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Consider the nonlinear ordinary di�erential equation
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on the in�nite interval [a;+1[, where n � 2 is an even number, 1 < a < +1, ea
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fun
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ally absolutely 
ontinuous together

with its derivatives up to the order k�1 in
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are absolutely 
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ontained in [a;+1[), and the fun
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! R satis�es the lo
al Carath�eodory 
onditions.
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. Consider the problem on the existen
e of a solution of the

equation (1) satisfying the boundary 
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on R

n

, where 
 > 0 and # 2 [0; 1℄.

In the 
ase where p

k

(t) � 0, problems of su
h type were investigated by I. Kiguradze

[1℄. The author has re
ently studied the 
ase where � = 0 (see [5℄). Our interest to the

problem (1), (2) is two-fold. First, to supplement the results of [1℄ and generalize those

of [5℄ whi
h 
orrespond to the 
ase of an even n. Se
ond, to supplement in 
ertain 
ases

some results appearing in the qualitative theory.

Below the use will be made of the following notation:

R is the set of real numbers;

R

n

the n-dimensional Eu
lidean spa
e;

�

k

i

(i = 1; 2; : : : ; k = 2i; 2i+1; : : : ) are real 
onstants de�ned by the re
urren
e relation
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Everywhere below it will be assumed that the fun
tion f satis�es the 
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Theorem 1. Let the inequality

(�1)

n

0

�1

f(t; x

0

; x

1

; : : : ; x

n�1

) sgn x

0

� �

n

0

�1

X

i=0

�

i

(t)jx

i

j � �(t)

hold on [a;+1[�R

n

, where the fun
tion �

0

: [a;+1[! R and �

i

: [a;+1[! R

+

(i = 1; : : : ; n

0

� 1) are lo
ally summable, and � : [a;+1[! R is measurable and satis�es

the 
ondition

+1

Z

a

t

�

�

2

(t)dt < +1:

Moreover, let there exist the 
onstants 


i

� 0 (i = 1; : : : ; n

0

� 1), Æ > 0 and � >

maxf[�(� � 1)℄

n

0

�1

; 2

(n

0

�1)(n

0

�2)

g satisfying

1�

n

0

�1

X

i=1




i

n

0

�1

Y

k=i

�

1

k

� Æ

and su
h that the inequalities

t

��

n

X

k=2i

(�1)

n+k�i�1

�

k

i

�

t

�

p

k

(t)

�

(k�2i)

+ �

i

(t) � 


i

(i = 1; : : : ; n

0

� 1);

t

��

n

X

k=1

(�1)

n

0

+k

�

k

0

�

t

�

p

k

(t)

�

(k)

�

n

0

�1

X

i=0

�

i

(t) �

n

0

�1

X

i=1




i

�

n

0

�1

X

k=i

2

k�1

�

1+

1

2

+���+

1

k

�

+ Æ

hold on [a;+1[, where p

n

(t) � 0. Then the problem (1), (2) is solvable.
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hold on [a;+1[, where p

n

(t) � 1. Then the problem (1), (2) is solvable.

From these results and also from the existen
e of a so-
alled proper solution of (1)

(i.e., a nontrivial solution of (1) de�ned in some neighbourhood at in�nity) we obtain its

asymptoti
 behaviour.

Theorem 2. Assume that all the hypotheses of Theorem 1 (Corollary 1) hold. Then

for arbitrary 
ontinuous fun
tions '

i

(i = 0; : : : ; n

0

�1) satisfying (3) on R

n

, where 
 > 0

and # 2 [0; 1℄, there exists at least one proper solution of the equation (1) satisfying the

initial 
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Corollary 2. Assume that all the hypotheses of Corollary 1, ex
ept that of the re-

stri
tion (5), are satis�ed. Then the equation (1) has an n

0

-parametri
 family of proper

solutions possessing the asymptoti
 property (7).

These results generalize those obtained in [5℄ and 
omplement the results of [1℄ 
on-


erning the 
ase of even n.

On the other hand, Theorem 2 provides us with suÆ
ient 
onditions on the existen
e

of proper os
illatory (i.e., having a sequen
e of zeros 
onverging at in�nity) solutions of
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whi
h appear from qualitative theory (see Corollary 1:1[2℄, p. 208). Therefore, the result

below �lls in a 
ertain way the gap in [4℄ (see Theorem 2, p. 39).
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Moreover, in the 
ase n

0

is even, every proper solution is os
illatory.

The last result is new even for the Emden-Fowler type equation
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illation theory. For example, as

early as in 1992, I. Kiguradze [2℄ (see Corollary 1. 6) proved that if n � 4 is even, � > 1

and p : [0;+1[!℄�1; 0℄ is lo
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is ne
essary and suÆ
ient for every proper solution of (1

2

) to be os
illatory. However, the

question on the existen
e of at least one proper solution of (1

2

) remained open. Clearly,

Corollary 3 implies

Corollary 4. Let n = 2n

0

, n

0

be even, and let the inequality p(t) � �
t

2�n

on

[a;+1[, where 
 > 0. Then the equation (1

2

) has an n

0

-parametri
 family of proper

os
illatory solutions.

Finally, we 
onsider the generalized Emden-Fowler equation
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where n � 2, � > 1 and Æ : [a;+1[! [0;+1[ is measurable. From the above reasoning

we answer the question on the existen
e of proper solutions of (8). Moreover, using a

result of T. Chanturia (see Theorem 1.9 in [3℄, p. 50), we obtain the following suÆ
ient


onditions for the existen
e of proper os
illatory solutions of (8).

Corollary 5. Let n = 2n
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> 1 be even. Assume that all hypotheses of
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illatory solution of (8) satisfying

the initial 
ondition (6) and possessing the asymptoti
 property (7).
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