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7. SOKHADZE

ON UNIQUENESS OF SOLUTION OF THE WEIGHTED INITIAL
VALUE PROBLEM FOR HIGHER ORDER EVOLUTION SINGULAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on November 8, 1999)

In the present paper optimal, in a certain sense, sufficient conditions for uniqueness
of solution of the weighted initial value problem

ul™ (1) = flu)(), (1)
tg?z;:i:—iggzo (k=0,...,m—1) (2)
are given, where f : C*~1([a,b];R™) — Lioc(]a, b];R™) is a continuous Volterra operator
and h : [a,b] — [0,400[ is an (n — 1)-times continuously differentiable function such that

E* @)y =0 (k=0,...,n—2), K" D) >0 for a <t<b.
A particular case of the equation (1) is the vector differential equation with delay
uw(M(t) =
= fo(t,u(r10(t)), .-, u™ D (a1 (), . ulmio(®), .-, u™ D (i (1), (3)

where fo :Ja,b] x RI™m" — R™ gatisfies the local Carathéodory conditions, and 7;; :
[a,b] = [a,b] (i=1,...,l; k=0,...,n — 1) are measurable functions such that

Ti(t) <t for a<t<b (i=1,...,5; k=0,...,n—1).

Throughout the paper the use will be made of the following notation.
R™ is the space of m-dimensional column vectors & = (x;)/" , with real components

and the norm
m
lall =Y Jil-
=1

x -y is the scalar product of the vectors z and y € R™.

If z = (z;)[2, € R™, then sgn(z) = (sgn=;)~,.

C™ 1([a,b];R™) is the space of (n — 1)-times continuously differentiable vector func-
tions z : [a,b] — R™ with the norm

n—1
lellgn-1 = max{ D @) a<t < b}.
k=1
C;?_l([a:b];Rm) is the set of u € C™~1([a,b]; R™) such that

[u® @), _
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If z :]a,b] — R™ is a bounded function and a < s < t < b, then
v(z)(s,t) = sup{[|z(£)[| : s < & <t}

Lioc(]a, b]; R™) is the space of locally summable vector functions z :]a,b] — R™ with
the topology of convergence in the mean on each segment from ]a, b].

Definition 1. f: C" !([a,b];R™) — Lioc(]a,b];R™) is called a Volterra operator if
the equality f(z)(t) = f(y)(t) holds almost everywhere on ]a,to[ for any to €]a,b] and
any vector functions z and y € C"~1([a, b]; R™) satisfying the condition z(t) = y(t) for
a S t S to.

Definition 2. We will say that the operator f : C"~1([a,b];R™) — Lisc(]a,b]; R™)
satisfies the local Carathéodory conditions if it is continuous and there exists a nonde-
creasing with respect to the second argument function v :]a, b] X [0; +o00[— [0; +oo[ such
that (-, p) € Lioc(]a, b];R) for any p €]0;+00[ and the inequality

IF @)D < (& llzllgn-1)

is fulfilled for any = € C™~!([a,b];R™) almost everywhere on ]a, b|.

Definition 3. A function u : [a,b] — R™ is called a solution of the problem (1), (2)
if:

(i) u € C"([a,b];R™) and u(®~1) is absolutely continuous on each segment con-
tained in ]a, b];

(ii) w satisfies (1) almost everywhere on ]a, b;

(iii) u satisfies initial conditions (2).

The following theorem is valid.

Theorem 1. Let there exist summable functions py, : [a,b] — [0, +o0[ (k=0,...,n— 1)
such that

n—1 ¢
. 1
llril_s)lip (mkgg/pk(s) ds) <1 (4)

and for any u; € C}?_l([a, b; R™) the inequality

(Flun)(®) — Flu2)(®)) sgnlur(t) — uz() <

n—1
<Y mow (2 ) @) )
k=0

be fulfilled almost everywhere on |a,b[. Then the problem (1), (2) has at least one solu-
tion.

From the above theorem and Theorem 2 from [3] follows

Theorem 2. Let the conditions of Theorem 1 hold and

. 1
im (o / 1£0)(s)lds) =o. (©)

Then the problem (1), (2) has one and only one solution.

Theorems 1 and 2 for the problem (3), (2) take the following form.
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Corollary 1. Let Tin—1(t) =t and let there exist summable functions p;y : [a,b] —
0,400 (i =1,...,4;k=0,...,n — 1) such that

n-1 ¢ !
lim sup (WZZ/p,k(s)ds) <1 (7)

t—a .
k=0 i=1"
and the inequality
(folt, h(rr0() w10, -+, K" (Tin 1 () Bm—1) —
—fo(t: A(10(8))y105 - -, K" (Tn 1 (8))yen 1)) s80(en—1 — Yen—1) <
n—1 {
<N pibllwi — vl

k=0 i=1

is fulfilled for any t €la,b], ;1 € R™ and y;, € R™ (i = 1,...,4;k =0,...,n —1).
Then the problem (3), (2) has at most one solution.

Corollary 2. Let the conditions of Corollary 1 hold and

t
A 1
Jim (m/\lfo(s,o,--.,o)llds) =0.

Then the problem (3), (2) has one and only one solution.

The above-formulated Theorems 1 and 2 and their corollaries generalize the results of
[1] and make the results of §5 from monograph [2] more complete.
As an example, in the interval ]0,1/2] we consider the boundary value problem

n—1

W) =D ge (O™ (1)) + (), (8)
k=0

) u(k)(t) _ _

EL%W_O (k=0,...,n—1), (9)

where
g(t) = w™(8), w(t) =" /|Int],

gk () = Lrw™ () Jw® (), >0 (k=0,...,n—1). 10

The problem (8), (9) is a particular case of the problem (1), (2), where a =0, b= 1/2,
n—1
Fa)®) =Y g™ ®)] + g(t)
k=0

and h(t) = t™. Obviously, the operator f satisfies conditions (5) and (6), where

On the other hand,

n—1

n-1 &
tliE}J (h(%l)(t) ;/pk(s) ds) = Zlk.

k=0
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According to Corollary 1, if

n—1
o,
k=0

then the problem (8), (9) has a unique solution.
Let us show that if

n—1
> o>, (11)
k=0

then the problem (8), (9) has no solution. Assume the contrary that this problem has a
solution u. Then with regard for (10) from (8) we obtain

u® () > w® () (k=0,...,n) for 0 <t<1/2.
Put

u(n—l)(t)

Po=1nf{m

:0<t§1/2}. (12)

Then we have
u® () > pow B (t) for 0<t<1/2 (k=0,...,n—1).
If along with this we take into account (10) and (11), then from (8) we get
u(™ (£) > (po + D)w ™ () for 0 <t <1/2.
Thus
wD @) > (po + Dw™ D (#) for 0 <t < 1/2
which contradicts (12).

The above-constructed example shows that the condition (4) (the condition 7) in
Theorems 1 and 2 (in Corollaries 1 and 2) cannot be replaced by the condition

t
n—1
1
lims S — ds) <1
11?_)1;p (h("—l)(t) ;/m(s) s) <

n—1 /( ¢

(lir?jlip (m /pik(s) ds) < 1).

=0 i=1
a

=
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