qo x Q1, if on
[7(t0), to] it satisfies the condition (2), while on the interval [to, ¢1] it is absolutely contin-
uous and the pair (u(-), z(-)) almost everywhere (a.e.) on [to, t1] satisfies the equation (1).

Definition 2. The element z € A is said to be admissible if the corresponding solution
x(t) satisfies the condition (3).

The set of admissible elements will be denoted by A.
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I

Definition 3. The element Z = (o, 1, %0, P(-), @(-)) € A is said to be optimal if

where
1(2) = ¢°(to, t1, w0, 2(t1)),  =(t) = x(t, 2).

Theorem 1. Let the following conditions be valid:
1) A #0;
2) there exists a compact set Ko C O such that

z(t,z) € K2, VzeA.

Then there exists an optimal element.

2. AUXILIARY LEMMAS

Lemma 1. Let 24 (t) = z(t,2;), t € [7(tF), 5], be the solution corresponding to the
element z, € A; t’g — to, t’l" — t1 as k — oo, t’g > to, t’l" <ti; K; C O,1=3,4, be
compact sets with K3 C intK4 and z(t) € K3, t € [t},t5]. Then for sufficiently large k
the functional differential equation

y(t) = f(t7 y(t)a h(tl(gy ka'(')a yk())(T(t))a Up (t)a uk‘(a(t)))7 (5)

where

h(t07(p(')a y())(t) = { ;((tt)); zg %Zo()ag]:t()),

has a solution yi,(t) = y(t, z1,) € K4 defined on [to,t1], and yi(t) = zx(t), t € [t&,tF].

The proof of this lemma can be carried out in the standard way (for example, see
Theorem 2 in [1]), since (5) is an ordinary differential eqation for ¢ < tf, and is a
differential equation with delayed argument for ¢ > t’g.

Lemma 2. Let vi(-) € Q, k = 1,2,.... Then there exists a subsequence of the
sequence {vi()}p2, such that it converges to some function vo(-) € Q for each t € J,
ezcept for not more than (m + 1) points.

Proof. By assumption the function v (t), t € (ff,$f+1), satisfies Lipschitz condition.
From this it imediately follows the existence of one-sided limits

lim vi(t)=v,, i=0,...,¢ -1, lim vk(t):v:_, i1=1,...,q.
t—gh— ‘ t—ek+ i

We set the function

ves  t<Eh,
Wi, (t) = Uk(t)7 te (gllc,gllc_i_l),
vh, > ek,
m
() = X (Bwr; (), € Jo, wi(bo) = wi(bo—),
=0

where Xy, (t) is the characteristic function of the semi-open interval Ey, = [§f,§f+1).
Obviously, wg(-) € Q and

wi(t) = vk (t), t € (EF,€Fp0)- (6)



138

The sequence {wg,;(t)}72, is uniformly bounded and equicontinuous for each i =
0,...,m. Therefore, by virtue of Arzela-Ascoli’s lemma, from {wg,(t)}72, it can be
picked out a uniformly convergent subsequence which again is denoted by {wg, (£)}52; -

Thus

lim wy, (t) = w;(t) uniformly for ¢ € Jo.

k—oo

Without loss of generality we will assume that
lim F=¢, i=1,...,¢—1.
k— oo

Consegently we have

lim Ek'i =E;, k'li)nolo Xk; (t) = Xl(t)a tEeR,

k—oo

where E; is an interval and x;(t) is the charasteristic function of the interval E;.
Therefore for each t € Jo

Jim w (1) = w(t) = > xitwi(o),
=0

besides w(-) € Q.
Taking into account (6), we can conclude that

lim vg(t) = w(t) =wvo(t), t€ (&,&i+1), i=0,1,...,m. O
k—oo

3. PROOF OF THE THEOREM
There exists a sequence 2 = (t’g,t’f,x’g,wk(~),uk(-)) €A, k=1,2,...,such that
I(zp) = I, th iy, th =i, 2k 530 as k— oo;
lim (pk(t) = @(t)a a.e. on [T(a)7b]7§b(') € Qo;
k—o0
lim wg(t) = a(t), a.e. on [0(a),b],a(-) € U
k— o0
(see Lemma 2).
Consider the case where t’g > to, t’f < t1. The remaining cases can be considered
analogously.
Let K5 € O be a compact set, K2 € intK5. For sufficiently large k > ko there exists
the solution y(t) € K5 of the equation (5) defined on [fo,1] and yi(t) = =1 (t), t €

tk,tk], (see Lemma 1).
Obviously

h(th, or(), yr())(t) € Ko, k>ko, t€[r(f),i1], Ke= KsU Ko,

therefore
‘y(t)‘ SmKs(t)a te [thtl]-
Thus the sequence {yx(-)}3Z, is uniformly bounded and equicontinouos. Without
loss of generality we can assume that

lerr;o yi(t) = §(t) uniformly with ¢ € [to,%1].
Consequently, ) o
Jim fi[t] = flt], a.e. t€[to, 1],
where
[t = Sty (), h(t5s 0x (), ye (D) (T(2))s wi (), ug (0(1))),
1] = Ft,y(t), h(Fo, §(-), G()) (T (1)), alt), @a(0(t)))-
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Further,
t
yr(t) = zf + / fls)ds + ag + Bi(t), (7)
to
where
&k t
o :/fk(t]dt, Br(t) :/[fk[s]* fls]] ds.
i to
Evidently

i
Jim =0, [By(0) S/\fk[S]*f[S]\d&
to

By virtue of Lebesgue’s theorem on passage to limit under the integral sign we have

lim Bj(t) =0 uniformly with ¢ € [fo,11].
k— o0

From (7) as k — oo we get

It is easy to see that

therefore

¢'(fo,t1,%0,4(t1)) =0, i=1,...,1, I=q"do,t1,%0,5(f1)).

Introduce the function

Obviously z = (fo,%1,%0,%(-)) € A and I(3) = I.
Finally, note that the proved theorem is also valid in the case where the right-hand
side of the equation (1) has the form

f(t7 x(Tl(t))a R 755(7—3(t))a u(al (t))7 s 7u(01’(t)))a

where the functions 7;(t), i =1,...,s, 0;(t), i =1,... ,v, are absolutely continuous and
satisfy the conditions 7;(t) < t, 7:(t) > 0; 0;(t) < t, 8;(t) > 0.

If Ko, U are convex sets and the points of discontinuity of the functions from the set
Q;, 1 = 0,1, are fixed be forehand, then for the problem (1)—(4) necessary conditions of
optimality are valid in the form given in [2]. In the class of measurable functions the
problem of existence is studied in [3,4].
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