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ON NONINCREASING SINGULAR SOLUTIONS OF THE
EMDEN-FOWLER EQUATION
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Consider the Emden—Fowler equation
u™ = (=1)"p(t)|ul*signu, p(t) >0, A€ (0,1), n>2, (1)

with the coefficient p locally Lebesgue integrable on (a,b) and differing from zero on a
set of positive measure in any left neighborhood of b.
A solution u : [a,b) — (0,400) of the equation (1) is said to be a Kneser singular
solution of the first kind, if
(-D'u®@) >0 (i=0,...,n—1) for te(a,b), lim u(t) = 0. (2)
t—

The problem (1), (2) is studied in [1,2]. There, in particular, there are obtained the
sufficient condition

t
J(a,b) < 400, where J(s,t)z/p(T)(b—T)(”—de (3)

for solvability of the problem and an associated upper asymptotic estimate of its solutions
D (@) < (1= NI (8 b)/(n = 1) ), (4)

The conversion of (1), (2) to a similar problem on proper nonoscillatory Kneser so-
lutions vanishing at infinity, which is more studied [1,3], allows one to get necessary
conditions of solvability and lower asymptotic estimates of solutions. In the same man-
ner it is easy to conclude on the basis of [4, 5], that (3) is not a necessary condition.

In the present report we use a direct approach to the problem under consideration,
which helps us to simplify proofs and to find out specific properties of solutions. Here new
necessary conditions of solvability of the problem (1), (2) and lower asymptotic estimates
of its solutions are obtained. Here also the necessity of the condition (3) is established
in certain cases.

Begin with a simple Lemma which is basic in the subsequent discussion.

Lemma 1. Letu(t) be a solution of the problem (1), (2). Then the auziliary functions
vilt) = WOWIG - i~ (i =0,...,n—1)

increase on (a,b) and tend to zero as t — b.
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Proof. Let u be a solution of the problem (1), (2). Then for all ¢ = 0,... ,n — 1 the
equalities 0;(t) = (b—t):=" R;(t) hold, where R;(t) = (n—i—1)[u® ()| — (b—1t)|ui+t1D(2)]
are continuous on (a,b) functions satisfying there R;(b) = 0, R}(t) = —R;+1(t) (i =
0,...,m—2), Ro_1(t) = —=(b — t)|ul™ (t)] < 0. Thus in view of the representations
b
R;i(t) = /(T — )" 2R, (r)dr/(n—i—2)! (i=0,...,n—2)
t

we see that R;(t) < 0 on (a,b) for alls. O
Corollary 1. Every solution of the problem (1), (2) satisfies the inequalities
D@ b—t) > (n—i—Du® @) (i=0,...,n—2), ¢t (a,b). (6)
The proof of the next Lemma is a matter of easy calculation.

Lemma 2. Let u be a solution of the problem (1), (2) and let ¢(t) > 0 be a nonde-
creasing function on (a,b). Then for all t € (a,b)

g1 () _ PO (1) )

vom () P A e (t) o)
pi(t) _ _pm(t)
v%i+1(t) -~ n—i—-1"

where vy i (t) = vi(t)/¢(t), ar(t) =min{(b—1)~", 4(t)/(Mp(t))}.
The main result of the report contains the following

Theorem 1. Letu be a solution of the problem (1), (2) and let ¢ : (a,b) — (0,400) be
any nondecreasing function. Then for any numbersv € [0,1), p € (1—v)/n, (1—v)/n1),
M >0 and o > 0 the equality

lim Fu,u,a,M(‘p)(t) =0 (7)

t—b

is fulfilled and the upper estimate
[u D] > A[Fy o0 () ()] 78 (8)

is true, where

(p(r)(b — T)(n= DAy (22 ar

oo (et () \e(r)

Fu,,u,,o',M((p)(t) = (po' (t)/ (P(T)

ni =1+ (n—1)X and v > 0 depends only on n, A\, p, v.

Proof. In accordance with the given values of y and v define the numbers p; by the
equalities pn = p, n+1 = v,

. 2W+npu—1 1-v 2(1—-v
b e, o= 2EMED (1o 200
L n(n —1) n n+ni
Hi = . 2(1 —v —nip) 21—-v) 1—v
Ap+ier, €9 = ———= pe | —~, —
n(n — 1) n+ny N1
fori=1,...,n. It is clear that these numbers satisfy the conditions
n+1
gt —pi > e >0 (i=1,...n—1), p- g e, Y pi=1 (9)

i=1
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Assume u is a solution of the problem (1), (2) and let ¢(t) > 0 be a nondecreasing
function on (a,b). Then by Lemma 2 and the well known inequality

n

n n
> g > [ wi>0, g0, Y pi=1
i=1

i=1 i=1

we obtain for the derivative of the function w, (t) = [] v
i=0

\w @) b4 (0)] PG — DX (1) = Vit (t)
; p(t) Z Uiz t) P (tvp,n—1(t) +WM(t)iz:; iw,i(t) *
o(t) p()(b — )X (8 \ n [ Ve,i+1(t) it
o> (e ) e o)

)(b—t)(" I)A)pvku ul n—1

20\ (o)) (bt = oy
X(%) *7(%) PN (e ()T 1:[5 o

Multiplying the above inequality by wg, (t)~%(t) with positive ¢ < min{e1,o/n},
0 = 0 — ne and integrating the result, we get

b n—1
> / (p(x)(b — m)(n—l))\ )\—l)u (M)Uykuon—#l‘i‘i(x) H Up‘z Mz+1+5( )dCE,
S @A e @) L%
where v depends on n, A, p, v. From here by Lemma 1, (6) and (9) we get
n—1
ol @) > w2 ) TT o 0 > Fupoan (0)0)
i=1

which completes the proof. [J

By means of this theorem it is easy to find the case where the sufficient condition (3)
turns out to be a necessary one as well.

Theorem 2. Let the equation (1) with the coefficient p satisfying
p(t)(b— )" <e(J(a,t)+1), ¢>0, (10)
on (a,b) have a solution of the type (2). Then the condition (3) must hold and for all
[7AS (O,TL;I) the estimate
[u=D ()] > 4TV BA=ND (1 b), where v = v(n, A, ), (11)
is fulfilled.
If along with (3)
p(t)(b—t)"t < cJ(t,b) for tE€ (a,b), c>0, (12)
holds, then there takes place the two-sided estimate

0< 1 < @) JY A1 (1, b) < 7. (13)
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Here v1 and 72 depend only on n, A, L.

Proof. Assume that w is a solution of the problem (1), (2), and let (10) hold. Then,
putting p(t) = J(a,t) + 1, we have for o > p

Fypo,e(0)(8) = 97 (1) / P(x)p" =7 @)z = o (1)/(0 — p)

which contradicts the conclusion of Theorem 1. Consequently, (3) must be fulfilled and
©(t) is bounded. Owing to this fact we obtain F, , o c(¢)(t) > vJ(¢,b) on (a,b), which
by Theorem 1 yields (11).

To prove (13) we can use (4) and (8) with p(t) = 1/J(t,b) because

b
Fypo,e(@)(t) = J77 (L, ) /P(I)(b —2)( DA (g, b)de = 5 TH(t,b).

t
The theorem is proved. O
Corollary 2. The problem (1), (2) with the function p satisfying 0 < c¢1 < p(t)(b —
=DM g (1/(b — ) (1/(b — 1)) < c2, k > 0 on (a,b) has a solution if and only if
o > 0 and every its solution admits the estimate 0 <~y < |u("~ 1 (t)| lnz/(lfk)(l/(b —t))
J
< 72, where Ingt =t, Inj 11t = In(In; t), I;(t) = H In; t and v1, v2 depend only on n,

=0
A, O

In the general case where (3) is not assumed to be fulfilled we will introduce into
consideration the nonnegative functions pf*(t) = min{p(t), f(t)(b—t)"}, p;(t) =p(t)—
Pf«(t) and the integrals

t t

n- * _ \(n—1)X
Jf*(sat):/pf*(m)(bix)( 1)Ad:L‘, J;(S,t):/wdm,

f(z) f(z)

8 8
where f(x) is an arbitrary nondecreasing positive function.
Theorem 3. If the equation (1) has a solution u of the type (2), then for an arbitrary

nondecreasing positive function f and all p € (0,1/n1) there hold J¢.(a,b) < oo,
lirrll) JH(t)J5,«(t,b) = 0 and in some neighborhood of b the estimate
t—

D@1 > ()T (@ 6) Y

is true.
If in addition pr.(t)(b — )™ < cf(t)Jp(t,b) for t € (a,b), then [u(»~ V()| >
Y(f(£)Tpu(t,0))1/ (2= The constant v depends only n, X, p.
Corollary 3. If the problem (1), (2) is solvable with p satisfying
b

Jf(t,b):/l%g(nmdm:Jroo for t<b,

t

where f(x) > 0 is an arbitrary nondecreasing function, then

Tim p (£)(b — )"~V f(8) = 400, T} (t,b) = +oo.
t—b
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Theorem 4. If the equation (1) with the function p satisfying the condition
Pre(t)(b—t)"1 > cf(t)Jsu(t,b) for t€E (a,b),

where f(x) increases on (a,b), has a solution u of the type (2), then the estimate

)1/(1—A)

)

w0 @) >y (10 )
holds, where v depends only on n, A, p.

Theorem 5. If the problem (1), (2) with p satisfying p’}(t)(b -t > cf(t)J; (a,t)
on (a,b), where f(x) increases on (a,b), has a solution u of the type (2), then

b

w00 > 2 (1077 @) / v tagmpyan) )

t

where v = y(n, A\, u) > 0.
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